专利名称:信息传输系统、铁道车辆用信息传输系统及车辆用信息传输终端装置的制作方法
技术领域:
本发明涉及在铁道车辆内传输信息而使用的适当的信息传输系统及该信息传输系统中使用的车辆用信息传输终端装置,特别涉及即使在传输路径上出现多重故障时,也能继续传输的技术。
背景技术:
伴随着近几年的网络技术的发展,在各种领域中利用网络进行的信息传输,已经实用化。其中,还包含如铁道车辆那样,出现障碍时的影响非常大、要求具有高度的可靠性及安全性的领域。因此,迫切需要即使出现多重障碍也不会中断传输、可靠性高的信息传输系统。
作为面对多重障碍也能继续传输的传输技术,有通用的网络技术以太网络中的路径选择技术。另外,作为铁道车辆用的网络技术,还有专利文献1记述的技术。
在路径选择技术中,选择传输路径的路由器彼此互相交换信息,按照通信对象,随时选择适当的路径。因此,如果预先准备富余的传输路径,那么即使出现障碍,也能选择可以通信的路径,继续传输。
在专利文献1记述的技术中,在各车辆内分别设置2个传输站,将各车辆的传输站作为第1传输路径,环路连接的同时,还将车辆内的2台终端站间作为第2传输路径连接。这样,如果在第1传输路径中出现障碍,就可以利用第2传输路径形成迂回路径,继续传输。
特开平11-154891号公报路径选择技术,因为是作为通用技术而开发的,所以是在构成复杂的网络时以及在大规模的网络中也能动作的优异的技术。而且,由于广泛普及,所以能够用低成本构成网络。可是,路由器通常用软件实现,而且需要在识别各个接收数据的内容之后选择传输路径。因此,存在着接收一个数据后,直到将它向正确的路径输出为止的处理时间较长的问题。在传输速度高速化之际,它影响特别大。另外,在出现障碍之际,为了寻找新的路径,路由器彼此交换信息,需要数十秒到数分钟的时间。可是,在铁道的车内传输系统等的机器控制网络中,要求其传输延迟小,出现障碍时的传输路径的变更也必须在瞬时(例如100ms以下)中进行。因此,难以将路径选择技术原封不动地应用于上述用途。
专利文献1记述的技术,也在准备富余的路径、出现障碍时选择路径的这一点上,与路径选择技术是同样的技术。在该技术中,由于采用环路结构,所以信息的传输路径,存在右旋和左旋的两个。这样,即使1处出现障碍,也能用某个路径传输。在多处出现障碍时,才经由迂回路径传递信息。考虑到断线引起的障碍后,需要使断线部位的两侧的迂回路径动作,两处断线时,就得使4处的迂回路径动作(是邻接的断线时,为3处迂回路径)。与使其动作的迂回路径连接的终端站,需要共享障碍信息,需要在这些终端站之间交换信息。另外,进行动作是在出现多重障碍时,出现障碍后还要确认是单个障碍还是多重障碍。因此,该技术在障碍的复原上也相当费时。
发明内容
本发明的目的在于,提供即使出现多重障碍也能继续迅速传输、而且传输处理时间短、可以适应传输路径的高速化的高速、高可靠的网络。
本发明,在由通过传输路径可以互相传输信息的多个传输终端站构成的系统中,在多个传输终端站之间用多个传输路径连接,传输终端站具有将从其它的传输终端站接收的数据,再发送给其它的传输终端站的传输中继功能单元;传输中继单元,具有通过多条传输路径接收同一个信息,选择某一个路径后中继的路径选择单元。
采用本发明后,能够实现面对传输路径及传输终端站的多处故障也能继续传输的高可靠性的网络。
图1是本发明的第1实施方式中的1节车辆的传输终端站的结构图。
图2是本发明的第1实施方式中的1车辆内的机器的连接结构图。
图3是本发明的第1实施方式中的铁道车辆用信息传输系统的结构图。
图4是本发明的第1实施方式中的传输终端站内的路径切换部的结构图。
图5是本发明的第1实施方式中的来自路径切换部的基干传输路径的接收状态与向交换集线器(switching hub)的输出的关系图。
图6是本发明的第1实施方式中的分离车辆时的结构图。
图7是本发明的第2实施方式中的1节车辆的传输终端站的结构图。
图8是本发明的第2实施方式中的铁道车辆用信息传输系统的结构图。
图9是本发明的第2实施方式中的传输终端站内的路径切换部的结构图。
图10是本发明的第2实施方式中的路径切换部的判定部的结构图。
