专利名称:一种基于无线射频芯片的数据传输模块的制作方法
技术领域:
本实用新型涉及一种基于无线射频芯片的数据传输模块,它与射频技术、集成电 路技术有关,属于无线通信模块技术领域。
二、背景技术随着射频技术、集成电路技术的发展,无线通信功能的实现越来越容易,数据传输 速度也越来越快,并且逐渐达到可以和有线数据传输相媲美的水平。无线通讯传输技术具 有成本低、无需通讯电缆、不受应用环境限制、组态灵活、重构性强等优点,因而在工业生 产、医疗电子、智能家居、社区安全等方面有着越来越多的应用。
三、发明内容1、目的本实用新型的目的是提供新型的一种基于无线射频芯片的数据传输模块,此模块 具有结构简单、配置灵活、传输可靠、通用性强、成本低的显著特点。2、技术方案(1)功能原理新型无线数传模块通过嵌入式ARM7 (ARM-Advanced RISC Machines,一类微处理 器的通称)芯片LPC2148对无线射频芯片XE1205进行配置和读写控制,使用简单的阻抗匹 配电路、时钟振荡电路、射频开关电路,实现了无线数据收发功能。(2)技术方案本实用新型一种基于无线射频芯片的数据传输模块,它由硬件结构和软件设计两 部分组成。1)硬件结构本实用新型一种基于无线射频芯片的数据传输模块的硬件结构,由微处理器芯片 即ARM7芯片、无线射频芯片、串口芯片以及射频收发链路构成。它们之间的位置连接关系 如图1所示ARM7芯片通过数据总线连接无线射频芯片,对其进行参数配置和数据收发控 制,并通过串口与外界设备(计算机或其他主控设备)进行数据交互无线射频芯片通过发 射链路和接收链路与单刀双掷射频开关(选用AS213-92型)相连射频开关通过收发控制 线接收ARM7芯片控制信号,经由天线收发数据。所述ARM7芯片,其型号为LPC2148,是Philip (飞利浦)公司推出的基于ARM7 TDMI (T-支持16位压缩指令集;D-支持片上调试;M-内嵌硬件乘法器;I-嵌入式ICE在线 仿真器,支持片上辅助调试)内核的精简指令系统的32位高速处理器。芯片集成度非常 高,内嵌40Kb (千比特)的静态RAM (Random Access Memory,随机存取存储器)和512KbkB 的Flash (闪速)存储器,片内集成ADC (Analog to Digital Converter,模拟/数字转换 器)、DAC(Digital to Analog Converter,数字/模拟转换器)、看门狗、实时时钟RTC(Real TimeClock)、2 个 UART (Universal Asynchronous Receiver/Transmitter,通用异步接收 /发送装置)、2个I2C(Inter-Integrated Circuit总线,两线式串行总线)还有SPI (Serial Peripheral interface,串行外围设备接口)等多个总线接口,及USB2. 0 (Universal Serial Bus 2. 0,通用串行总线2. 0)全速接口; 128位宽度的存储器接口和独特的加速结 构使32位代码能够在最大时钟速率下运行,实现最高60MHz (兆赫兹)的工作频率;通过片 内Boot (引导)装载程序实现在系统编程/在应用编程(ISP/IAP);其工作电压为3. 3V,内 核工作电压仅为2. 5V,大大降低了芯片的功耗;具有2种低功耗模式空闲和掉电,因此可 根据需要设置不同的工作方式,降低系统功耗。此外,芯片采用超小的LQFP64封装,使得系 统的微型化得到保证,而且电路相对简单,降低了开发和生产的成本。它负责对无线射频芯片进行参数配置和数据收发控制,并通过串口与外界设备 (计算机或其他主控设备)进行数据交互。无线射频芯片通过发射链路和接收链路与单刀 双掷射频开关AS213-92相连,实现半双工的射频信号收发。