专利名称:多模终端选择能够保证服务质量的目标网络的方法
技术领域:
本发明涉及一种基于蚁群算法的多模终端选择目标网络的方法,确切地说,涉及一种多模终端基于蚁群算法选择能够保证服务质量的目标网络的方法,属于无线通信的技术领域。
背景技术:
从20 世纪末至 21 世纪的十余年间,GSM、CDMA, WCDMA, TD-SCDMA, CDMA2000、LTE、IMT-advanced、WiMAX、802. lla/b/g/n、UWB、Bluetooth、Zigbee 和 RFID 等各种接入传输技术不断地涌现,网络的多模化呈现出更加多元和复杂的趋势。已有的无线接入技术与新型的无线接入技术之间同时共存和互为补充,形成重叠、覆盖的多模无线网络。多模网络的环境需要多模终端的支持,多模终端拥有多个无线接口,具有同时接入不同网络的功能当其处于网络重叠覆盖的区域时,基站可以根据业务需求为多模终端选择接入其最适宜的网 络。当网络环境发生改变或终端移动时,为了保证传输的连续性和可靠性,基站又为多模终端选择一个更适宜的网络进行切换或驻留。在多模网络的环境出现下列情形时,需要重新选择或分配目标网络(1)当前多模终端所在网络的服务质量值下降至其所能接受的最低门限以下;(2)多模终端已连接到一个网络,但为了未来服务的需要而选择将要切换的其他目标网络;(3)当基站要在不同系统间分配整个网络负载,以优化网络性能时,也要进行目标网络的分配。多模网络中的基站为多模终端分配或选择网络是一个多维判决问题,众多的决策因素使得其算法的设计非常灵活和较高的复杂度。经过检索现有技术文献后,发现多模终端网络选择阶段经常使用遗传算法,其代表文献可见《启发式遗传算法的组播覆盖网络选择(Dynamics of Network Selectionin Heterogeneous Wireless Networks:An Evolutionary Game Approach)》(干丨J于《IEEETransactions on Vehicular Technology》2009年58卷第4期),这种遗传算法的主要方法是在确定移动终端在每种网络中的服务质量值后,采用迭代优化方法,在不同的多模网络内搜索移动终端与目标网络间的较优组合,尽可能地提高多模终端的服务质量值。虽然这种基于遗传算法的目标网络选择算法也能获得较好的性能,但是其只是一个次优解,而非全局最优解,即多模终端无法选择到最优网络而使其拥有最高的服务质量值。因为蚁群算法非常适合求解多约束条件下的多目标组合的优化问题。而多模终端选择能够保证服务质量的目标网络的方法中的一些特征(如多输入参数、需要同时满足多个约束条件、组合优化等),恰好都与蚁群算法的许多特征非常匹配,因此如何尝试利用蚁群算法为多模终端选择能够保证服务质量的目标网络,就成为业内科技人员关注的新课题。
发明内容
有鉴于此,本发明的目的是提供一种多模终端基于蚁群算法选择能够保证服务质量的目标网络的方法,以解决现有多模终端选择目标网络方法存在的问题。该方法根据多模终端的服务质量最优化的原则,基站利用蚁群算法的全局收敛特性,为多模终端选择服务质量最优的目标网络。本发明方法的操作步骤简单、清晰、容易实现,且稳定性和鲁棒性都比较强。