图11是传输数据的结构图。
图12是本发明的第3实施方式中的1节车辆的传输终端站的结构图。
图13是本发明的第3实施方式中的铁道车辆用信息传输系统的结构图。
图14是本发明的第3实施方式中的传输终端站内的路径切换部的结构图。
具体实施例方式
下面,参照图1~图6,讲述本发明的第1实施方式。在本例中,是讲述铁道车辆用的信息传输系统的情况。图2表示本例中的一个车辆内的机器的连接结构。车辆内设置的传输终端站112、122,通过基干传输路径21、22互相连接,可以交换信息。具有2个传输终端站112、122和2个基干传输路径21、22,为了确保对于机器故障而言的富余性而双重化。在车辆内,配置着多个机器41~46,它们通过支线网络31、32与传输终端站112、122连接。在本实施方式中,考虑到机器的设置场所,用2条支线网络31、32连接车辆内的机器41~46。1条连接安装在地板下的逆变器41及制动器42等机器,另一个连接安装在地板上的显示器43、广播装置44、车门45、空调46等机器。在各自的支线传输路径31、32中,在支线网络31、32的两端,配置双重化的传输终端站112、122,在其中间设置各机器。这是为了即使在支线传输路径31、32中出现断线等故障时,也能和某一个传输终端站112、122进行通信。采用上述结构后,车辆内的机器经由支线网络31、32和基干网络112、122,可以互相传输指令值及状态信息等。
此外,本实施方式的结构,并不依赖车辆内的特定机器及支线网络的结构。所以,与图2没有示出的机器连接,或者没有与图2示出的机器连接,或者以不同的结构连接传输终端站和机器,也同样能够适用。
图1表示本实施方式中的传输终端站的结构。图1表示1节车辆的结构,通过具有2个传输终端站121、122后被双重化。而且,1系的传输终端站121用1系的基干传输路径21、2系的传输终端站122用2系的基干传输路径22,分别与邻接的车辆连接。传输终端站121、122的内部,由路径切换部213、214、223、224、交换集线器211、221、控制部212、222构成。传输终端站之间及传输终端站内的各部间的通信,使用通用通信方式——以太网络,形成可以同时处理收发的完全双重通信。在图1中,分别用不同的线条表示接收和发送,用箭头表示信息的传输方向。此外,在图2中,将进行收发的传输路径简化成用1条线表示。另外,虽然在图1中省略,但控制部212、222,通过支线传输路径与车辆内各机器连接。
控制部212、222,收集来自车辆内各机器的信息,传输给其它车辆,或者将来自其它车辆的信息,传输给各机器。交换集线器211、221,作为传输中继器,是在以太网络(注册商标)中常用的,具有将从某个端口(输出入部)接收的数据向其它多个端口发送的功能。路径切换部213、214、223、224,设置在交换集线器211、221和基干传输路径21、22之间,切换交换集线器从1、2系中的哪个路径(基干传输路径)接收数据。各路径切换部213、214、223、224,从自系的基干传输路径接收数据,将接收的数据在1、2系的路径切换部之间交换。而且,将其中的一方发送给交换集线器211、221。由交换集线器211、221发送给基于传输路径21、22的发送数据,不切换路径地将来自自系的交换集线器211、221的数据发送给自系的基干传输路径21、22。
采用这种结构后,在各车辆之间进行如下的数据传输。首先,控制部212、222通过支线传输路径收集来自车辆内的机器的数据。接着,按照需要加工收集的数据,发送给两系统的交换集线器211、221。交换集线器211、221,将数据发送给左右的路径切换部213、214、223、224,路径切换部213、214、223、224再将该数据原封不动地发送给基干传输路径21、22。这样,在相邻的车辆之间,就从两系统的基干传输路径21、22接收相同的数据。路径切换部213、214、223、224,将从两系统的基干传输路径21、22接收的数据中、按照数据的接收状态预先选择的一方发送给交换集线器211、221。交换集线器211、221将接收的数据,发送给控制部212、222及邻接的车辆。控制部212、222按照需要加工该数据,通过支线传输路径,传输给各机器。