该发射链路是发射无线信号的 通道;该接收链路是接收无线信号的通道;无线射频芯片与AMR7芯片通过5根引脚连线实 现数据传递,其管脚编号、名称与相应功能如表1所示。所述无线射频芯片,其型号为XE1205,是美国SEMTECH公司的半双工无线收发器, 它工作于433MHz、915MHz (兆赫兹)等无需牌照的ISM(工业、科技、医疗)频段,并可通过 改变外围匹配电路和内部配置寄存器,将工作频段扩展至180MHz至1GMHz(1G = 1024M), 工作频率稳定可靠,符合欧洲ETSI (欧洲电信标准学会)(EN300-220-1和EN301-439-3)及 FCC(美国联邦通信委员会)15. 247和15. 249认证规格,满足无线管制要求,无需申请频率 使用许可证。在宽带应用中,其数据率可达304Kbps (千比特/秒),在25KHz带宽的窄带应 用中,其数据率也可达4. 8Kbps。芯片内的信号调制技术采用的是连续相位二级频移键控 (CPFSK)调制,抗干扰能力强。此外,它具有体积小、性能优异、外围元件少、超低功率、使用 方便和便于设计生产等特点。芯片典型参数如表2所示。无线射频芯片XE1205内建一个位同步器和一个模式识别器,可实现检出接收数 据中的特定数据序列的功能。在接收到指定的数据序列以后,模式识别器输出模式识别匹 配成功中断信号,此数据序列检测功能极大地减轻了外围控制芯片的负荷。无线射频芯片XE1205外部的控制芯片通过SPI (串行外设接口)总线对无线射 频芯片XE1205进行配置数据读写和收发数据读写,接口简单。该芯片内部寄存器控制着 工作频率、带宽、频率分辨率、比特率、发射功率等重要参数,可根据需要实时改变芯片的工 作状态,保证设计灵活性。该芯片还提供IRQO (0中断)、IRQld中断)两根中断信号线, 在不同工作模式下,可根据芯片内部寄存器配置参数,提供相应的中断信号,如接收/发送 FIFO(先进先出寄存器)满/空信号、模式识别匹配成功信号、检测到超出阈值强度信号等, 方便外围设备响应;此外,外围设备也可以通过配置寄存器SPI总线,读出相应位置的寄存 器来查询芯片工作状态。无线射频芯片XE1205的收发数据与配置数据使用了两套SPI总线,其中MISO (主 机输入从机输出)、M0SI (主机输出从机输入)、SCK(总线同步时钟)是共用的,通过不同的 片选信号来区分MISO和MOSI上数据是芯片所收发的数据(NSS_DATA)还是配置芯片寄存 器的数据(NSS_C0NFIG)。本实用新型中,无线射频芯片XE1205被配置为收发缓冲模式。两路数据I路和Q 路经过FSK(Frequency Shift Keying,移频键控调制)解调、比特同步和模式识别后,自动进行串并转换,并依次写入芯片内部16BYTE(字节)FIF0中,同时将相应的中断源分别指 派给IRQ_0 (PATTERN/WRITE_BYTE/FIFOEMPTY)(模式/写_字节/先入先出寄存器空)和 IRQ_1 (FIFO FULL)(先入先出寄存器满),利用这些中断信号,配合收发数据SPI总线,就可 以将要传输的数据送入芯片,或从芯片中将接收到的数据读出。这样充分利用了无线射频 芯片XE1205的内部资源,以最简单的外围电路和控制逻辑,实现了高速准确的数据收发。收发控制电路及射频匹配网络无线射频芯片XE1205可以工作在433MHz、868MHz和915MHz频段,不同的频段对 应不同的外围匹配电路。本实用新型使用的是915MHz,其匹配电路如图2所示。如图2所示,AS213-92是单刀双掷射频开关,SffO和SWl连接ARM7芯片LPC2148 的GPIO管脚,通过设置SWO和SWl的高低,使单刀双掷射频开关AS213-92的RFO管脚连接 RFl或者RF2,实现了射频电路的半双工收发功能。