专利名称::应用于图像压缩的图像矢量量化的邻域粒子对优化方法
技术领域:
:本发明涉及图像压縮
技术领域:
,更具体地说,涉及一种应用于图像压縮的图像矢量量化的邻域粒子对优化方法。
背景技术:
:矢量量化(VectorQuantization,VQ)是用较少的码字来表示和代替数量较大的矢量,从而达到压縮的目的。其数学描述为,令x为M个L维的训练矢量集,即X=h,巧,'',xM}x,'eW,w=2,...,m,其中^是L维的欧几里得空间。Y是由N个L维的码字组成的码书,即Y二{yi,y2,…,yj,…,y山巧e9^,y^l,2,…,W。矢量量化就是把M个训练矢量分配到N簇中,每一簇由一个码字代表。最终每一簇中的训练矢量都用其对应的码字代替,从而达到压縮效果,如图1所示。矢量量化是基于块编码的有损数据压縮方法,在图像压縮中有着举足轻重的地位,其关键是码书的设计。Linde、Buzo和Gray于1980年提出了K-means矢量量化码书设计方法,也称为LBG算法。由于该算法理论严密,实施简便,已成为很多其它改进算法的基础。近十多年来,人们模拟自然界的一些自然现象而发展起了一系列智能优化算法。例如,1995年Eberhart博士和Kennedy博士基于鸟群觅食行为提出了粒子群优化算法(ParticleSwarmOptimization,PS0)。该算法概念简明、实现方便、收敛速度快、参数设置少,是一种高效的搜索算法,近年来受到学术界的广泛重视。此类进化优化算法的发展极大地推进了全局最优码书的研究热潮。这里对PSO算法的基本速度更新公式和位置公式作简要说明。每次迭代中,粒子根据以下式子更新速度和位置<formula>formulaseeoriginaldocumentpage4</formula>(式1)<formula>formulaseeoriginaldocumentpage4</formula>(式2)其中,1=1,2,…,m,d二l,2,,D,k是迭代次数,和r2为之间的随机数。(VC2为学习因子,也称加速因子,其使粒子具有自我总结和向群体中优秀个体学习的能力,从而向自己的历史最优点以及群体内历史最优点靠近。此外速度Vi取值范围VminV隨,位置Zi的取值范围为ZminZmax。在灰度图像矢量量化过程中,Zmin和Z隨一般分别为0禾卩255。但是,矢量量化(VQ)算法的性能能够通过很多方式进行估计,如算法的相对复杂度,执行算法所需的存储空间,计算复杂度,压縮的大小,原图和重组后的图像的相似度等。码书设计质量通常由训练矢量与对应的最近码字之间的均方误差(MSE)来表示,即原图与重组图的相似度,简写为^:<formula>formulaseeoriginaldocumentpage4</formula>(式3)其中/國")=;^/",^)d(Xi,y》=I|x「yj||为欧氏距离。在图像压縮应用中,较常用的评价标准有RMSEp.p.(rootmeansquareerrorperpixel)禾口PSNR(peaksignaltonoiseratio),分别定义为RMSEp.p,(力/i)"2(式4)其中,yi为训练矢量Xi对应的码字。此外,图像压縮率是原始数据大小与压縮后的数据大小的比例,通常可以用于评价数据存储的效率。在现有矢量量化领域中,K-means算法是最为流行的最小化优化算法,又称为LBG算法。在优化过程中,K-means迭代两个优化条件最近邻居准则(nearestneighborcriterion)禾口质心条件(centroidcondition)。在每次迭代中,K-means算法根据最近邻居准则把每个训练矢量分配到相关的码字中。其中最近邻居准则可以用隶属度函数来描述如下//")=<L/.(式6)10otherwise其中,iij(Xi)表明了训练矢量Xi属于码字yj的程度。其取值只能是O或l,其中0代表着空隶属度,而1代表着全隶属度。对于给定的隶属度,根据更新码字,可通过以下公式来更新码字乃=^"'):'(式7)K-means算法迭代地执行上述两个操作,经过一定的训练过程后,将会得到一组最终的码书。其中K-means算法停止的条件为误差的减少率k(k)低于一个阈值e,其中k(v)定义为~J(式8)K-means算法的设计过程代码如表1所示,其中k为迭代数。