路径切换部213、214、223、224,采用下述方法选择接收数据的路径。在初始状态下,选择自系统,同时一直监视来自两系统的接收状态。然后,在正在从自系接收数据时,选择自系统。由于传输路径的障碍等,来自自系统的接收中断、而且正在从它系统接收时,选择它系统。在来自两系统的接收中断时,选择初始状态的自系统。这样,来自双重化的基干传输路径的某一方的接收即使中断,只要能从另一方接收,控制部就能够接收数据,另外还能通过基干传输路径将数据发送给其相邻的车辆。
此外,被双重化的控制部212、222的动作,可以是某一个动作而当出现异常时进行切换的待机双重系统、或两系统同时进行动作的并列双重系统中的某一种方式。这也可以根据作为系统整体的要求规格决定。采用并列双重系统时,因为两系统发送相同的数据,所以各自的控制部212、222不必向两系统发送,只向自系统发送即可。
另外,各自的控制部212、222从两系统的交换集线器211、221接收数据,但既可以使用单个,也可以使用双方。如果只接收自系统的数据、始终丢弃其它系统等的数据,就可以将控制部的处理简化。如果从双方接收,按照接收状态切换后使用,就能够提高可靠性。
如果将上述的控制部212、222的动作组合,并列进行双重系统的动作,只接收自系统,也只发送自系统,就不必将控制部212、222与它系统的交换集线器211、221连接,可以使结构简化。
另外,在本实施方式中,作为传输中继机,使用了先接收数据之后再中继的交换集线器。但也可以使用只电性地中继信号的中继集线器。但是,使用中继集线器时,在以太网中连接的台数有限制,另外多个节点同时发送数据时还会产生冲突,使数据产生延迟,所以必须注意。特别如本实施方式这样,在列车的控制中使用时,由于不容许数据的延迟,所以需要采用避免冲突的结构。
图3表示本实施方式的铁道车辆用信息传输系统的结构图。在图3中,示出4辆车辆编组的情况。各车辆的传输终端站111~114、121~124,被双重化,1系统的传输终端站111~114,用1系统的基干传输路径21连接;2系统的传输终端站121~124,用2系统的基干传输路径22连接。在该图中,用1条实线表示收发的传输路径。各车辆的传输终端站,周期性地将数据发送给两系统的基干传输路径21、22。在这里,考虑到机器控制的应答性,将发送周期定为10ms。图中的虚线箭头,表示传输路径中出现障碍时,1号车1系统的传输终端站111发送的数据的传输路径。障碍部位,定为图中的“×”处。此外,在该图中省略了支线传输路径及车辆内的机器。
在该例中,两系统的基干传输路径21、22出现障碍,用单纯的双重化网络,不能将1号车的数据传输给2号车2系的传输终端站、3、4号车的两系统的传输终端站。可是,在本实施方式中,各传输终端站111~114、121~124,具有从两系统接收数据,按照其接收状态,将某个数据传输给本传输终端站内的控制部及邻接车辆的功能。在图3中,2号车的2系的传输终端站122和3号车的1系统的传输终端站113,检知到从图的左侧用自系统的接收中断而用它系统的接收正在继续的情况。这时,3号车2系、4号车1、2系,也不能接收来自1号车的数据,但因为接收来自2号车或3号车的信息,所以没有检知到接收中断。检知到接收中断的传输终端站,将接收路径切换成他系,以后将从他系接收的数据向右侧的车辆中继。这样,数据按照图3中的虚线的箭头所示的路径传输,所有的传输终端站111~114、121~124都能接收数据。
车辆数量不同时,以及故障部位更多时,也同样能够继续传输。而且不是断线,是在传输终端站111~114、121~124中出现故障时,也同样能够收发数据。例如在图3中,即使1、2号车之间的2系基干传输路径22没有断线,1号车2系的传输终端站出现故障,2号车2系的传输终端站切换接收路径后,也同样能够继续传输。
这样,在本实施方式中,如果从各传输终端站被双重化的基干传输路径的一方接收数据,就能正常传输,即使在传输路径及传输终端站中出现多重故障时,也能够继续传输。出现故障之际的路径的切换,由各传输终端站单独进行,所以在传输终端站之间的故障信息不需要传输。因此,出现故障后,能够迅速用新的路径开始传输。