所述串口芯片,其型号为MAX3232,是一款高档的TTL电平与RS-232电平转换芯 片,具有两路接收和发送通道,供电电压为3. 0 5. 5V,数据传输速率为250Kbps。其功耗 低,集成度高,实现电路简单,可靠性高,实现ARM串口 TTL电平和RS-232电平之间的转换。所述射频收发链路是指无线射频开关与无线射频芯片之间的信号通道,包括接收 无线信号通道和发送无线信号通道。2)软件设计无线射频芯片(型号为XE1205)寄存器读写编程无线射频芯片(XE1205型)共有31个寄存器,其中只有前17个寄存器是常用的。 其分类与地址如表3所示。对无线射频芯片(XE1205型)配置寄存器的读写都是通过SPI总线进行的,编程 时需要严格遵照无线射频芯片(XE1205型)数据手册上给出的时序编程首先是使能芯片, 送出地址后再送出参数,最后是发送芯片使能结束命令。读写无线射频芯片XE1205的任意 一组寄存器都可通过表4给出的一个通用函数来进行。无线射频芯片(XE1205型)接收数 据的读写与配置寄存器一样,均通过SPI总线,其实现方法类似。无线射频芯片(XE1205型)收发数据编程完成内部寄存器配置后,就可以进行数据的收发。无线射频芯片XE1205接收流程如图3所示(1)写地址5寄存器,设置IRQ_1中断源为接收FIFO满;(2)写地址0寄存器,设置工作模式为接收模式;(3)循环判断IRQ_1管脚状态,如果收到IRQ_1中断,则连续读16次SPI数据总 线。数据通过LPC2148转发,由串口送出。无线射频芯片XE1205发射流程如图4所示(1)写地址5寄存器,设置IRQ_1中断源为发送FIFO满;(2)写地址0寄存器,设置工作模式为发射模式;(3)判断IRQ_1状态,若未收到中断,则写SPI数据总线,若收到中断,则等待,此循 环共发送24bit (比特)的0X55数据作为前导帧;(4)判断IRQ_1状态,若未收到中断,则写SPI数据总线,若收到中断,则等待,此循 环依次发送4个字节数据0X69,0X81,0X7E,0X96作为模式识别码(模式识别码的个数、数值和发送顺序应与接收机配置寄存器中的PATTERN参数一致,否则接收机不能识别);(5)判断IRQ_1状态,若未收到中断,则写SPI数据总线,若收到中断,则等待,此循 环发送帧内数据;(6)写地址5寄存器,设置IRQ_1中断源为发送停止;(7)判断IRQ_1状态,循环等待至收到发送停止中断信号。数传模块控制编程如图5所示在实际应用中,数传模块之间可以互相通讯,构成数传网络。根据无线射频芯片 XE1205的特点,无线模块的数据是以帧为单位进行传送的,设计思路如下(1)初始化无线射频芯片XE1205参数,配置芯片为接收模式;(2)串口接收到要发送的数据,触发中断,进入发送状态。设置无线射频芯片 XE1205为发射模式,发送前导帧、模式识别码,发送数据内容,返回接收模式;(3)在发送无线数据的同时通过中断程序继续接收串口收到的数据并存放到通信 缓冲区。由于在初始化时,配置无线射频芯片XE1205收发数据比特率不高于串口比特率, 故在编程时设置一个较小的环行数据缓冲区就不会让通信缓冲区溢出;(4)无线发送的数据指针同串口接收的数据指针相同,表明通过串口接收到的数 据全部发送完毕,此时停止无线发送,转到接收模式;(5)当接收到无线数据时也将接收到的数据存放到一个同样大小的环行数据缓冲 区,并启动串口中断服务程序将接收到的无线数据发送到外部设备。综上所述,数传模块控制无线射频芯片的接收及发送模式。3、优点及功效本实用新型充分利用了无线射频芯片XE1205的内部资源,简化了电路,降低了成 本,缩短了研发时间,可推广移植到大部分短途无线通信应用中,有较大实用价值。目前已 应用于某型航电测试设备中,工作可靠,运行状况良好。本实用新型思想与具体实现,对今后类似产品的设计、开发和实现也具有一定的 指导意义和参考价值。
