一种接收信号强度指示的检测装置和方法

文档序号:7549534阅读:244来源:国知局
专利名称:一种接收信号强度指示的检测装置和方法
技术领域
本发明属于微波领域,尤其涉及一种接收信号强度指示的检测装置和方法。
背景技术
接收信号功率指示(ReceivedSignal Strength Indicator, RSSI)功能为微波系统中接收机的重要功能,RSSI功能提供实时的接收信号功率指示,为微波系统中的部分功能提供基础的数据输入,例如网络建设时确认微波设备是否安装正确的判断功能。RSSI的准确性和实时性的要求都很高。RSSI的准确性主要体现在输入功率稳定的情况下指示出的RSSI指示的波动范围是否满足要求,RSSI的实时性主要体现在当外部输入信号功率出现有规律的波动时,例如当信号功率按照100dB/s的速度在调整,RSSI指示的结果是否能够跟踪并体现出这个调整的变化。在微波系统中需要支持带宽自适应切换功能,带宽自适应切换功能是指当微波在空间的传输过程中发生快速的衰落,例如,突然的下雨、起雾等现象就会导致微波的传输信道产生快速的衰落,反映在信号上就是接收端的接收功率快速的降低,窄带系统中数据流的传输速度低,占用的传输信道窄,宽带系统中数据流的传输速度高,占用的传输信道宽,利用窄带系统的灵敏度高于宽带系统的特点,将数据流带宽从宽带切换到窄带,数据流带宽是指数据流速率在频域的表现形式,例如IMbit/s的速率的数据流,其数据流带宽为IMHz,从而保证高优先级数据的稳定工作。现有技术中,放大单元对接收到的数据流进行放大,模数转换单元对放大后的数据流进行模数转换得到数 字数据流,使用恒定滤波带宽的滤波器对数字数据流进行滤波,使用功率检测模块对滤波后的数字数据流进行功率检测,根据检测到的功率得到放大单元的放大控制信号,根据放大控制信号、检测到的功率以及滤波带宽和数字数据流的带宽的关系,得到RSSI值。放大控制信号的作用是对接收机接收的数据流进行放大控制,放大的功能需要保证经过滤波后的数字数据流的稳定,当微波系统的信号带宽发生切换时,放大控制信号会发生跳变。例如,模数转换单元处100M带宽的全部功率为I瓦,滤波带宽为10M,功率检测能够检测到的带宽实际只有10M,为100M的1/10,此时功率检测出来的功率为0.1瓦,当带宽切换为50M时功率还是I瓦,滤波带宽还是10M,功率检测能够检测出来的功率就变成0.2瓦了,根据该功率值得到的放大控制信号就会跳变,直到检测到的功率为0.1瓦,此时实际的50M带宽的功率就会下降到0.5瓦,而0.5瓦的功率将会影响模数转换单元的工作,从而产生误码。

发明内容
鉴于上述问题,本发明实施例提供一种RSSI的检测装置和方法,旨在解决现有技术中的RSSI检测方法中的放大控制信号在带宽切换时产生跳变,导致模数转换单元接收数据流功率的跳变,进而产生误码的技术问题。第一方面,所述RSSI的检测装置位于微波接收端,包括放大单元、模数转换单元、滤波单元、第一功率检测单元、第二功率检测单元、放大控制单元和RSSI计算单元,其中,所述放大单元,用于接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示放大单元对所述已调信号数据流的放大倍数,将放大后的已调信号数据流发送到所述模数转换单元;所述模数转换单元,用于对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,将第一数字数据流发送到所述滤波单元和所述第一功率检测单元;所述滤波单元,用于对所述第一数字信号数据流进行滤波,将滤波后的第一数字信号数据流发送到所述第二功率检测单元;所述第一功率检测单元,用于对所述第一数字信号数据流进行功率检测,得到第一平均功率值,将第一平均功率值发送到所述放大控制单元;所述第二功率检测单元,用于对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值,将第二平均功率值发送到所述RSSI计算单元;所述放大控制单元,用于根据第一平均功率值得到所述放大控制信号,将放大控制信号发送到所述RSSI计算单元和所述放大单元;所述RSSI计算单元,用于根据所述放大控制信号和所述第二平均功率值计算得到RSSI值。在第一方面的第一种可能的实现方式中,所述滤波单元的滤波通道的带宽和所述第一数字信号数据流的带宽相同。在第一方面的第二种可能的实现方式中,所述滤波单元的滤波通道的带宽小于所述第一数字信号数据流的带宽。