表lK-means算法5开始选择误差门限e初始码书yWHjvA,…,n)根据(式3)计算^(())AN)12用(式6)计算/^0》,y/=i,2,'",w如果KM,跳至步骤23用(式7)计算^,y/=i,2,'",w4根据(式3)计算乃("如果(D(")—力"))/D(">£'跳至步骤I结束图2为K-means算法的更新过程示意图,如图所示。更新过程为(a)标记-(b)训练矢量-(c)初始码字-(d)分配训练矢量-(e)质心-(f)第一次更新后的码字-(g)分配训练矢量-(h)质心-(i)第二次更新后的码字-(j)分配训练矢量-(k)质心-(l)最终码字。虽然K-means算法理论严密,实施简便,但是该算法的性能对于初始码书的选择很敏感,且容易陷入局部最优值,不能保证能够寻找到全局最优码书。纪震等人(纪震,廖惠连,吴青华.粒子群算法及应用.北京科学出版社,2009)提出一种新的图像矢量量化码书的优化设计方法——粒子对算法(particle-pairOptimizer,PPO)。在传统粒子群优化(ParticleSwarmOptimization,PSO)算法的基石出上,用两个粒子构成了群体规模较小的粒子对,在码书空间中搜索最佳码书。在每次迭代运算中,粒子对按先后顺序执行PSO算法中的速度更新、位置更新操作和标准K-means算法,并用误差较大的训练矢量代替越界的码字。此算法避免粒子陷入局部最优码书,较准确地记录和估计每个码字的最佳移动方向和历史路径,在训练矢量密集区域和稀疏区域合理地分配码字,从而使整体码书向全局最优解靠近。搜索时,PPO算法用两个粒子构成群体规模较小的粒子对,形成协同工作关系,如图3所示。每个粒子在每次迭代中分别调用PSO算法的基本操作(速度更新和位置更新)和迭代次数为3的K-means算法。采用两个初始粒子对,分别为化"Pj和(P^Pj,它们在搜索过程中是作为两个独立的群体进行速度更新和位置更新,此时群体规模m为2。初始粒子对的两个粒子具有自我总结和向粒子对中对方个体学习的能力,从而向自己的历史最优点以及对方个体历史最优点靠近。这两个粒子在空间里不断搜索并进化,较优者将被选为精英粒子。分别从两个初始粒子对中选出的两个精英粒子EP工和EP2重新组合成一个新的精英粒子对BP"EP2},继续进行搜索和进化,较优者EP3将被选为最终解。在PPO算法中,粒子结构的设计是基于码字的,每个粒子代表着一个码书。例如,把数据聚类成N簇,每一簇由一个L维的码字Ae9f代表,则其粒子结构设计如表2:表2粒子结构示意图6<table>tableseeoriginaldocumentpage7</column></row><table>其中,L维的码字yj用(yjl,yj2,,yjL),j=1,…,N表示。PPO算法中PSO的速度更新公式采用了YuhuiShi提出的带有惯性权重w的改进粒子群算法,即vid=wVid+c^i(pid_zid)+c2r2(pgd_zid)(式9)PPO算法中的PSO和一般PSO算法的差异主要有以下几点(1)如上述公式所示,当参数w,Cl和c2的数值较大时,粒子在每次迭代中的步长将会较大,这意味着粒子的搜索范围更广。因此,为了控制粒子的搜索范围,可以合理地调整参数的大小,使其适合于VQ问题。为了抑制粒子过于活跃,PPO算法中PSO的参数值比一般PSO算法的参数值小。对于码书设计问题,一个粒子代表着一个码书,而在训练矢量空间中一个码书代表着N个点(码字)。假设每个码字yj,(j=1,...,N)包含L维,即Y;e9f,因此一个粒子p={yi,y2,…,yj包含了NXL维,gpPe诉M。在解空间诉似中搜索的粒子可以看成N个码字在训练矢量空间9f中搜索。在搜索过程中,可以把整个训练矢量空间分成N个领域,且希望每个码字都能在其所在的区域进行搜索,而不是过分活跃,跨越自己的领域而搜索其它码字的区域。例如,一个粒子P二{yi,y2,y3}由3个码字组成,其中每个码字由圈表示,如图4所示。码字y2和y3分别处于区域l、2和3。我们希望每个码字都能在其所处的区域进行搜索,而不是跳到其它区域中。如果参数过大,大多数的码字都会跳出自己的区域,这种情况相当于重新随机初始化码字,并开始一个全新的搜索。