井下多机器人联合搜救的生物刺激神经网络设备及其方法

文档序号:7983248阅读:516来源:国知局
专利名称:井下多机器人联合搜救的生物刺激神经网络设备及其方法
技术领域
本发明涉及本发明属于多机器人搜救技术领域,是人工智能与机器人技术相结合的应用,特别是涉及一种井下多机器人联合搜救的生物刺激神经网络设备及其方法。
背景技术
在机器人搜救方面,目前主要依靠单个机器人,通过遥控的方法进行。但是在井下搜救方面,由于发生矿难时,井下情况变得非常复杂,无线通信带宽受到很大限制,在这样的情况如果试图通过地面人员根据以往的井下图纸或者根据机器人传回的图像来实施遥控,往往很难实现,而且经常会出现机器人无法正常返回,造成很大的损失。并且单个机器人搜救花费时间长,无法实现快速搜救,这样将会错过井下搜救的最佳时机。

发明内容
本发明提供一种能大大提高井下搜救效率,并降低机器人损失风险的用于井下多机器人联合搜救的生物刺激神经网络设备及其方法。本发明的主要技术内容如下井下多机器人联合搜救的生物刺激神经网络设备,包括机器人、射频阅读器、摄像机、超声波传感器、无线通讯系统、存储设备、位置射频标签以及地面搜救决策系统;其中射频阅读器、摄像机、超声波传感器、无线通讯系统、存储设备均安装在机器人上面,机器人通过摄像头采集井下实时图像传输到地面搜救决策系统,并利用超声波传感器进行障碍物和墙壁的探测,利用无线通讯系统将信息发送给同伴机器人以及地面搜救决策系统,同时接收来自同伴机器人和地面搜救决策系统的指令;机器人利用存储设备对井下的障碍物位置以及发现矿工的位置进行存储,当可达区域搜索完毕或者所有人员都被发现,机器人计算最佳返程路径,返回地面,并将存储信息发送给地面搜救决策系统。井下多机器人联合搜救的生物刺激神经网络方法,包括如下步骤(1)、利用位置射频标签标记出井下巷道各处的坐标(X,y, ζ);每名矿工携带身份信息的射频标签;机器人携带射频阅读器、摄像头、超声波传感器和无线通讯系统进行搜救工作;O)、井下发生事故时,可以通过不同的井口派出多个机器人进行搜救;每个机器人根据自己所识别的射频信息,进行搜索;(3)、机器人每经过一个射频标签,读取该位置的坐标信号,并将该区域标记为已搜索;同时将该信息通过无线通讯系统广播给其他机器人;G)、当机器人发现障碍物的时候,标记障碍物的位置,同时将该信息通过无线通讯系统广播给其他机器人;(5)、当机器人发现受困或遇难矿工,标记位置,读取矿工所携带的射频信息,并通过无线通讯系统广播该信息;(6)、当井下所有人员被发现或者所有可达区域已经被搜索完毕,各机器人根据步骤(3)、0)、(5)所得到的井下实时信息,利用生物刺激神经网络模型,建立井下实时地图, 并计算最佳返程路径,回到地面; (7)、地面工作人员根据各机器人实时传回图像和安全返回机器人所存储的相关
息,并参考生物刺激神经网络模型制定的最佳路径,制定救援方案,开展救援工作。 上述步骤O)中机器人根据射频信号的信息开展搜索,如果射频信号因事故等原因丢失,机器人采取随机搜索策略,具体运行策略如下
π(…),+1=(《),±其中,(θ Jt是机器人行动的方向角,(θ是机器人下一步行动的方向角,ε是一个(0,1)之间的随机数。上述步骤(3)中无线通讯系统广播信息的内容和格式如下Ml = {x,y,z,flag = 1};其中,Ml表示该信息是位置点的有关信息,flag = 1表示位置(x,y,z)已经搜索。上述步骤中无线通讯系统广播信息的内容和格式如下M2 = {x,y,z,flag = 2};其中,M2表示该信息是障碍物有关信息,flag = 2表示在位置(x, y, ζ)处有障碍物。上述步骤(5)中无线通讯系统广播信息的内容和格式如下M3 = {χ,y,ζ,flag = ID};其中M3表示该信息是矿工的有关信息,ID是矿工编号,flag = ID表示在位置(x,y, ζ)处发现矿工,矿工编号即flag值。上述步骤(6)中井下实时地图构建所采用的生物刺激神经网络模型是指(1)、基于生物刺激神经网络模型构建实时地图的方法如下,先根据位置射频标签的识别距离,将环境空间离散化,其中每个离散点是一个4维空间,分别由(X,y,z,s)构成, (x,y,z)是该离散点的地理位置坐标,通过射频标签读取;s是生物刺激神经网络神经元的活性值,由下式计算