图4表示本实施方式中的传输终端站内的路径切换部的结构。路径切换部213,具有3个端口(输出入部),分别与交换集线器、他系的路径切换部、自系的基干传输路径连接。通信方式采用以太网,各端口由以太网用变压器310、以太网用物理层IC320构成。变压器310,将通信路径与电路电性绝缘。物理层IC320,进行根据传输路径上的电压信号抽出通信数据的接收处理和将通信数据变换成传输路径上的电压信号的发送处理。3个物理层IC320与逻辑部连接,逻辑部330监视各端口的接收状态,进行数据的路径的切换。
物理层IC320和逻辑部330的连接接口,在这里,采用作为以太网标准被规格化的MII接口。在MII接口中,来自传输路径的接收数据,用接收数据的本身——RXD和表示数据的存在的接收启动信号RXEN表示。另外,向传输路径的发送数据,用发送数据的本身——TXD和表示数据的存在的发送启动信号TXEN表示。接收数据RXD和发送数据TXD是4bit的并行数据。因此,逻辑部330的动作速度可以比传输路径中的数据的传输速度低。
逻辑部330由选择器331、计时器332、333、逻辑积运算部334构成,进行各端口之间的数据交换。来自交换集线器的接收数据,被原封不动地向自系基干传输路径发送。从自系基干传输路径接收的数据,分作两路,一路发送给选择器331,另一路发送给他系路径切换部。来自他系统的数据,也被输入选择器331。计时器332、333和逻辑积运算部334,判定通信状态,根据其结果,由选择器将2个输入中的某一个发送给交换集线器。
一个计时器322监视来自自系基干传输路径的接收状态,另一个计时器323监视来自他系路径切换部的接收状态。在计时器332、333中,作为复位信号,输入各自的端口的接收启动信号RXEN。接收数据且接收启动信号RXEN成为有效后,计时器就被复位,但一定时间以上不接收数据时,就出现时间中断(time out)。由计时器332、333输出表示时间中断的发生状态、即该端口的接收状态的信号。计时器332、333的时间中断时间,设定得比数据的接收间隔长,以便能切实检出传输中断。在本实施例中,将来自各自车辆的数据的发送周期定为10ms,将计时器的时间中断时间定为30ms。这样,在传输中断时就能迅速检知。
逻辑积运算部334,根据计时器332、333的输出信号,决定选择器输出的信号。图5表示本实施方式中的来自路径切换部的基干传输路径的接收状态与向交换集线器的输出的关系。接收来自自系的数据时,输出自系数据。来自自系的接收中断、从他系接收数据时,切换选择器331的输出,输出他系的数据。所有的路径都中断或在刚投入电源后等的初始状态中,作为能够输出自系的接收数据的状态。
这样,正常时,将来自自系的接收数据向交换集线器输出,出现障碍时,即使来自自系的接收中断,也能通过路径切换,将来自他系的接收数据向交换集线器输出,所以作为整个系统,传输不会中断。另外,中断的接收,是暂时的毛病,在重新开始接收时,如图5所示,再次将来自自系的接收数据向交换集线器221、221输出。根据障碍的状态,还可以使来自自系的接收在通信状态与中断状态之间频繁反复地变化。这时,路径的切换频繁反复地进行,整个系统有时变得不稳定。为了防止这种情况,可以在重新接收来自自系的信号时,确认通信继续一定时间以上后,再将路径返回自系。
在本实施方式中,用硬件或逻辑电路构成传输路径的切换。因此可以进行高速的动作,还可以适应传输速度的高速化。另外,在逻辑部中,由于不必识别数据的内容,所以处理简单,可以用低成本实现。
图6表示在本实施方式的铁道用信息传输系统中,分离车辆后的结构图。各车辆的机器结构基本相同,分离后的状态网络的结构也相同。所以,分离后,也能进行可靠性很高的数据传输。
另外,在车辆被分离的部位,由于来自两系统的接收中断,所以路径切换部成为按照图5接收来自自系统的数据的设定。在这种状态下,将车辆再次合并后,合并部成为各自系统彼此连接的结构,从刚合并后起就能够继续正常的传输。