这种情况没有利用之前搜索过程中积累的经验。所以在PPO算法中,参数值比一般的PSO算法的参数要小,就是为了保证大部分粒子能够在其所处区域进行搜索。但是,如果一个粒子只由一个码字构成,即一个解在训练矢量空间中只代表着一个点,这时候我们将希望参数可以稍微大点,从而让这个码字可以搜索到训练矢量空间中的任何一个区域。因此,参数的大小往往是由问题的特征所决定的。(2)不同的群体大小。一般PSO算法中采用的粒子个数较多,但在PPO算法中只使用了一个粒子对,这是因为一般PSO算法在求解问题中所得到的解只代表训练矢量空间中的一个点,但在码书设计问题中一个解代表了训练矢量空间中的N个点(码字),意味着迭代过程中要涉及到粒子之间N个点的对应位置差异。例如,群体中每个粒子包含两个码字,共有三个粒子A={yi,y2},P2={y2,yi}和码书设计质量较差的粒子P3={y3,yj,其中粒子P工和&之间不存在总体位置差异,因为它们是由同一对码字构成(只是调换了码字的顺序),但它们相应位置的差异的总和却是很大。在接下来的搜索过程中,粒子Pi和P2的码书设计质量相当,有时候粒子Pi的码书设计质量比粒子P2好,有时候粒子P2反超粒子这意味着粒子P3有时候根据粒子Pi来调整自身的位置和速度,有时候又根据粒子P2来调整自身的速度和位置,所以粒子P3表现得缺乏方向性,其码书设计质量并没有因为迭代更新而有提高。在实际的码书设计中,像粒子Pi和P2这种只是码字排序不同的粒子组合的出现概率是很小的,但粒子间码字的相应位置的差异总和很大,而码书设计质量差异不大的粒子组合是非常普遍的,在这种情况下其它表现较差的粒子是不会受益于这种粒子组合。所以群体中粒子数量过多的情况下会难于协调多个粒子之间N个点的对应位置关系,且运算量较大(总运行量=粒子个数X单个粒子的运算量)。(3)此外,码书设计过程中粒子的码字位置数值超过最大灰度值zmax时将会导致空码字的出现,在PPO算法中,将用具有较大误差的训练矢量来代替具有越界问题的码字。而在码书更新过程中,PPO算法所起的作用为(1)扩散码字初始码字集中在训练矢量空间的小范围内,随迭代次数增加码字在空间中逐渐扩散。在粒子搜索前期,较劣的粒子与群体迄今为止找到的最优码书相差较大,使得(式9)中的(pgd-zid)项较大,所以搜索前期粒子的速度比较快,也意味着码字扩散速度较快。在搜索后期,粒子位置与群体最优码书的差值将会逐渐减少,粒子速度变小,码8字扩散速度变小,分布相对稳定。(2)趋于最优解PS0中的局部最优和全局最优参数对自身历史最优解和群体历史最优解进行记录,使粒子具有自我总结和向群体中优秀个体学习的能力,并根据历史记录进行估计和调整每个码字的最佳移动方向,从而向自己的历史最优点以及群体内历史最优点靠近。(3)兼顾训练矢量稀疏区域和密集区域在训练矢量密集区域会放置较多的码字,在训练矢量较少的稀疏区域也会放置适量的码字,表3给出了PP0算法的伪代码。表3PP0算法的伪代码开始随机设置每个粒子的初始位置<°)=(^,2,2,...,^),/=1,2随机设置每个粒子的初始速度vw=(v,,,v,.2,...,v,D)计算初始粒子z,.的万"选择(pr,prl中较好的粒子作为&(0>设迭代次数并选择最大的迭代次数!'加ox根据(式9)更新V,)根据(式2)更新Z")以Z,)作为输入,执行迭代次数为三的K-means算法,得到更新后的Z,.处理飞出边界的码字计算粒子的々('>把粒子''至今所找到最好的位置作为p")把W',P"中较好的粒子作为Pe("如果/Kz'加ox,跳至步骤4获得第一个精英粒子£P,=执行步骤1~5,获得第二个精英粒子£尸2=pg("执行步骤2~5,获得最后解£P3=psw结束现有技术方案的主要缺点虽然粒子对算法的码书设计质量较传统K-means算法有较大提高,但仍然存在搜索效率不高的问题,以及对初始码书的选择具有一定的敏感性,有可能陷入局部最优值,不能保证能够寻找到全局最优码书。