ds — = -Asi +(B-S1) dt
OT+Σ1^]+ -(D+sMT
. 片J在这个方程中,k表示与该神经元有连接的神经元个数,Wij表示连接权值,[//]+和 [厂]—分别表示求解刺激性输入和抑制性输入的阈值函数;A、B和D都是常数;O)、生物刺激神经网络模型中的刺激性输入和抑制性输入//和分别来自于所要搜寻的矿工和搜索过程中发现的障碍物,其计算公式如下
Γ =
Ε, E
T O
L = <
dist(pr,pe) 0,
— Ε, -E
dist(pr,p0) 0,
if dist(p1,pe)<=L if LKdist(P^pe)K= Re if dist(pi,pe)>= Re if dist(p1,pa)<=L if LKdist(P^po)K=Rs if dist(pi,p0)>=Rs 在这个方程中,dist( ·)为计算两个坐标点之间距离的函数;E是一个常数,且远小于B,Re是矿工射频标签的有效识别距离;L是矿井位置射频标签的有效辐射距离;RS是机器人超声波传感器的有效探测范围;(3)、根据生物刺激神经网络模型计算每个神经元的动态活性值,可以保证在有障碍物的地方,神经元的动态活性值最小,而在有矿工被发现的位置,神经元的动态活性值最大,这样机器人根据每个神经元的动态活性值的大小可以实时计算出最佳返程路径,该路径即可保证机器人的安全返回,又可以为地面搜救人员制定搜救方案提供参考;机器人返回时,路径实时计算过程如下( θ r)t+1 = angle (pr, pn)Pn ¢= spn = max{\,j = 1,2,---,k)其中,(θ r)t+1是机器人下一步行动的方向角,angle (pr, pn)是计算机器人当前位置和神经元Pn两点间夹角公式,而Pn是机器人探测范围内所有神经元中动态活性值最大的那个,根据该公式,机器人的最终返程路径将是一条能自动绕开障碍物,又能快速到达搜救矿工位置的最佳路径。借由上述技术方案,本发明至少具有下列优点(1)、本发明自动利用射频标签标记井下位置坐标,发生矿难时,射频标签所标记的位置信息可以较大程度得以保留。O)、本发明采用多机器人联合搜救的方法,通过多机器人协作,可是实现从多个井口同时开展搜救任务,有助于快速完成整个矿井的搜救。(3)、本发明提出利用一种生物刺激神经网络的方法来实施多机器人联合搜救,可以大大提高搜救效率。0)、本发明所采用方法不需要矿井的图纸资料,可以构建实时井下地图,自动寻找最佳返程路径和救援路线。该方法不需要学习过程,对通讯带宽的要求降到最低。(5)、本发明充分考虑发生矿难时的各种复杂情况,包括射频标签损坏、巷道倒塌, 通讯中断等,不需要人为进行干预,每个机器人可以自动处理各种异常情况,高效完成搜救任务。本发明的具体实施方式
由以下实施例及其附图详细给出。


图1为本发明的设备组成方框图;图2为本发明中井下多机器人联合搜救流程图;图3为本发明中生物刺激神经网络算法流程图;图4为本发明中基于生物刺激神经网络构建地图示意图。
具体实施例方式为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的其具体实施方式