为了达到上述发明目的,本发明提供了一种基于蚁群算法多模终端选择保证服务质量的目标网络的方法,其特征在于基站先由多模终端反馈得到每个多模终端在可供选择的每个目标网络中的服务质量QoS (Quality of Service)值,再调用蚁群算法、即模仿蚂蚁觅食过程中寻找前进路径的方法为每个多模终端选择其最优化的目标网络;所述蚁群算法是先用自然数分别对蚂蚁前进路径的步数及其可供选择的路径进行排序编号,还设定算法迭代计算的总次数,再采用蚂蚁依据其在前进路径上不同的信息素浓度和能见度选择路径的方法,模拟多模终端根据每种网络的服务质量值选择目标网络;且在每次完成所有前进路径的选择后,利用网络的服务质量值计算该次迭代计算过程中每条路径的适应度,并由该适应度对蚂蚁经过路径的信息素浓度进行更新,再判断是否达到设定的迭代计算次数,以便停止蚁群迭代计算而输出每个多模终端选择的最优化目标网络。 本发明方法的创新优点是克服了以往传统的遗传算法等只能求得局部最优解的缺陷,本发明采用了能够避免早熟收敛的蚁群算法,能够寻找到全局最优解,从而有效提高了移动通信网络中多模终端的平均服务质量。同时,本发明采用创新的精英蚂蚁策略进一步提高了算法运行速度,减少了算法运行时间。计算机仿真实施的试验结果表明,本发明方法与传统的遗传算法相比较,多模终端的服务质量值的平均值有所提高。而该均值究竟能具体提高多少,取决于可供选择的目标网络的数量和参与选择的多模终端数量,例如,对于20部多模终端的系统,本发明方法与遗传算法相比较,使得所有多模终端服务质量值的平均值提高约5% ;而且,随着系统内的多模终端数量的增长,服务质量值的平均值将提高更多。再者,本发明方法使得每个多模终端都能很好地满足其预设的最小服务质量值,每种网络中的多模终端数量也不大于该网络的最大容量。同时,该蚁群算法采用自然数编码,大大提高了算法收敛速度,也加快了算法的运行速度。试验表明,在30个多模终端的网络系统中,传统的遗传算法需要迭代50次以上,才能够达到较好的收敛结果,本发明方法只需迭代30次左右就能得到较好的目标网络选择方案,即显著加快了算法的收敛速度。因此,本发明具有很好的推广应用前景。
图1是本发明基于蚁群算法的多模终端选择目标网络的方法操作流程图。图2是本发明方法实施例中,多模终端数量在20到30个之间变化时,本发明方法与传统遗传算法的多模终端平均服务质量值的仿真曲线示意图。图3是本发明方法在20个多模终端的实施例中,其与传统遗传算法的两种收敛速度曲线的示意图。图4是本发明方法在30个多模终端的实施例中,其与传统遗传算法的两种收敛速度曲线的示意图。
具体实施例方式为使本发明的目的、技术方案和优点更加清楚,下面结合附图和实施例对本发明作进一步的详细描述。本发明基于蚁群算法多模终端选择保证服务质量的目标网络的方法,是基站先由多模终端反馈得到每个多模终端在可供选择的每个目标网络中的服务质量QoS (Qualityof Service)值,再调用蚁群算法、即模仿蚂蚁觅食过程中寻找前进路径的方法为每个多模终端选择其最优化的目标网络;所述蚁群算法是先用自然数分别对蚂蚁前进路径的步数及其可供选择的路径进行排序编号,还设定算法迭代计算的总次数,再采用蚂蚁依据其在前进路径上不同的信息素浓度和能见度选择路径的方法,模拟多模终端根据每种网络的服务质量值选择目标网络;且在每次完成所有前进路径的选择后,利用网络的服务质量值计算该次迭代计算过程中每条路径的适应度,并由该适应度对蚂蚁经过路径的信息素浓度进行更新,再判断是否达到设定的迭代计算次数,以便停止蚁群迭代计算而输出每个多模终端选择的最优化目标网络。