发明内容本发明要解决的技术问题在于,提出一种应用于图像压縮的图像矢量量化的邻域粒子对优化方法,以解决现有技术中仍然存在搜索效率不高的问题,以及对初始码书的选择具有一定的敏感性,有可能陷入局部最优值,不能保证能够寻找到全局最优码书。本发明解决其技术问题所采用的技术方案是构造一种应用于图像压縮的图像矢量量化的邻域粒子对优化方法,基于矢量量化技术,利用较少的码字来表示和代替数量较大的矢量来进行图像压縮,包括从训练矢量中随机选取码字构成初始码书,每本码书由一个粒子代表,随机选取两个粒子构成初始粒子对,每个粒子在每次迭代中分别调用权重PS0算法进行速度更新、位置更新操作以及调用K-means算法进行聚类操作,总计进行迭代代数为genmax(genmax>0)次的粒子对迭代运算;其中,在第j(j=1,2.,genmax,其中genmax是精英粒子最大代数)次粒子对迭代运算中,胜出的粒子命名为第j代精英粒子,在该第j代精英粒子的邻域中随机选择某一矢量作为邻域粒子,与该第j代精英粒子共同构成第j代邻域粒子对;当j=genmax时,该精英粒子为第genmax代精英粒子,为所述邻域粒子对优化方法的求解。本发明中,在该第j代精英粒子的邻域中随机选择某一矢量作为邻域粒子定义为NPj=EPj+Noise其中,NPj为第j代邻域粒子,EPj为第j代精英粒子,Noise为随机噪声,Noise和EPj维数相同,是均值为O,方差为o2,服从正态分布的随机矢量。本发明中,在每次迭代中,粒子根据以下公式更新速度和位置vid=wVid+c^i(pid_zid)+c2r2(pgd_zid)其中,i二l,2,…,m,d二l,2,,D,k是迭代次数,w是惯性权重,巧和r2为之间的随机数,Cl,c2为学习因子,也称加速因子,速度Vi取值范围vminvmax,位置Zi的取值范围为zminz^,在灰度图像矢量量化过程中,zmin和zmax—般分别为0和255。本发明中,码书设计质量通常由训练矢量与对应的最近码字之间的均方误差MSE来表示,即原图与重组图的相似度,简写为5:":i:[《m0,)1其中/她")^n/",力)d(Xi,yj)=||x「y」||为欧氏距离,yi为训练矢量Xi对应的码字。本发明中,在每次迭代中,K-means算法根据最近邻居准则把每个训练矢量分配到相关的码字中,最近邻居准则可以用隶属度函数来描述如下〃")叫Jotherwise其中,j(Xi)表明了训练矢量Xi属于码字yj的程度,其取值只能是0或l,其中0代表着空隶属度,而1代表着全隶属度,对于给定的隶属度,根据以下公式来更新码字力=^:t,、K-means算法迭代地执行上述两个操作,经过一定的训练过程后,将会得到一组最终的码书。本发明中,其中K-means算法停止的条件为误差的减少率k(k)低于一个阈值e,其中k(v)定义为10其中k为迭代数。本发明的有益效果是,本发明所述的邻域粒子对优化方法是在PPO算法的基础上,用精英粒子和邻域粒子构成邻域粒子对,反复进行粒子对迭代运算,实现矢量量化和图像压縮;并且该优化方法参数设置简单,计算时间短,寻优能力较强。实验结果表明,本发明在码书设计质量方面能够始终稳定地显著优于ppo算法,降低了初始码书分布对优化结果的影响。下面将结合附图及实施例对本发明作进一步说明,附图中图1是矢量量化在图像压縮中的应用示意图;图2是K-means算法中更新过程示意图;图3是粒子对的更新模型示意图;图4是PP0算法中码字区域示意图;图5是本发明邻域粒子对的更新模型示意图。具体实施例方式为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下本发明所要解决的技术问题是提出一种改进的应用于图像压縮的图像矢量量化码书优化设计方法_邻域粒子对优化方法(neighborhoodparticle-pairoptimizer,NPP0)。此方法能够更有效地避免粒子陷入局部最优码书,使整体码书向全局最优解进一步靠近,同时更好地抑制了矢量量化中初始码书对优化结果的影响,在很大程度上提高了搜索效率。NPP0算法沿用了PP0算法中用两个粒子构成群体规模较小粒子对的想法,仍采用协同工作关系,如图5所示。首先,从训练矢量中随机选取两个粒子(n^ny,构成初始粒子对。每个粒子在每次迭代中分别调用权重PSO算法的基本操作(速度更新和位置更新)和迭代次数为预设值(本发明优选实施例中迭代次数为3次)的K-means算法。初始粒子对的两个粒子具有自我总结和向粒子对中对方个体学习的能力,从而向自己的历史最优点以及对方个体历史最优点靠近。