四
图1本实用新型硬件结构示意图图2收发控制电路及射频匹配网络示意图图3无线射频芯片XE1205接收流程图图4无线射频芯片XE1205发送流程图图5数传模块控制流程图图6灵敏度测量示意图图中符号说明如下ARM7微处理器芯片;MMCX-KffHD 插座;AS213-92单刀双掷射频开关。
五具体实施方式
本实用新型一种基于无线射频芯片的数据传输模块,它由ARM7芯片LPC2148、无线射频芯片XE1205、串口芯片MAX3232以及射频收发链路构成。它们之间的位置连接关系 如图1所示。所述ARM7芯片LPC2148,是Philip (飞利浦)公司推出的基于ARM7TDMI (T-支 持16位压缩指令集;D-支持片上调试;M-内嵌硬件乘法器;I-嵌入式ICE在线仿真器, 支持片上辅助调试)内核的精简指令系统的32位高速处理器。芯片集成度非常高,内 嵌40Kb(千比特)的静态RAM (Random Access Memory,随机存取存储器)和512Kb的 Flash (闪速)存储器,片内集成ADC (Analog-to-Digital Converter,模拟/数字转换器)、 DAC(Digital-to-Analog Converter,数字/模拟转换器)、看门狗、实时时钟RTC(Real Time Clock)、2 UART(Universal Asynchronous Receiver/Transmitter, ilffi^/^^^ / U 送装置)、2个I2C(Inter-Integrated Circuit总线,两线式串行总线)还有SPI (Serial Peripheral interface,串行外围设备接口)等多个总线接口,及USB2. 0 (Universal Serial Bus 2. 0,通用串行总线2. 0)全速接口;128位宽度的存储器接口和独特的加速结 构使32位代码能够在最大时钟速率下运行,实现最高60MHz (兆赫兹)的工作频率;通过片 内Boot (引导)装载程序实现在系统编程/在应用编程(ISP/IAP);其工作电压为3. 3V,内 核工作电压仅为2. 5V,大大降低了芯片的功耗;具有2种低功耗模式空闲和掉电,因此可 根据需要设置不同的工作方式,降低系统功耗。此外,芯片采用超小的LQFP64封装,使得系 统的微型化得到保证,而且电路相对简单,降低了开发和生产的成本。它负责对无线射频芯片XE1205进行参数配置和数据收发控制,并通过串口与外 界设备(计算机或其他主控设备)进行数据交互。无线射频芯片XE1205通过发射链路和 接收链路与单刀双掷射频开关AS213-92相连,实现半双工的射频信号收发。该发射链路是 发射无线信号的通道;该接收链路是接收无线信号的通道;无线射频芯片XE1205与AMR7 芯片LPC2148通过5根引脚连线实现数据传递,其管脚编号、名称与相应功能如后列表1所
7J\ ο所述无线射频芯片XE1205,是美国SEMTECH公司的半双工无线收发器,它工作于 433MHz、915MHz (兆赫兹)等无需牌照的ISM (工业、科技、医疗)频段,并可通过改变外围匹 配电路和内部配置寄存器,将工作频段扩展至180MHz至1GMHz(1G = 1024M),工作频率稳 定可靠,符合欧洲ETSI (欧洲电信标准学会)(EN300-220-1和EN301-439-3)及FCC(美国 联邦通信委员会)15. 247和15. 249认证规格,满足无线管制要求,无需申请频率使用许可 证。在宽带应用中,其数据率可达304Kbps (千比特/秒),在25KHz带宽的窄带应用中,其 数据率也可达4. 8Kbps。