、结构、特征及其功效,详细说明如后。井下多机器人联合搜救的生物刺激神经网络设备,如图1所示,包括机器人1、射频阅读器2、摄像机3、超声波传感器4、无线通讯系统5、存储设备6、位置射频标签7以及地面搜救决策系统8,其中射频阅读器2、摄像机3、超声波传感器4、无线通讯系统5、存储设备6均安装在机器人1上面,机器人1通过摄像头3采集井下实时图像传输到地面搜救决策系统8,并利用超声波传感器4进行障碍物和墙壁的探测,利用无线通讯系统5将信息发送给同伴机器人1以及地面搜救决策系统8,同时接收来自同伴机器人1和地面搜救决策系统8 的指令;机器人1利用存储设备6对井下的障碍物位置以及发现矿工的位置进行存储,当可达区域搜索完毕或者所有人员都被发现,机器人1计算最佳返程路径,返回地面,并将存储信息发送给地面搜救决策系统8。井下多机器人联合搜救的生物刺激神经网络方法,其具体流程如图2所示,包括如下步骤(1)、利用位置射频标签标记出井下巷道各处的坐标(X,y, ζ);每名矿工携带身份信息的射频标签;机器人携带射频阅读器、摄像头、超声波传感器和无线通讯系统进行搜救工作;O)、井下发生事故时,可以通过不同的井口派出多个机器人进行搜救;每个机器人根据自己所识别的射频信息,进行搜索;(3)、机器人每经过一个射频标签,读取该位置的坐标信号,并将该区域标记为已搜索;同时将该信息通过无线通讯系统广播给其他机器人;G)、当机器人发现障碍物的时候,标记障碍物的位置,同时将该信息通过无线通讯系统广播给其他机器人;(5)、当机器人发现受困或遇难矿工,标记位置,读取矿工所携带的射频信息,并通过无线通讯系统广播该信息;(6)、当井下所有人员被发现或者所有可达区域已经被搜索完毕,各机器人根据步骤(3)、0)、(5)所得到的井下实时信息,利用生物刺激神经网络模型,建立井下实时地图, 并计算最佳返程路径,回到地面;(7)、地面工作人员根据各机器人实时传回图像和安全返回机器人所存储的相关信息,并参考生物刺激神经网络模型制定的最佳路径,制定救援方案,开展救援工作。步骤O)中机器人根据射频信号的信息开展搜索,如果射频信号因事故等原因丢失,机器人采取随机搜索策略,具体运行策略如下伙) +1=份丄±^£其中,(θ》t是机器人行动的方向角,(θ是机器人下一步行动的方向角,ε是一个(0,1)之间的随机数。步骤(3)中无线通讯系统广播信息的内容和格式如下Ml = {x,y,z,flag = 1};其中,Ml表示该信息是位置点的有关信息,flag = 1表示位置(x,y,z)已经搜索。步骤中无线通讯系统广播信息的内容和格式如下M2 = {x,y,z,flag = 2};其中,M2表示该信息是障碍物有关信息,flag = 2表示在位置(x, y, ζ)处有障碍物。步骤(5)中无线通讯系统广播信息的内容和格式如下Μ3 = {x, y,ζ, flag = ID};其中M3表示该信息是矿工的有关信息,ID是矿工编号,flag = ID表示在位置(x,y,z)处发现矿工,矿工编号即flag值。
步骤(6)中井下实时地图构建所采用的生物刺激神经网络模型是指(1)、基于生物刺激神经网络模型构建实时地图的方法如下,先根据位置射频标签的识别距离,将环境空间离散化,其中每个离散点是一个4维空间,分别由(X,y,z,s)构成, (x,y,z)是该离散点的地理位置坐标,通过射频标签读取;s是生物刺激神经网络神经元的活性值,由下式计算
权利要求
1.井下多机器人联合搜救的生物刺激神经网络设备,其特征在于包括机器人、射频阅读器、摄像机、超声波传感器、无线通讯系统、存储设备、位置射频标签以及地面搜救决策系统;其中射频阅读器、摄像机、超声波传感器、无线通讯系统、存储设备均安装在机器人上面,机器人通过摄像头采集井下实时图像传输到地面搜救决策系统,并利用超声波传感器进行障碍物和墙壁的探测,利用无线通讯系统将信息发送给同伴机器人以及地面搜救决策系统,同时接收来自同伴机器人和地面搜救决策系统的指令;机器人利用存储设备对井下的障碍物位置以及发现矿工的位置进行存储,当可达区域搜索完毕或者所有人员都被发现,机器人计算最佳返程路径,返回地面,并将存储信息发送给地面搜救决策系统。