本发明已经进行了多次实施试验,下面具体介绍本发明实施例的试验情况在有多个多模终端(实施例中为20到30部)和多种可供分配的目标网络(实施例中为4种不同模式网络)。也就是,实施例的系统中,基站必需为每个多模终端(20到30个)从多种(4种)可供分配的目标网络中分配一种作为其目标网络,以便达到系统性能的最优化。同时,每种网络中终端的最大数量是有限制的(实施例中每种网络的最大容量为15个),因此,基站需要根据多模终端在每种可供分配的目标网络中的服务质量值和每种网络的容量限制,选出合适的目标网络,以提高网络整体的服务质量,达到系统性能的最优化。下面具体描述基站是如何根据多模终端在每种网络中的服务质量值,再基于本发明的蚁群算法来分配最优化的目标网络。参见图1,介绍本发明方法实施例详细操作步骤如下步骤1,初始化设置参数采用自然数顺序设置蚁群算法中的蚂蚁前进路径的总步数与每步前进时可供选择的路径数,以便分别模拟多模终端和目标网络的数量,再设置蚂蚁所有路径的信息素浓度的初始值和蚁群算法迭代计算的总次数;采用自然数顺序编号是为了后续解码方便只需获知蚂蚁前进路径上的每步编号及其所选路径编号,就是为哪个多模终端分配的目标网络的对应编号;该步骤操作前,基站先通过多模终端的反馈情况得到了多模终端在每种网络内的服务质量值,这个信息用于确定不同多模终端分配不同网络模式的依据。因为本发明决定目标网络分配方案的主要因素有两个多模终端在每种目标网络中的服务质量值和每种网络接纳终端的最大容量。本发明基于蚁群算法的分配方法就是根据这两种因素得到一个为多模终端分配最优的目标网络。为了方便说明,本步骤仅给出前8个多模终端的服务质量值。
权利要求
1.一种基于蚁群算法多模终端选择保证服务质量的目标网络的方法,其特征在于基站先由多模终端反馈得到每个多模终端在可供选择的每个目标网络中的服务质量QoS(Quality of Service)值,再调用蚁群算法、即模仿蚂蚁觅食过程中寻找前进路径的方法为每个多模终端选择其最优化的目标网络;所述蚁群算法是先用自然数分别对蚂蚁前进路径的步数及其可供选择的路径进行排序编号,还设定算法迭代计算的总次数,再采用蚂蚁依据其在前进路径上不同的信息素浓度和能见度选择路径的方法,模拟多模终端根据每种网络的服务质量值选择目标网络;且在每次完成所有前进路径的选择后,利用网络的服务质量值计算该次迭代计算过程中每条路径的适应度,并由该适应度对蚂蚁经过路径的信息素浓度进行更新,再判断是否达到设定的迭代计算次数,以便停止蚁群迭代计算而输出每个多模终端选择的最优化目标网络。
2.根据权利要求1所述的方法,其特征在于所述方法包括下列操作步骤(1)初始化设置参数采用自然数顺序设置蚁群算法中的蚂蚁前进路径的总步数与每步前进时可供选择的路径数,以便分别模拟多模终端和目标网络的数量,再设置蚂蚁所有路径的信息素浓度的初始值和蚁群算法迭代计算的总次数;采用自然数顺序编号是为了后续解码方便只需获知蚂蚁前进路径上的每步编号及其所选路径编号,就是为哪个多模终端分配的目标网络的对应编号;(2)选择前进路径采用随机分布和轮盘赌的形式,根据信息素浓度和能见度、即多模终端在每种网络中的服务质量值,从可供选择的多条前进路径中选择一条作为蚂蚁的前进路径;信息素浓度和能见度两个因素较高的路径被选择的概率更大;(3)计算前进路径上的适应度因为蚂蚁选择前进路径的方法与基站为多模终端分配最优化目标网络的操作相对应,故当蚂蚁每次完成前进路径的操作后,基站都要计算蚂蚁该次前进路径的适应度;(4)更新前进路径上的信息素浓度先根据蚂蚁经过的每条前进路径对应的服务质量值的平均值计算每条前进路径的适应度,因蚂蚁经过路径时会释放信息素,且在适应度高的路径上释放的信息素多,使得该路径的信息素浓度增加较多,在后续迭代计算时,该路径被选择的概率更高;然后将所有路径的信息素浓度都按设定比率相应减少,防止路径上的信息素累积产生早熟收敛;(5)判断是否达到预先设置的迭代计算次数若是,则输出适应度最高路径的选择结果、即每个多模终端选择的平均服务质量值最高的目标网络,结束全部流程;否则,返回步骤(2 ),继续执行选择路径的操作。