这样,在本实施方式中,传输终端站向2个基干传输路径的双方发送数据,即使由于故障而来自自系统的数据中断时,也能通过传输路径的切换功能,使用他系统的数据继续传输。而且,即使出现多重故障时也能够不中断地继续通信。另外,如上所述,故障时的中断处理,不需要在传输终端站之间交换信息等,全部自律性地进行。
此外,在本实施方式中,对网络采用作为通用技术而被广泛使用的以太网,但在其它方式中也能获得同样的效果。
下面,参照图7~图11,讲述本发明的第2实施方式。在图7~图11中,对于和已经讲述的第1实施方式相同的部分,不再赘述。在本例中,也是讲述铁道车辆用的信息传输系统的情况。图7表示本实施方式的铁道车辆用的信息传输系统中的1节车辆的传输终端站的结构。和前文讲述的第1实施方式一样,利用支线传输路径将传输终端站与车辆内的机器连接,还利用基干传输路径21、22将传输终端站彼此连接。传输终端站的结构也大致相同。但在控制部215、225指定其他车辆的地址的这一点和路径切换部216、217、226、227采用监视来自指定的地址的数据的接收状态进行路径的切换的结构的这一点上,与第1实施方式不同。
图8表示本实施方式的铁道车辆用信息传输系统的结构图。车辆的结构以及传输终端站的结构及连接,和第1实施方式一样。在本实施方式中,各传输终端站监视接收状态的车辆,为相邻车辆进而再相邻车辆,当来自某个车辆的数据的接收,在自系统中断而用它系统继续时,切换路径。
在这里,在图8中,用虚线表示数据被传输的状态,讲述在用×表示的2处发生障碍时,1号车1系的传输终端站111发送的数据的传输路径。在2号车2系的传输终端站222中,由于来自1号车的接收自系他系均中断,所以不能将1号车的数据传输给3号车。在3号车2系的传输终端站123中,监视来自1号车和2号车的接收,检知到来自1号车的接收自系中断、他系继续的情况,切换接收路径。这样,将1号车的数据传输给4号车。
出现这种障碍时,3号车2系的传输终端站能够正常接收来自2号车的数据。因此,在前文所述的第1实施方式中,3号车2系的传输终端站123判断接收继续,所以不进行路径的切换。这样,通过2系基干传输路径22的数据传输就不能继续进行。与此不同,在本实施方式中,可以对各信源的接收状态都进行监视,通过路径切换,可以使传输继续。就是说,本实施方式可以适应在同一车辆内的1、2系之间的障碍等较多的情况。
在图8中,假设2号车的1系与2系之间没有障碍,2号车和3号车的2系的传输终端站122、123都切换路径。在这种状态下,来自2号车2系的传输终端站122的数据,在3号车2系的传输终端站123中被丢弃,所以不会出现数据的重复等,没有什么问题。可是,在这种状态下,本来3号车2系的传输终端站123最好不切换路径。因此,离得越远的车辆,直到检知通信中断为止的时间中断的时间就设得越大。具体地说,将来自相邻车辆的时间中断时间定为30ms,将来自相离2辆车辆的时间中断时间定为50ms。这样,在上例中,2号车2系的传输终端站122就先切换路径。于是,在3号车2系的传输终端站中,由于来自1号车的数据的自系的接收重新开始,所以不进行路径切换。
在本实施方式中,将监视接收状态的车辆的数量定为2辆,但这个数字取多少也行。监视车辆的数量越多,系统的富余性就越高。但为了监视而进行的处理就越复杂。因此,应该考虑两者的利弊后决定车辆的数量。
图9表示本实施方式中的传输终端站内的路径切换部的结构。基本结构与第1实施方式相同,但在用判定部340进行接收状态的监视的这一点和将判定部340的输入作为来自物理层IC的接收数据RXD和来自接收启动信号RXEN及控制部的地址的这一点上不同。
图10表示本实施方式中的路径切换部的判定部的结构。将监视来自特定的车辆的接收状态的每个车辆的判定部350,与监视的车辆的数量相同地设置2个。在每个车辆的判定部350中,首先地址比较部354、355判定每个接收端口接收的数据的信源是否与控制部设定的地址一致。图11表示以太网中传输数据的结构。在这里,作为信源识别地址,使用IP地址。IP地址是从传输数据的前头第29字节数起的4字节。在地址比较部中,接收数据后,将从第29字节数起的4字节与控制部设定的地址进行比较。信源的地址一致时,将计时器351、352复位。一定时间以上未接收到来自设定的地址的数据时,产生时间中断。这样,就检知到来自该地址的车辆的接收在该端口中断的情况。逻辑积353判断是不是自系侧接收中断而他系侧接收继续的状态。来自各车辆的判定部350的输出,被输入逻辑和341。逻辑和341在某个车辆中自系侧接收中断而他系侧接收继续时,向选择器输出切换路径的信号。