芯片内的信号调制技术采用的是连续相位二级频移键控(CPFSK) 调制,抗干扰能力强。此外,它具有体积小、性能优异、外围元件少、超低功率、使用方便和便 于设计生产等特点。芯片典型参数如后列表2所示。无线射频芯片XE1205内建一个位同步器和一个模式识别器,可实现检出接收数 据中的特定数据序列的功能。在接收到指定的数据序列以后,模式识别器输出模式识别匹 配成功中断信号,此数据序列检测功能极大地减轻了外围控制芯片的负荷。无线射频芯片XE1205外部的控制芯片通过SPI (串行外设接口)总线对无线射 频芯片XE1205进行配置数据读写和收发数据读写,接口简单。该芯片内部寄存器控制着 工作频率、带宽、频率分辨率、比特率、发射功率等重要参数,可根据需要实时改变芯片的工 作状态,保证设计灵活性。该芯片还提供IRQO(0中断)、IRQld中断)两根中断信号线,
7在不同工作模式下,可根据芯片内部寄存器配置参数,提供相应的中断信号,如接收/发送 FIFO(先进先出寄存器)满/空信号、模式识别匹配成功信号、检测到超出阈值强度信号等, 方便外围设备响应;此外,外围设备也可以通过配置寄存器SPI总线,读出相应位置的寄存 器来查询芯片工作状态。无线射频芯片XE1205的收发数据与配置数据使用了两套SPI总线,其中MISO(主 机输入从机输出)、M0SI (主机输出从机输入)、SCK(总线同步时钟)是共用的,通过不同的 片选信号来区分MISO和MOSI上数据是芯片所收发的数据(NSS_DATA)还是配置芯片寄存 器的数据(NSS_C0NFIG)。本实用新型中,无线射频芯片XE1205被配置为收发缓冲模式。两路数据I路和Q 路经过FSK(Frequency Shift Keying,移频键控调制)解调、比特同步和模式识别后,自动 进行串并转换,并依次写入芯片内部16BYTE(字节)FIF0中,同时将相应的中断源分别指 派给IRQ_0 (PATTERN/WRITE_BYTE/FIFOEMPTY)(模式/写_字节/先入先出寄存器空)和 IRQ_1 (FIFO FULL)(先入先出寄存器满),利用这些中断信号,配合收发数据SPI总线,就可 以将要传输的数据送入芯片,或从芯片中将接收到的数据读出。这样充分利用了无线射频 芯片XE1205的内部资源,以最简单的外围电路和控制逻辑,实现了高速准确的数据收发。收发控制电路及射频匹配网络无线射频芯片XE1205可以工作在433MHz、868MHz和915MHz频段,不同的频段对 应不同的外围匹配电路。本实用新型使用的是915MHz,其匹配电路如图2所示。如图2所示,AS213-92是单刀双掷射频开关,SffO和SWl连接ARM7芯片LPC2148 的GPIO管脚,通过设置SWO和SWl的高低,使单刀双掷射频开关AS213-92的RFO管脚连接 RFl或者RF2,实现了射频电路的半双工收发功能。所述串口芯片MAX3232是一款高档的TTL电平与RS-232电平转换芯片,具有两路 接收和发送通道,供电电压为3. 0 5. 5V,数据传输速率为250Kbps。其功耗低,集成度高, 实现电路简单,可靠性高,实现ARM串口 TTL电平和RS-232电平之间的转换。所述射频收发链路是指无线射频开关与无线射频芯片之间的信号通道,包括接收 无线信号通道和发送无线信号通道。2)软件设计无线射频芯片XE1205寄存器读写编程无线射频芯片XE1205共有31个寄存器,其中只有前17个寄存器是常用的。其分 类与地址如下列表3所示。对无线射频芯片XE1205配置寄存器的读写都是通过SPI总线进行的,编程时需要 严格遵照无线射频芯片XE1205数据手册上给出的时序编程首先是使能芯片,送出地址后 再送出参数,最后是发送芯片使能结束命令。读写无线射频芯片XE1205的任意一组寄存器 都可通过下列表4给出的一个通用函数来进行。