结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述RSSI计算单元具体用于根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正;根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。结合第一方面的第一种可能的实现方式,在第四种可能的实现方式中,所述装置还包括:带宽信息提取单元,用于从第一数字信号数据流中获取到第一数字信号数据流的带宽将在时间T后发生变化的信息并通知延时对齐单元;所述延时对齐单元,用于计算切换时间t, t = tl-t2, tl为从数模转换到从第一数字信号数据流中获取到信息的延时,t2为从数模转换到滤波的延时,在切换时间t到达时刻通知所述滤波单元对滤波通道的带宽进行切换。 结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述滤波单元为数字滤波器组,所述滤波单元的滤波通道的带宽进行切换通过对数字滤波器组的系数调整完成。第二方面,所述RSSI检测方法包括:接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示对所述已调信号数据流的放大倍数;对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流;对第一数字信号数据流进行滤波;对第一数字信号数据流进行功率检测,得到第一平均功率值;对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值;根据第一平均功率值得到所述放大控制信号;根据所述放大控制信号和第二平均功率值计算得到RSSI值。在第二方面的第一种可能的实现方式中,所述对第一数字信号数据流进行滤波具体包括:对第一数字信号数据流进行带宽匹配的滤波,所述第一数字信号数据流的带宽和滤波通道的带宽相同。
在第二方面的第二种可能的实现方式中,所述对第一数字信号数据流进行滤波具体包括:对第一数字信号数据流进行带宽不匹配的滤波,所述第一数字信号数据流的带宽大于滤波通道的带宽。结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述根据所述放大控制信号和第二平均功率值计算得到RSSI值具体包括:根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正;根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。结合第二方面的第一种可能的实现方式,在第四种可能的实现方式中,对第一数字信号数据流进行带宽匹配的滤波具体包括:从第一数字信号数据流中获取到第一数字信号数据流的带宽将在时间T后发生变化的信息,计算切换时间t,t = tl-t2,tl为从数模转换到从第一数字信号数据流中获取到信息的延时,t2为从数模转换到滤波的延时,在切换时间t到达时刻对滤波通道的带宽进行切换;使用切换后的滤波通道对第一数字信号数据流进行带宽匹配的滤波。本发明实施例中,放大单元接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,模数转换单元对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,第一功率检测单元对所述第一数字信号数据流进行功率检测,得到第一平均功率值,放大控制单元根据第一平均功率值得到所述放大控制信号。本实施例将RSSI需要的功率检测和放大控制需要的功率检测分离,直接对第一数字信号数据流进行功率检测,之前没有进行滤波处理,也就是说,对第一数字信号数据流的全部带宽进行了功率检测,所以即使发生了带宽切换,放大控制信号也不会发生跳变,保证了进入模数转换单元的数据流的功率的稳定,从而减少了误码发生的可能性,保证了业务的正确接收。


图1是本发明第一实施例提供的一种RSSI的检测装置的结构
图2是本发明第二实施例提供的一种RSSI的检测装置的结构图;图3示出了本发明第三实施例提供的一种RSSI的检测方法的流程图。
具体实施例方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。实施例一:图1示出了本发明第一实施例提供的一种RSSI的检测装置的结构,该检测装置位于微波接收端中,本实施例中的检测装置包括:放大单元101,用于接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示放大单元对所述已调信号数据流的放大倍数,将放大后的已调信号数据流发送到模数转换单元102 ;