在各车辆的判定部350中,时间中断的设定时间,离得越近的车辆,设定得越大,以免出现不必要的路径切换。在这里,将来自相邻车辆的时间中断的时间定为30ms,将来自相离2辆车辆的时间中断的时间定为50ms。
在本实施方式中,根据接收数据的内容判定传输路径的切换,逻辑部的处理比第1实施方式复杂。可是,用硬件进行处理,处理速度不会降低。这样,也能适应传输速度的高速化。另外,近处的车辆的地址,采用从控制部设定成逻辑部的结构,在地址变更时也能适应。可是,在各车辆的地址不变化等时,也可以不由控制部设定,在逻辑部的内部预先设定。这时,可以实现处理的简略化。
下面,参照图12~图14,讲述本发明的第3实施方式。在图12~图14中,对于和已经讲述的第1、第2实施方式相同的部分,不再赘述。在本例中,也是讲述铁道车辆用的信息传输系统的情况。
图12表示本实施方式的铁道车辆用的信息传输系统中的1节车辆的传输终端站的结构。和前文讲述的第1实施方式一样,利用支线传输路径将传输终端站与车辆内的机器连接,还利用基干传输路径21、22将传输终端站彼此连接。在本实施方式中,传输终端站用单重系构成,将基干传输路径用双重系统构成。
本实施方式中的数据传输方法如下。控制部212,从车辆内的各机器收集信息,按照需要加工,发送给交换集线器211。交换集线器211将该数据发送给路径切换部218、219。路径切换部再将该数据发送给1系和2系的基干传输路径21、22的双方。
这样,邻接的车辆从两系统的基干传输路径21、22接收相同的数据,路径切换部213、214按照数据的接收状态,将从两系统的基干传输路径21、22接收的数据中预先选择的一方发送给交换集线器211。交换集线器211将接收的数据发送给控制部212及邻接的车辆。控制部212按照需要加工该数据后,通过支线传输路径,发送给各机器。
路径切换部218、219,采用下述方法选择接收数据的路径。在初始状态下,选择1系的数据,同时一直监视来自两系统的接收状态。然后,在正在从1系接收数据时,选择1系。由于传输路径的障碍等使来自1系的接收中断而且正在从2系接收时,选择2系。在来自两系统的接收中断时,选择初始状态的1系。
这样,即使来自双重化的基干传输路径的某一个的接收中断,只要能从另一个接收,控制部就能够接收数据,另外还能通过基干传输路径将数据发送给其相邻的车辆。
图13表示本实施方式的铁道用信息传输系统的结构图。在各车辆中,传输终端站111、112、113、144各设置1台,被双重化的基干传输路径21、22连接。图13的虚线箭头,表示传输路径中出现障碍时,1号车1系统的传输终端站111发送的数据的传输路径。障碍部位,定为图中的“×”处。
1号车向两基干传输路径21、22发送数据。2、4号车由于从1系接收数据,所以将该数据向后续车传输。在3号车中,虽然1系的接收中断,但由于从2系接收,所以将来自2系的数据向后续车传输。这样,在本实施方式中,即使传输路径出现障碍,只要被双重化的传输路径21、22中有一个正常,就可以继续传输。
图14表示本实施方式中的传输终端站内的路径切换部的结构。基本结构与第1实施方式的路径切换部相同,但端口中的一个不是与他系的路径切换部连接,而是与2系基干传输路径22连接。另外,还在将来自交换集线器的接收数据,不是与一个系统而是与两个系统的基干传输路径连接的这一点上不同。这样,就可以向来自交换集线器的数据的两个基干传输路径21、22输出。关于来自基干传输路径21、22的接收数据,和第1实施方式一样,按照接收状态将一方向交换集线器输出。
在本实施方式中,由于将各车辆的传输终端站作为单重系,所以比第1实施方式的装置结构简单。虽然对于没有被多重化的部分的传输终端站的故障的可靠性差,但由于传输路径是双重化,所以对传输路径的障碍而言,可以获得和第1实施方式相同的高可靠性。