无线射频芯片XE1205接收数据的读写与 配置寄存器一样,均通过SPI总线,其实现方法类似。无线射频芯片XE1205收发数据编程完成内部寄存器配置后,就可以进行数据的收发。无线射频芯片XE1205接收流程如图3所示(1)写地址5寄存器,设置IRQ_1中断源为接收FIFO满;[0083](2)写地址0寄存器,设置工作模式为接收模式;(3)循环判断IRQ_1管脚状态,如果收到IRQ_1中断,则连续读16次SPI数据总 线。数据通过LPC2148转发,由串口送出。无线射频芯片XE1205发射流程如图4所示(1)写地址5寄存器,设置IRQ_1中断源为发送FIFO满;(2)写地址0寄存器,设置工作模式为发射模式;(3)判断IRQ_1状态,若未收到中断,则写SPI数据总线,若收到中断,则等待,此循 环共发送24bit (比特)的0X55数据作为前导帧;(4)判断IRQ_1状态,若未收到中断,则写SPI数据总线,若收到中断,则等待,此循 环依次发送4个字节数据0X69,0X81,0X7E,0X96作为模式识别码(模式识别码的个数、数 值和发送顺序应与接收机配置寄存器中的PATTERN参数一致,否则接收机不能识别);(5)判断IRQ_1状态,若未收到中断,则写SPI数据总线,若收到中断,则等待,此循 环发送帧内数据;(6)写地址5寄存器,设置IRQ_1中断源为发送停止;(7)判断IRQ_1状态,循环等待至收到发送停止中断信号。数传模块控制编程如图5所示在实际应用中,数传模块之间可以互相通讯,构成数传网络。根据无线射频芯片 XE1205的特点,无线模块的数据是以帧为单位进行传送的,设计思路如下(1)初始化无线射频芯片XE1205参数,配置芯片为接收模式;(2)串口接收到要发送的数据,触发中断,进入发送状态。设置无线射频芯片 XE1205为发射模式,发送前导帧、模式识别码,发送数据内容,返回接收模式;(3)在发送无线数据的同时通过中断程序继续接收串口收到的数据并存放到通信 缓冲区。由于在初始化时,配置无线射频芯片XE1205收发数据比特率不高于串口比特率, 故在编程时设置一个较小的环行数据缓冲区就不会让通信缓冲区溢出;(4)无线发送的数据指针同串口接收的数据指针相同,表明通过串口接收到的数 据全部发送完毕,此时停止无线发送,转到接收模式;(5)当接收到无线数据时也将接收到的数据存放到一个同样大小的环行数据缓冲 区,并启动串口中断服务程序将接收到的无线数据发送到外部设备。综上所述,数传模块控制无线射频芯片的接收及发送模式。见图6,系统接收灵敏度测量对无线数传模块接收灵敏度进行测试,可以估算出在理想状况下,数传模块之间 的通讯距离。测量连线如图3所示。射频线缆需要比较长,模块A和模块B最好不要放在同一个房间里,以免因为射频 信号泄露,由空间传导而影响测量。在实际测量中,已知固定衰减器为SOdB (表示两个量的相对大小单位)衰减,射频 线缆衰减_21dBm(表示功率绝对值的值)。两模块的参数都设置为 915MHz频率下工作 OdBm功率发射^A模式接收[0108] 1.2Kbps 数据速率 接收带宽IOK(千) 频率分辨率5K当可调衰减器调至IOdB时,接收数据出现较多错误(超过30%),此时可计算出 灵敏度为 10+80+21 = llldBm。而XE1205标称的灵敏度为-121dBm@l. 2Kbps,相差较多。后测量出模块射频插座处的发射出的平均功率约为-8dBm,比设置值低了 8dBm, 原因是射频开关、匹配电路有损耗。若将这部分损耗计入,则数传模块的灵敏度为_119dBm, 与标称值相差不大。接收灵敏度与传输距离关系公式为 将测量值IlldBm带入公式,计算出其理想状态下可靠通讯距离为9. 25Km(千米)。以上表明,本实用新型基于高灵敏度无线射频芯片XE1205,实现了简单可靠的无 线数传模块设计,是一款优秀的无线数传模块。表1 表 2表 3