本实施例中,所述放大单元可以是VGA (Voltage Gain Amplifier,电压控制增益放大器),VGA是一个电压控制器件增益的器件,有两路输入,一路输入为信号输入,即来自微波发送端的已调信号数据流,另一路为控制电压输入,已调信号数据流经过VGA的放大后进入模数转换单元102。本实施例中,对微波发送端进行简单的说明,微波发送端的数字调制解调芯片将传输数据流进程组帧,所述组帧为将全部是有效信息的bit流按照固定长度拆开,在每帧的帧头插入帧头信息,插入带宽切换信息等用于保证信道稳定的冗余信息,将组帧后的数据进行调制,然后进入数模转换单元将数字信号转换为模拟信号,信号进入到模拟域。在模拟域为已调信号,即已经调制过的信号。数字调制解调芯片输出的是中心频点低频的频点,不能够直接用于发送,需要通过混频的方式把信号变频到可以通过空间传送的频率上,微波发送端的已调信号经过发送通道进行变频、放大处理之后发送到微波接收端。本实施例中,微波接收端的接收通道将输入的已调信号变频到数字调制解调器可以接收的频点上,然后送入放大单元101。模数转换单元102,用于对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,将第一数字数据流发送到滤波单元103和第一功率检测单元104 ;本实施例中,模数转换单元102为微波系统常用的高速ADC(Analog_DigitalConversion,模拟数字转换)模块,放大后的已调信号数据流的功率决定了模数转换的误码率,已调信号数据流的功率的跳变容易导致误码的产生。滤波单元103,用于对所述第一数字信号数据流进行滤波,将滤波后的第一数字信号数据流发送到第二功率检测单元105 ;本实施例中,滤波单元103的滤波通道的带宽小于所述第一数字信号数据流的带宽,并且滤波单元103的滤波通道的带宽固定不变。在其它实施例中 ,滤波单元103的滤波通道的带宽可以和所述第一数字信号数据流的带宽保持一致,当第一数字信号数据流的带宽发生变化时,滤波单元103的滤波通道的带宽也相应进行改变。第一功率检测单元104,用于对所述第一数字信号数据流进行功率检测,得到第一平均功率值,将第一平均功率值发送到放大控制单元106 ;本实施例中,使用数据流的数据被数字化之后的数字进行功率检测,例如,通过一个Sbit的ADC模块采样,假设这个ADC的最大输入功率为I瓦,一个O I瓦的信号会被量化为O 255,O瓦输入对应了 0,I瓦输入对应255,被采样之前的信号功率就可以通过这样对应的方式对应到第一功率检测单兀的功率上,第一功率检测单兀的功能是将输入的数据流的数据进行均方根累加平均处理并获取数据流的第一平均功率值。第一功率检测单元将第一平均功率值发送到放大控制单元。第二功率检测单元105,用于对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值,将第二平均功率值发送到RSSI计算单元107 ;本实施例中,第二功率检测单元的功能是将输入的数据流的数据进行均方根累加平均处理并获取数据流的第二平均功率值。第二功率检测单元将第一平均功率值发送到RSSI计算单元。放大控制单元106,用于根据第一平均功率值得到所述放大控制信号,将放大控制信号发送到RSSI计算单元107和放大单元101 ;本实施例中,放大控制单元为VGA控制单元,通过对第一平均功率值的大小进行判断,输出一个以时钟的占空比的差异来体现控制电压变化的控制字。可以经过一个低通滤波器,将以时钟占空比表现的控制字变成实际的控制电压,并将该实际的控制电压发送到VGA,最终完成数字AGC(Auto-Gain Control,自动增益控制)控制的功能,低通滤波器是由电容和电阻实现的一个模拟低通滤波器。本实施例中,可以将以时钟占空比表现的控制字直接发送到RSSI计算单元。RSSI计算单元107,用于根据所述放大控制信号和第二平均功率值计算得到RSSI值。本实施例中,RSSI计算单元接收来自放大控制单元106的放大控制信号和来自第二功率检测单元的第二平均功率值,根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正;根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。本实施例中,假设第一数字信号数据流的带宽为100M,滤波单元103的滤波通道的带宽为10M,第二平均功率值为0.1瓦,那么就可以将第二平均功率值修正为I瓦。假设放大控制信号指示放大单元的放大倍数为2,那么可以得到RSSI值为0.5瓦。