3.根据权利要求2所述的方法,其特征在于所述步骤(I)中,基站执行下列具体操作内容(11)采用自然数η和m分别对参与选择的全部多模终端和所有不同模式的目标网络进行顺序编号,并设置多模终端和目标网络的总数分别为N个和M种;(12)设置蚂蚁在其前进路径中的每一步可供选择的路径数,都与其可供选择的目标网络总数M相同,且每个路径的编号也与其目标网络的编号相同;(13)设置蚂蚁在每次迭代计算中前进路径的总步数等同于多模终端数N,这样其前进路径上的每一步就相当于基站为一个多模终端选择目标网络;(14)设置所有路径的信息素浓度初始值均为I;并在每次完成前进路径操作时,都分别对其经过的路径增加信息素浓度,以加快算法的收敛速度。
4.根据权利要求2所述的方法,其特征在于所述步骤(2)包括下列操作内容在每次迭代计算的每一步前进路径中,都根据路径选择公式
5.根据权利要求1所述的方法,其特征在于所述步骤(3)中,计算前进路径上的适应度操作包括下列内容(31)设置每个多模终端的服务质量值的最低门限,再设置每种网络容纳多模终端数量的最大值;(32)如果路径所对应的可选目标网络中有任何一个多模终端的服务质量值低于其最低门限,或者任何一种目标网络中的终端数量超过其容量最大值时,则该路径的适应度为O ;(33)如果路径所对应的可选目标网络中的所有多模终端的服务质量值都高于其最低门限,并且每种网络中的多模终端数量都不大于设定容量的最大值时,则设置蚂蚁经过的前进路径适应度值为全部多模终端的服务质量值的平均值;蚂蚁经过的前进路径适应度Q的计算公式为
6.根据权利要求2所述的方法,其特征在于所述步骤(4)包括下列操作内容(41)每次迭代计算开始前,先将所有路径的信息素浓度减少10%,用于防止路径的信息素累积过多而造成早熟与收敛;(42)因蚂蚁经过前进路径时会释放信息素,且释放的信息素浓度等于该前进路径的适应度值;这时,按照公式τ (t+l) = P X τ α) + Δ τ (t, t+l) + A x*(t, t+1)更新每条路径的信息素浓度值;式中,t为本次迭代计算的序号,τ (t)为第t次迭代计算时路径的信息素浓度,P为信息素的挥发系数,这里取P =0. 9, Δ τ (t, t+1)为第t次迭代计算后的路径信息素浓度递增值,Δ x*(t, t+1)为第t次迭代计算后精英蚂蚁、即适应度值最大的路径的信息素浓度递增值;(43)因蚂蚁在适应度较高的路径上释放的信息素多,造成该路径的信息素浓度也增加得多,在下一次迭代计算时,蚂蚁选择该路径的概率也相应增大。
全文摘要
一种基于蚁群算法多模终端选择保证服务质量的目标网络的方法,是基站先由多模终端反馈得到每个多模终端在每个目标网络中的服务质量值,再模仿蚂蚁觅食过程中寻找前进路径蚁群算法为每个多模终端选择其最优化的目标网络;先用自然数分别对蚂蚁前进路径的步数及可供选择的路径排序编号,还设定算法迭代计算的总次数,再用蚂蚁依据前进路径上不同的信息素浓度和能见度选择路径的方法,模拟多模终端根据每种网络的服务质量值选择目标网络;且在每次完成前进路径选择后,计算该次迭代计算中每条路径的适应度,并由该适应度更新经过路径的信息素浓度,还判断是否达到设定的迭代计算次数,以便停止蚁群迭代计算而输出每个多模终端选择的最优化目标网络。
文档编号H04W88/06GK103002520SQ20121018508
公开日2013年3月27日 申请日期2012年6月6日 优先权日2012年6月6日
发明者刘元安, 周杰, 吴帆, 张立佳, 张洪光, 唐碧华, 范文浩, 杨洋 申请人:北京邮电大学, 华为技术有限公司