这两个粒子在解空间里不断搜索并进化,较优者被选为第一代精英粒子EP"由于迭代次数有限,以及PP0算法受初始码书分布影响,此时得到的精英粒子一般来说是局部最优解。考虑到在图像矢量量化这一特定应用领域中,某局部最优码书和其附近的全局最优码书在解空间中的距离不会很远,若从第一代精英粒子EP工附近邻域中,选择第一代邻域粒子NPp构成第一代邻域粒子对,继续进行搜索和进化,可大幅縮小搜索范围,并可充分利用有限的迭代次数提高搜索精度。同时,由于NP工是在EPJ勺邻域随机产生的(参见式IO),此方法还可帮助精英粒子跳出局部最优解,进一步向全局最优解靠近。NPj=EPj+Noise(式10)11其中,j=1,2,.,genmax,genmax是精英粒子最大代数,Noise(表示随机噪声,在精英粒子上面叠加小的随机噪声,得到的必定是精英粒子的邻居粒子)和EPj维数相同,是均值为0,方差为02,服从正态分布的随机矢量。第一代精英粒子对经互相学习,并采用与初始粒子对相同的进化策略,较优者将被选为第二代精英粒子EP2。采用类似的方法,在EP2邻域随机选择邻域粒子NP2,可以构成第二代邻域粒子对,重复以上优化过程,直到达到精英粒子最大代数。表4给出了邻域粒子对优化方法的基本流程。表4NPP0算法的伪代码开始随机设置每个粒子的初始位置z,=(Zil,Zi,..,zJ,/=1,2设精英粒子代数j-O,并选择最大代数genmax随机设置每个粒子的初始速度v")=(v,,,^,...,".^计算粒子Z,.的力,w选择中较好的粒子作为Pe(0)设迭代次数AH),并选择最大迭代次数itmax根据(式9)更新V,")根据(式2)更新Z,)以z/"作为输入,执行迭代次数为三的K-means算法,得到更新后的Z,.'处理飞出边界的码字计算粒子的力/"把粒子;至今所找到最好的位置作为把中较好的粒子作为P8W如果/Kitmax,跳至步骤4;否则,执行步骤7获得第_/代精英粒子五尸广p/"如果j〈genmax,执行步骤9:否则,跳至步骤12根据(式10)获得第y代邻域粒子W巧-执行步骤3~6获得最后解£^6^=£&,结束PP0算法中,采用两组初始粒子对,分别作为独立群体进行更新操作,得到两个精英粒子;再将二者组合成新的精英粒子对,继续进行搜索和进化,得到最终解EP3。本发明所述邻域粒子对优化方法中,仅选择一组初始粒子对,经搜索进化得到第一代精英粒子EP工;再随机选择其邻域中某一矢量作为邻域粒子NP"构成邻域粒子对,重复前述优化搜索过程,得到第二代精英粒子EP2;之后再次构造邻域粒子对进行搜索进化,直到精英粒子的代数达到最大值。通过比较上述两种方法的运算流程,可以看出NPP0的优势主要体现在(1)对于VQ问题,正如图4所示,在搜索过程中,希望每个码字都能在其所在的区12891011域进行搜索,而不是过分活跃,跨越自己的领域而搜索其它码字的区域。因此,先利用PPO算法得到第一代精英粒子EPp从而锁定某一全局最优解所在的较小解空间;再选择EP工的邻域粒子NP工与其构成邻域粒子对,在较小的解空间中继续搜索,是符合实际问题需要的合理选择。(2)用NP工取代PPO中的EP2,快速锁定搜索范围的同时,节省了计算EP2的时间,大幅提高了运算效率。(3)从精英粒子的更新代数上看,PPO算法仅进行了两代更新,其优化结果受初始码书影响较大。而NPPO方法通过设定精英粒子的最大代数,有机会使精英粒子不断跳出局部最优解,平稳地向全局最优解靠近。(4)从码书设计质量上看,NPPO优化方法对重建图像质量的改善效果明显。而且,若初始码书质量不佳,在NPPO算法中,可以通过增加精英粒子最大代数来弥补,直到重建质量符合要求。本发明所述的邻域粒子对优化方法是在PPO算法的基础上,用精英粒子和邻域粒子构成邻域粒子对,反复进行粒子对迭代运算,实现矢量量化和图像压縮。此方法参数设置简单,计算时间可控,寻优能力较强。实验结果表明,本发明在码书设计质量方面能够始终稳定地显著优于PPO算法,降低了初始码书分布对优化结果的影响。最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。