本实施例中,放大单元接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,模数转换单元对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,第一功率检测单元对所述第一数字信号数据流进行功率检测,得到第一平均功率值,放大控制单元根据第一平均功率值得到所述放大控制信号。本实施例将RSSI需要的功率检测和放大控制需要的功率检测分离,直接对第一数字信号数据流进行功率检测,之前没 有进行滤波处理,也就是说,对第一数字信号数据流的全部带宽进行了功率检测,所以即使发生了带宽切换,放大控制信号也不会发生跳变,保证了进入模数转换单元的数据流的功率的稳定,从而减少了误码发生的可能性,保证了业务的正确接收。实施例二:图2示出了本发明第二实施例提供的一种RSSI的检测装置的结构,该检测装置位于微波接收端中,本实施例中的检测装置包括:放大单元201,用于接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示放大单元对所述已调信号数据流的放大倍数,将放大后的已调信号数据流发送到模数转换单元202 ;本实施例中,所述放大单元可以是VGA,VGA是一个电压控制器件增益的器件,有两路输入,一路输入为信号输入,即来自微波发送端的已调信号数据流,另一路为控制电压输入,已调信号数据流经过VGA的放大后进入模数转换单元202。本实施例中,微波接收端的接收通道将输入的已调信号变频到数字调制解调器可以接收的频点上,然后送入放大单元201。模数转换单元202,用于对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,将第一数字数据流发送到滤波单元203、第一功率检测单元204和带宽信息提取单元208 ; 本实施例中,模数转换单元202为微波系统常用的高速ADC (Analog-DigitalConversion,模拟数字转换)模块,放大后的已调信号数据流的功率决定了模数转换的误码率,已调信号数据流的功率的跳变容易导致误码的产生。滤波单元203,用于对所述第一数字信号数据流进行滤波,将滤波后的第一数字信号数据流发送到第二功率检测单元205 ;本实施例中,滤波单元203的滤波通道的带宽和所述第一数字信号数据流的带宽保持一致,当第一数字信号数据流的带宽发生变化时,滤波单元203的滤波通道的带宽也相应进行改变。本实施例中,滤波单元203为数字滤波器组,可以通过实时的滤波器系数调整完成滤波器通带带宽的调整,滤波器通带带宽是指通过滤波器的信号可以没有功率损失的通过的带宽,即为滤波单元203的滤波通道的带宽,例如当发生带宽调整的时候,假如发送端数据流的带宽从IOOMHz调整到50MHz,通过调整滤波器组模块的系数,可以将滤波器组的滤波器通带带宽从IOOMHz调整到50MHz,实现与第一数字信号数据流的带宽相同。如果滤波单元的滤波通道的带宽小于所述第一数字信号数据流的带宽,第二功率检测单元205只能够获取第一数字信号数据流其中一部分功率,通过将实际信号带宽和滤波器之后的信号带宽的比例进行补偿的方式在RSSI检查结果中进行体现,当传输信道在滤波器采集信号的频段内出现信号失真的情况下,就会带来误差,最终体现在RSSI检测中。RSSI指示精度对网络规划和产品现场安装有非常重要的作用,RSSI指示精度越高,网络规划的准确度越高,预留对抗传输通道信号衰落的裕度就越小。例如,一个接收机的RSSI指示精度为+/_3dB,空间衰落储备为35dB,则设计的衰落储备需要考虑到-3dB的RSSI指示精度,衰落储备就需要预留38dB,因为实际安装的时候,指示精度可能是在误差为_3dB这个点上,这样就减小了规划能够安装的最大传输距离。本实施避免了 RSSI检测由于只提取了部分数据流的功率而带来的误差。第一功率检测单 元204,用于对所述第一数字信号数据流进行功率检测,得到第一平均功率值,将第一平均功率值发送到放大控制单元206 ;本实施例中,使用数据流的数据被数字化之后的数字进行功率检测,例如,通过一个Sbit的ADC模块采样,假设这个ADC的最大输入功率为I瓦,一个O I瓦的信号会被量化为O 255,O瓦输入对应了 0,I瓦输入对应255,被采样之前的信号功率就可以通过这样对应的方式对应到第一功率检测单兀的功率上,第一功率检测单兀的功能是将输入的数据流的数据进行均方根累加平均处理并获取数据流的第一平均功率值。第一功率检测单元将第一平均功率值发送到放大控制单元。