2.井下多机器人联合搜救的生物刺激神经网络方法,其特征在于包括如下步骤(1)、利用位置射频标签标记出井下巷道各处的坐标(X,1,ζ);每名矿工携带身份信息的射频标签;机器人携带射频阅读器、摄像头、超声波传感器和无线通讯系统进行搜救工作;O)、井下发生事故时,可以通过不同的井口派出多个机器人进行搜救;每个机器人根据自己所识别的射频信息,进行搜索;(3)、机器人每经过一个射频标签,读取该位置的坐标信号,并将该区域标记为已搜索; 同时将该信息通过无线通讯系统广播给其他机器人;、当机器人发现障碍物的时候,标记障碍物的位置,同时将该信息通过无线通讯系统广播给其他机器人;(5)、当机器人发现受困或遇难矿工,标记位置,读取矿工所携带的射频信息,并通过无线通讯系统广播该信息;(6)、当井下所有人员被发现或者所有可达区域已经被搜索完毕,各机器人根据步骤 (3)、(4), (5)所得到的井下实时信息,利用生物刺激神经网络模型,建立井下实时地图,并计算最佳返程路径,回到地面;(7)、地面工作人员根据各机器人实时传回图像和安全返回机器人所存储的相关信息, 并参考生物刺激神经网络模型制定的最佳路径,制定救援方案,开展救援工作。
3.根据权利要求2所述的井下多机器人联合搜救的生物刺激神经网络方法,其特征在于所述步骤O)中机器人根据射频信号的信息开展搜索,如果射频信号因事故等原因丢失,机器人采取随机搜索策略,具体运行策略如下其中,(θ》t是机器人行动的方向角,(θ Jw是机器人下一步行动的方向角,ε是一个(0,1)之间的随机数。
4.根据权利要求2所述的井下多机器人联合搜救的生物刺激神经网络方法,其特征在于所述步骤(3)中无线通讯系统广播信息的内容和格式如下Ml = {x, y, ζ, flag = 1}其中,Ml表示该信息是位置点的有关信息,flag = 1表示位置点(X,y,ζ)已经搜索。
5.根据权利要求2所述的井下多机器人联合搜救的生物刺激神经网络方法,其特征在于所述步骤中无线通讯系统广播信息的内容和格式如下Μ2 = {x, y, ζ, flag = 2}其中,M2表示该信息是障碍物有关信息,flag = 2表示在位置点(x,y,z)处有障碍物。
6.根据权利要求2所述的井下多机器人联合搜救的生物刺激神经网络方法,其特征在于所述步骤(5)中无线通讯系统广播信息的内容和格式如下M3 = {x, y, ζ, flag = ID}其中M3表示该信息是矿工的有关信息,ID是矿工编号,flag = ID表示在位置(x,y, ζ)处发现矿工,矿工编号即flag值。
7.根据权利要求2所述的井下多机器人联合搜救的生物刺激神经网络方法,其特征在于所述步骤(6)中井下实时地图构建所采用的生物刺激神经网络模型是指(1)、基于生物刺激神经网络模型构建实时地图的方法如下,先根据位置射频标签的识别距离,将环境空间离散化,其中每个离散点是一个4维空间,分别由(X,y,z,s)构成,(X, 1, ζ)是该离散点的地理位置坐标,通过射频标签读取;s是生物刺激神经网络神经元的活性值,由下式计算
全文摘要
本发明属于多机器人搜救技术领域,是人工智能与机器人技术相结合的应用,特别是涉及一种井下多机器人联合搜救的生物刺激神经网络设备及其方法,设备包括机器人、射频阅读器、摄像机、超声波传感器、无线通讯系统、存储设备、位置射频标签以及地面搜救决策系统;其方法是将射频标签应用到井下位置标记中,并利用生物刺激神经网络方法实现多机器人联合搜救,当发生矿难时,可以快速完成井下的搜索,构建井下实时地图,并制定最佳搜救路径,本发明在煤矿等井下事故人员搜救中具有极大的现实意义和应用价值。
文档编号H04W4/06GK102521653SQ201110375410
公开日2012年6月27日 申请日期2011年11月23日 优先权日2011年11月23日
发明者倪建军, 刘明华, 谭宪军, 马华伟 申请人:河海大学常州校区
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1