此外,在以上讲述的各实施方式中,讲述了在铁道车辆用信息传输系统中应用的例子。但在用同样的连接结构进行数据传输的其它系统用的信息传输中,也能应用本发明。
权利要求
1.一种信息传输系统,由通过传输路径可以互相传输信息的多个传输终端站构成,其特征在于将所述多个传输终端站之间,用多个传输路径连接;所述传输终端站,具有将从其它的传输终端站接收的数据,再发送给其它的传输终端站的传输中继功能单元;所述传输中继单元,具有通过多条传输路径接收同一个信息,选择某一个路径进行中继的路径选择单元。
2.如权利要求1所述的信息传输系统,其特征在于所述路径选择单元,按照所述多个传输路径的每一个的接收状态,选择路径。
3.如权利要求1所述的信息传输系统,其特征在于所述路径选择单元,按照来自通过所述多个传输路径的每一个的特定的信源的接收状态,选择路径。
4.如权利要求3所述的信息传输系统,其特征在于所述路径选择单元,按照在一定时间内有无来自所述特定的信源的接收,选择路径;所述特定的信源有多个,而且各信源的所述一定时间不同。
5.如权利要求1所述的信息传输系统,其特征在于所述传输终端,在发送本传输终端站的信息时,向多个传输路径发送。
6.一种铁道车辆用信息传输系统,具有连接铁道列车内的车辆之间的传输路径、和在各车辆内与所述传输路径连接并可在车辆之间互相传递信息的传输终端站,其特征在于所述车辆之间的传输路径,具有独立的两个传输路径;各车辆的所述传输终端站具有路径选择单元,所述路径选择单元,从两个传输路径接收经由一个邻接车辆的信息,选择某一个传输路径,向其它的邻接车辆中继。
7.如权利要求6所述的铁道车辆用信息传输系统,其特征在于在各车辆中,设置2个所述传输终端站,各自分别向一个所述车辆之间的传输路径发送信息。
8.如权利要求6所述的铁道车辆用信息传输系统,其特征在于所述路径选择单元,按照所述车辆之间的传输路径的每一个的接收状态,选择路径。
9.如权利要求6所述的铁道车辆用信息传输系统,其特征在于所述路径选择单元,按照来自通过所述车辆之间的传输路径的每一个的特定的车辆的接收状态,选择路径。
10.如权利要求9所述的铁道车辆用信息传输系统,其特征在于所述路径选择单元,按照在一定时间内有无来自所述特定的车辆的接收,选择路径;所述特定的车辆有多个,而且各车辆的所述一定时间不同。
11.如权利要求6所述的铁道车辆用信息传输系统,其特征在于所述传输终端,在发送本传输终端站的信息时,向所述车辆之间的多个传输路径发送。
12.一种车辆用信息传输终端装置,通过连接车辆之间的传输路径进行信息传输,其特征在于具有将通过所述传输路径而从其它的传输终端装置接收的数据,再向其它的传输终端装置发送的传输中继功能单元;所述传输中继单元,具有通过多个传输路径接收同一个信息,选择某一个路径进行中继的路径选择单元。
13.如权利要求12所述的车辆用信息传输终端装置,其特征在于所述路径选择单元,按照所述多个传输路径的每一个的接收状态,选择路径。
14.如权利要求12所述的车辆用信息传输终端装置,其特征在于所述路径选择单元,按照来自通过所述多个传输路径的每一个的特定的信源的接收状态,选择路径。
15.如权利要求14所述的车辆用信息传输终端装置,其特征在于所述路径选择单元,按照在一定时间内有无来自所述特定的信源的接收,选择路径;所述特定的信源有多个,而且各信源的所述一定时间不同。
全文摘要
在由通过传输路径可以互相传输信息的多个传输终端站构成的系统中,在多个传输终端站之间用多个传输路径连接,传输终端站具有将从其它的传输终端站接收的数据,再发送给其它的传输终端站的传输中继功能单元;传输中继单元,具有通过多条传输路径(21、22)接收同一个信息,选择某一个路径后中继的路径选择单元。提供即使出现多重障碍也继续迅速传输、而且传输处理时间短、可以适应传输路径的高速化的高速、高可靠的网络。
文档编号H04B1/74GK1805299SQ200610003689
公开日2006年7月19日 申请日期2006年1月11日 优先权日2005年1月12日
发明者佐藤裕, 石田启二 申请人:株式会社日立制作所