1权利要求一种应用于图像压缩的图像矢量量化的邻域粒子对优化方法,基于矢量量化技术,利用较少的码字来表示和代替数量较大的矢量来进行图像压缩,其特征在于,包括从训练矢量中随机选取码字构成初始码书,每本码书由一个粒子代表,随机选取两个粒子构成初始粒子对,每个粒子在每次迭代中分别调用权重PSO算法进行速度更新、位置更新操作以及调用K-means算法进行聚类操作,总计进行迭代代数为genmax(genmax>0)次的粒子对迭代运算;其中,在第j(j=1,2...,genmax,其中genmax是精英粒子最大代数)次粒子对迭代运算中,胜出的粒子命名为第j代精英粒子,在该第j代精英粒子的邻域中随机选择某一矢量作为邻域粒子,与该第j代精英粒子共同构成第j代邻域粒子对;当j=genmax时,该精英粒子为第genmax代精英粒子,为所述邻域粒子对优化方法的求解。2.根据权利要求1所述的应用于图像压縮的图像矢量量化的邻域粒子对优化方法,其特征在于,在该第j代精英粒子的邻域中随机选择某一矢量作为邻域粒子定义为NPj=EPj+Noise其中,NPj为第j代邻域粒子,EPj为第j代精英粒子,Noise为随机噪声,Noise和EPj维数相同,是均值为0,方差为02,服从正态分布的随机矢量。3.根据权利要求1所述的应用于图像压縮的图像矢量量化的邻域粒子对优化方法,其特征在于,在每次迭代中,粒子根据以下公式更新速度和位置<formula>formulaseeoriginaldocumentpage2</formula>其中,1=1,2,…,m,d二l,2,…,D,k是迭代次数,w是惯性权重,巧和r2为[O,l]之间的随机数,Cl,c^为学习因子,也称加速因子,速度Vi取值范围vminV^,位置Zi的取值范围为zminz^,在灰度图像矢量量化过程中,z幽和zmax—般分别为0和255。4.根据权利要求1所述的应用于图像压縮的图像矢量量化的邻域粒子对优化方法,其特征在于,码书设计质量通常由训练矢量与对应的最近码字之间的均方误差MSE来表示,即原图与重组图的相似度,简写为万<formula>formulaseeoriginaldocumentpage2</formula>其中/圆<formula>formulaseeoriginaldocumentpage2</formula>为欧氏距离,yi为训练矢量Xi对应5.根据权利要求4所述的应用于图像压縮的图像矢量量化的邻域粒子对优化方法,其特征在于,在每次迭代中,K-means算法根据最近邻居准则把每个训练矢量分配到相关的码字中,最近邻居准则可以用隶属度函数来描述如下<formula>formulaseeoriginaldocumentpage2</formula>其中,Pj(Xi)表明了训练矢量Xi属于码字yj的程度,其取值只能是0或l,其中0代的码字。表着空隶属度,而1代表着全隶属度,对于给定的隶属度,根据以下公式来更新码字K-means算法迭代地执行上述两个操作,经过一定的训练过程后,将会得到一组最终的码书。6.根据权利要求5所述的应用于图像压縮的图像矢量量化的邻域粒子对优化方法,其特征在于,其中K-means算法停止的条件为误差的减少率k(k)低于一个阈值e,其中k(v)定义为<formula>formulaseeoriginaldocumentpage3</formula>其中k为迭代数。全文摘要本发明涉及一种应用于图像压缩的图像矢量量化的邻域粒子对优化方法,包括从训练矢量中随机选取码字构成初始码书,每本码书由一个粒子代表,随机选取两个粒子构成初始粒子对,每个粒子在每次迭代中分别调用权重PSO算法进行速度更新、位置更新操作以及调用K-means算法进行聚类操作,总计进行迭代代数为genmax次的粒子对迭代运算;在第j次粒子对迭代运算中,胜出的粒子命名为第j代精英粒子,在该第j代精英粒子的邻域中随机选择某一矢量作为邻域粒子,与该第j代精英粒子共同构成第j代邻域粒子对;当j=genmax时,该精英粒子为第genmax代精英粒子,为所述邻域粒子对优化方法的求解。本发明降低了初始码书分布对优化结果的影响,对重建图像质量的改善效果明显。文档编号H04N7/26GK101710988SQ20091018868公开日2010年5月19日申请日期2009年12月8日优先权日2009年12月8日发明者储颖,周家锐,纪震申请人:深圳大学