主要参数,收发都需用到 中断寄存器 发射参数寄存器 接收参数寄存器[0124]
低电平
高电平
OSCParam 2x8 17-18 振荡器寄存器 TParam12x8 19-30 测试与特殊功能寄存器
表4
** 函数名称XE1205_CNFG()
**函数功能XE1205配置寄存器读写程序
**入口参数
#1) cnfg_add读写配置地址
**2) cnfg_reg写入时为配置数据
**回读配置寄存器时应设为0x00
**3)rw读写方向指示位,写入时为WRITE (0)
**回读配置寄存器时应设为READ(I)
**出口参数cnfg_data回读出的配置寄存器值
uint8XE1205_CNFG(uint8 cnfg_add, uint8 cnfg_reg, uint8rw)
uint8 uCnfg_Data ; uint8 cnfg_send_add = 0 < < 7
rw < < 6
cnfg_add << 1 0X01 ;
IOOCLR = CNFG_CS ;
MSPl_SendData (cnfg_send_add); uCnfg_Data = MSPI_SendData(cnfg_reg) IOOSET = CNFG_CS ;
return u Cnfg_Data ;
Il起始位Ibit //读写方向Ibit V配置地址5bit
停止位
V控制NSS_C0NFIG管脚为 写地址byte
/写入(读出)数据byte V控制NSS_C0NFIG管脚为
返回读出数据byte结果
1权利要求一种基于无线射频芯片的数据传输模块,它是由硬件结构和软件设计两部分组成;其特征在于该硬件结构由ARM7芯片、无线射频芯片、串口芯片以及射频收发链路构成;它们之间的位置连接关系是ARM7芯片通过数据总线连接无线射频芯片,对其进行参数配置和数据收发控制,并通过串口与外界设备进行数据交互;无线射频芯片通过发射链路和接收链路与单刀双掷射频开关相连;射频开关通过收发控制线接收ARM7芯片控制信号,经由天线收发数据。
2.根据权利要求1所述的一种基于无线射频芯片的数据传输模块,其特征在于所述 ARM7芯片为LPC2148型芯片。
3.根据权利要求1所述的一种基于无线射频芯片的数据传输模块,其特征在于所述 无线射频芯片为XE1205型芯片。
4.根据权利要求1所述的一种基于无线射频芯片的数据传输模块,其特征在于所述 串口芯片为MAX3232型芯片。
5.根据权利要求1所述的一种基于无线射频芯片的数据传输模块,其特征在于所述 单刀双掷射频开关为AS213-92型。
专利摘要本实用新型一种基于无线射频芯片的数据传输模块,它由硬件结构和软件设计两部分组成。该硬件结构由ARM7芯片LPC2148、无线射频芯片XE1205、串口芯片MAX3232以及射频收发链路构成;其连接关系是ARM7 LPC2148通过数据总线连接无线射频芯片XE1205,对其进行参数配置和数据收发控制,并通过串口与外界设备进行数据交互;无线射频芯片XE1205通过发射链路和接收链路与单刀双掷射频开关AS213-92相连;射频开关通过收发控制线接收ARM7 LPC2148控制信号,经由天线收发数据。该软件设计包括无线射频芯片XE1205寄存器读写编程,无线射频芯片XE1205收发数据编程和数传模块控制编程。本实用新型具有结构简单、配置灵活、传输可靠、通用性强、成本低的显著特点,它在无线通信模块技术领域内具有广泛地实用价值和应用前景。
文档编号H04B1/40GK201656969SQ20102013786
公开日2010年11月24日 申请日期2010年3月15日 优先权日2010年3月15日
发明者吴冰, 肖瑾 申请人:北京航空航天大学