第二功率检测单元205,用于对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值,将第二平均功率值发送到RSSI计算单元207 ;本实施例中,第二功率检测单元的功能是将输入的数据流的数据进行均方根累加平均处理并获取数据流的第二平均功率值。第二功率检测单元将第一平均功率值发送到RSSI计算单元。放大控制单元206,用于根据第一平均功率值得到所述放大控制信号,将放大控制信号发送到RSSI计算单元207和放大单元201 ;本实施例中,放大控制单元为VGA控制单元,通过对第一平均功率值的大小进行判断,输出一个以时钟的占空比的差异来体现控制电压变化的控制字。可以经过一个低通滤波器,将以时钟占空比表现的控制字变成实际的控制电压,并将该实际的控制电压发送到VGA,最终完成数字AGC(Auto-Gain Control,自动增益控制)控制的功能,低通滤波器是由电容和电阻实现的一个模拟低通滤波器。本实施例中,可以将以时钟占空比表现的控制字直接发送到RSSI计算单元。带宽信息提取单元208,用于从第一数字信号数据流中获取到第一数字信号数据流的带宽将在时间T后发生变化的信息并通知延时对齐单元。本实施中,假设带宽切换前接收到的微波帧的帧周期的时间为t4,带宽信息提取单元提取到切换前微波帧的倒数第二帧,可以是微波发送端在微波帧中添加标记使得带宽信息提取单元可以识别出切换前微波帧的倒数第二帧,可以得知在时间2*t4时带宽将发生变化。通常情况下,从数模转换到从第一数字信号数据流中获取到信息的延时要大于从数模转换到滤波的延时,因此需要提前切换滤波器,使得第一数字信号数据流的切换后第一帧到达滤波单元203时,滤波单元203的滤波通道刚好完成滤波通道带宽的切换,否则将会导致RSSI检测结果的跳变。RSSI检测结果的跳变导致在配合ATPC功能时出现问题,ATPC功能是指,微波设备的接收端会设置一个目标功率,接收端会按照这个目标功率与实际检测到的RSSI指示功率进行比较,如果这个指示功率出现变化,接收端就会发送功率调整请求给发送端,让发送端调整发送率。如果RSSI指示出现跳变,发送端会出现相对应的调整,当发送端输出功率增加之后,接收功率会相应增加,这样又会触发带宽切换。这样容易出现带宽反复切换的情况。带宽的反复切换是客户无法接受的。延时对齐单元209,用于计算切换时间t,t = tl_t2,tl为从数模转换到从第一数字信号数据流中获取到信息的延时,t2为从数模转换到滤波的延时,在切换时间t到达时刻对滤波通道的带宽进行切换。本实施例中,如 果t4小于(tl_t2),并且2*t4大于(tl_t2),则表示带宽信息提取单元在提取到切换前微波帧的倒数第二帧之后的(2*t4-tl+t2)时间时需要延时对齐单元对滤波通道的带宽进行切换。本实施例中,如果t4大于tl_t2,则表示带宽信息提取单元在提取到切换前微波帧的倒数第一帧之后的(t4-tl+t2)时间时需要延时对齐单元对滤波通道的带宽进行切换。本实施例中,将数字滤波器组的滤波器通带带宽调整到与对应的数据流带宽相同,通过RSSI计算单元前的第二功率检测单元的信号带宽为整个有用信号的带宽,例如,功率为I瓦的100M带宽的数据流通过的滤波器组模块的滤波器带宽是100M,功率检测模块检测到的功率为I瓦,当发生带宽切换之后,功率为I瓦的50M带宽的数据流通过的滤波器组模块的滤波器带宽是50M,功率检测模块检测到的功率仍然为I瓦,滤波单元的滤波通道带宽实时进行了切换,RSSI的指示功率不会产生跳变。RSSI计算单元207,用于根据所述放大控制信号和第二平均功率值计算得到RSSI值。本实施例中,RSSI计算单元接收来自放大控制单元206的放大控制信号和来自第二功率检测单元的第二平均功率值,根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正;根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。本实施例中,假设第一数字信号数据流的带宽为200M,滤波单元203的滤波通道的带宽为20M,第二平均功率值为0.1瓦,那么就可以将第二平均功率值修正为I瓦。假设放大控制信号指示放大单元的放大倍数为2,那么可以得到RSSI值为0.5瓦。本实施例中,放大单元接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,模数转换单元对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,第一功率检测单元对所述第一数字信号数据流进行功率检测,得到第一平均功率值,放大控制单元根据第一平均功率值得到所述放大控制信号。本实施例将RSSI需要的功率检测和放大控制需要的功率检测分离,直接对第一数字信号数据流进行功率检测,之前没有进行滤波处理,也就是说,对第一数字信号数据流的全部带宽进行了功率检测,所以即使发生了带宽切换,放大控制信号也不会发生跳变,保证了进入模数转换单元的数据流的功率的稳定,从而减少了误码发生的可能性,保证了业务的正确接收。实施例三:图3示出了本发明第三实施例提供的一种RSSI的检测方法的流程,本实施例中的方法包括如下步骤:S301,接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示对所述已调信号数据流的放大倍数;S302,对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流;S303,对第一数字信号数据流进行滤波;本实施例中,对第一数字信号数据流进行带宽匹配的滤波,所述第一数字信号数据流的带宽和滤波通道的带宽相同。

为了实现带宽匹配的滤波,需要根据第一数字信号数据流的带宽对滤波通道的带宽进行切换,同时需要保证第一数字信号数据流进行滤波时,滤波通道的带宽切换的实时性,通过获取第一数字信号数据流的带宽信息控制滤波通道的带宽切换。具体为:从第一数字信号数据流中获取到第一数字信号数据流的带宽将在时间T后发生变化的信息,计算切换时间t, t = tl-t2, tl为从数模转换到从第一数字信号数据流中获取到信息的延时,t2为从数模转换到滤波的延时,在切换时间t到达时刻对滤波通道的带宽进行切换,然后使用切换后的滤波通道对第一数字信号数据流进行带宽匹配的滤波。在其它实施例中,可以对第一数字信号数据流进行带宽不匹配的滤波,所述第一数字信号数据流的带宽大于滤波通道的带宽。S304,对第一数字信号数据流进行功率检测,得到第一平均功率值;S305,对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值;S306,根据第一平均功率值得到所述放大控制信号;S307,根据所述放大控制信号和第二平均功率值计算得到RSSI值。在步骤S303对第一数字信号数据流进行带宽匹配的滤波时,可以直接根据所述放大控制信号和第二平均功率值计算得到RSSI值。在步骤S303对第一数字信号数据流进行带宽不匹配的滤波时,根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正;根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。
本实施例中,接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,对所述第一数字信号数据流进行功率检测,得到第一平均功率值,根据第一平均功率值得到所述放大控制信号。本实施例将RSSI需要的功率检测和放大控制需要的功率检测分离,直接对第一数字信号数据流进行功率检测,之前没有进行滤波处理,也就是说,对第一数字信号数据流的全部带宽进行了功率检测,所以即使发生了带宽切换,放大控制信号也不会发生跳变,保证了进入模数转换单元的数据流的功率的稳定,从而减少了误码发生的可能性,保证了业务的正确接收。本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以在存储于一计算机可读取存储介质中,所述的存储介质,如R0M/RAM、磁盘、光盘等。以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任 何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种接收信号强度指示RSSI的检测装置,所述检测装置位于微波接收端,其特征在于,包括放大单元、模数转换单元、滤波单元、第一功率检测单元、第二功率检测单元、放大控制单元和RSSI计算单元,其中: 所述放大单元,用于接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示放大单元对所述已调信号数据流的放大倍数,将放大后的已调信号数据流发送到所述模数转换单元; 所述模数转换单元,用于对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流,将第一数字数据流发送到所述滤波单元和所述第一功率检测单元; 所述滤波单元,用于对所述第一数字信号数据流进行滤波,将滤波后的第一数字信号数据流发送到所述第二功率检测单元; 所述第一功率检测单元,用于对所述第一数字信号数据流进行功率检测,得到第一平均功率值,将第一平均功率值发送到所述放大控制单元; 所述第二功率检测单元,用于对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值,将第二平均功率值发送到所述RSSI计算单元; 所述放大控制单元,用于根据第一平均功率值得到所述放大控制信号,将放大控制信号发送到所述RSSI计算单元和所述放大单元; 所述RSSI计算单元,用于根据所 述放大控制信号和所述第二平均功率值计算得到RSSI 值。
2.根据权利要求1所述的装置,其特征在于, 所述滤波单元的滤波通道的带宽和所述第一数字信号数据流的带宽相同。
3.根据权利要求1所述的装置,其特征在于, 所述滤波单元的滤波通道的带宽小于所述第一数字信号数据流的带宽。
4.根据权利要求3所述的装置,其特征在于, 所述RSSI计算单元具体用于根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正;根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。
5.根据权利要求2所述的装置,其特征在于,所述装置还包括: 带宽信息提取单元,用于从第一数字信号数据流中获取到第一数字信号数据流的带宽将在时间T后发生变化的信息并通知延时对齐单元; 所述延时对齐单元,用于计算切换时间t,t = tl-t2,tl为从数模转换到从第一数字信号数据流中获取到信息的延时,t2为从数模转换到滤波的延时,在切换时间t到达时刻通知所述滤波单元对滤波通道的带宽进行切换。
6.根据权利要求5所示的装置,其特征在于, 所述滤波单元为数字滤波器组,所述滤波单元的滤波通道的带宽进行切换通过对数字滤波器组的系数调整完成。
7.一种RSSI检测方法,其特征在于,包括: 接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示对所述已调信号数据流的放大倍数; 对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流;对第一数字信号数据流进行滤波; 对第一数字信号数据流进行功率检测,得到第一平均功率值; 对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值; 根据第一平均功率值得到所述放大控制信号; 根据所述放大控制信号和第二平均功率值计算得到RSSI值。
8.根据权利要求7所述的方法,其特征在于,所述对第一数字信号数据流进行滤波具体包括: 对第一数字信号数据流进行带宽匹配的滤波,所述第一数字信号数据流的带宽和滤波通道的带宽相同。
9.根据权利要求7所述的方法,其特征在于,所述对第一数字信号数据流进行滤波具体包括: 对第一数字信号数据流进行带宽不匹配的滤波,所述第一数字信号数据流的带宽大于滤波通道的带宽。
10.根据权利要求9所述的方法,其特征在于,所述根据所述放大控制信号和第二平均功率值计算得到RSSI值具体包括: 根据第一数字信号数据流的带宽与滤波通道带宽的差值对所述第二平均功率值进行修正; 根据所述放大控制信号和修正后的第二平均功率值计算得到RSSI值。
11.根据权利要求8所述的方法,其特征在于,对第一数字信号数据流进行带宽匹配的滤波具体包括: 从第一数字信号数据流中获取到第一数字信号数据流的带宽将在时间T后发生变化的信息,计算切换时间t,t = tl-t2,tl为从数模转换到从第一数字信号数据流中获取到信息的延时,t2为从数模转换到滤波的延时,在切换时间t到达时刻对滤波通道的带宽进行切换; 使用切换后的滤波通道对第一数字信号数据流进行带宽匹配的滤波。
全文摘要
本发明实施例提供一种接收信号强度指示的检测装置和方法,所述方法包括接收来自微波发送端的已调信号数据流,根据放大控制信号对所述已调信号数据流进行放大,所述放大控制信号用于指示对所述已调信号数据流的放大倍数;对放大后的已调信号数据流进行模数转换,得到第一数字信号数据流;对第一数字信号数据流进行滤波;对第一数字信号数据流进行功率检测,得到第一平均功率值;对滤波后的第一数字信号数据流进行功率检测,得到第二平均功率值;根据第一平均功率值得到所述放大控制信号;根据所述放大控制信号和第二平均功率值计算得到RSSI值。本发明实施例对第一数字信号数据流的全部带宽进行了功率检测,避免了放大控制信号产生跳变。
文档编号H04B17/00GK103222211SQ201280002276
公开日2013年7月24日 申请日期2012年12月6日 优先权日2012年12月6日
发明者李海 申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1