一种率失真优化方法及装置制造方法

文档序号:7807279阅读:275来源:国知局
一种率失真优化方法及装置制造方法
【专利摘要】本发明的实施例提供一种率失真优化方法及装置,用以解决现有技术中无法针对编码图像块的特征对编码图像块进行视频编码的问题,从而提高了视频编码的质量,提高画面质量。该方案包括:获取编码图像块的第一代价因子λ1,所述第一代价因子λ1是以所述编码图像块的块slice类型和量化参数为变量的函数;提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图像块的复杂度和质量参数;根据所述第一代价因子λ1和所述特征信息得到所述编码图像块的第二代价因子λ2;根据所述第二代价因子λ2调用编码代价函数,对所述编码图像块进行率失真优化。
【专利说明】一种率失真优化方法及装置

【技术领域】
[0001] 本发明涉及多媒体通信领域,尤其涉及一种率失真优化方法及装置。

【背景技术】
[0002] 视频压缩即视频编码,是计算机处理视频的前提。由于视频信号数字化后数据带 宽很高,通常在20MB/秒以上,因此计算机很难对数字化后的数据进行保存和处理。视频压 缩技术可以将数据带宽降到1-10MB/秒,这样就可以将视频信号保存在计算机中并作相应 的处理。
[0003] 在视频压缩过程中,如果压缩码率过大,很容易造成图像的失真,而压缩码率过 小,又无法将数据带宽降低至计算机可以处理的阈值范围内,为解决这一问题,RD0(Rate Distortion Optimization,率失真优化)技术应运而生,RD0技术的核心是通过计算不同 编码模式中编码图像块的编码代价,在提高压缩码率和避免失真之间找到一个合理的平衡 点,即在保证压缩码率的同时兼顾视频质量。
[0004] 然而,在新一代视频编码标准即H. 265中,H. 265的最大编码单元为CTU(Coding Tree Unit,编码树单元),每一当前帧可以划分为N个CTU,而在原有的RD0技术中,调用编 码代价函数进行率失真优化时仅考虑编码图像块对应的当前帧的块类型(slice type)和 量化参数(quantization parameter, QP),对于复杂性或者图像特征要求较高的图像块,原 有的RD0技术无法精细编码到每一个CTU甚至每一个CTU的⑶(Coding Unit,编码单元) 中(CTU与CU均可视为编码图像块),不能很好的反映出图像的局部特点,可见,在HEVC中 原有的RD0技术已不能保证视频编码质量。


【发明内容】

[0005] 本发明的实施例提供一种率失真优化方法及装置,用以解决现有技术中无法针对 编码图像块的特征对编码图像块进行视频编码的问题,从而提高了视频编码的质量,提高 画面质量。
[0006] 为达到上述目的,本发明的实施例采用如下技术方案:
[0007] 第一方面,本发明的实施例提供一种率失真优化方法,包括:
[0008] 获取编码图像块的第一代价因子λ i,所述第一代价因子λ i是以所述编码图像块 的块slice类型和量化参数为变量的函数;
[0009] 提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图像块的复杂 度和质量参数;
[0010] 根据所述第一代价因子λ i和所述特征信息得到所述编码图像块的第二代价因子 λ 2 ;
[0011] 根据所述第二代价因子λ 2调用编码代价函数,对所述编码图像块进行率失真优 化。
[0012] 在第一方面的第一种可能的实现方式中,所述特征信息是以所述编码图像块的特 征因子为变量的函数值,其中,
[0013] 所述特征因子为所述编码图像块的SSD(Sum of Squared Differences,平方差值 和),或者,所述特征因子为所述编码图像块的索贝尔(Sobel)算子。
[0014] 结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式 中,所述提取所述编码图像块的特征信息,包括:
[0015] 若所述特征因子小于第一阈值,则根据所述特征因子以及第一预置函数计算所述 编码图像块的特征信息。
[0016] 结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式 中,所述提取所述编码图像块的特征信息,包括:
[0017] 若所述特征因子大于第一阈值,且所述特征因子小于第二阈值,则根据所述特征 因子以及第二预置函数计算所述编码图像块的特征信息,其中,所述第二阈值大于所述第 一阈值。
[0018] 结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式 中,所述提取所述编码图像块的特征信息,包括:
[0019] 若所述特征因子大于第二阈值,则根据所述特征因子以及第三预置函数计算所述 编码图像块的特征信息。
[0020] 在第一方面的第五种可能的实现方式中,所述根据所述第二代价因子λ2调用编 码代价函数,对所述编码图像块进行率失真优化,包括:
[0021] 获取所述编码图像块的失真值和比特率,所述失真值用于指示所述编码图像块的 像素与第Ν参考图像块的像素之间的差值,所述比特率用于指示所述编码图像块的清晰 度,所述第Ν参考图像块为预置的至少一个重构帧中的与所述编码图像块大小相同的图像 块,Ν彡1 ;
[0022] 根据所述编码图像块的失真值、比特率以及所述第二代价因子λ 2,计算所述编码 图像块的编码代价;
[0023] 在Μ个编码代价中确定最小的编码代价以及所述最小的编码代价对应的参考图 像块,并将所述参考图像块输出,Μ > Ν。
[0024] 第二方面,本发明的实施例提供一种率失真优化装置,包括:
[0025] 获取单元,用于获取编码图像块的第一代价因子λ i,所述第一代价因子λ i是以 所述编码图像块的块slice类型和量化参数QP为变量的函数值;
[0026] 提取单元,用于提取所述编码图像块的特征信息,所述特征信息用于反映所述编 码图像块的复杂度和质量参数;
[0027] 计算单元,用于根据所述第一代价因子λ i和所述特征信息得到所述编码图像块 的第二代价因子λ2;并根据所述第二代价因子λ2调用编码代价函数,对所述编码图像块 进行率失真优化。
[0028] 在第二方面的第一种可能的实现方式中,
[0029] 所述计算单元,具体用于若所述特征因子小于第一阈值,则根据所述特征因子以 及第一预置函数计算所述编码图像块的特征信息;若所述特征因子大于第一阈值,且所述 特征因子小于第二阈值,则根据所述特征因子以及第二预置函数计算所述编码图像块的特 征信息,其中,所述第二阈值大于所述第一阈值;若所述特征因子大于第二阈值,则根据所 述特征因子以及第三预置函数计算所述编码图像块的特征信息;
[0030] 其中,所述特征信息是以所述编码图像块的特征因子为变量的函数,所述特征因 子为所述编码图像块的平方差值和,或者,所述特征因子为所述编码图像块的索贝尔算子。
[0031] 在第二方面的第二种可能的实现方式中,
[0032] 所述获取单元,还用于获取所述编码图像块的失真值和比特率,所述失真值用于 指示所述编码图像块的像素与第N参考图像块的像素之间的差值,所述比特率用于指示所 述编码图像块的清晰度,所述第N参考图像块为预置的至少一个重构帧中的与所述编码图 像块大小相同的图像块,N > 1 ;
[0033] 所述计算单元,还用于根据所述编码图像块的失真值、比特率以及所述第二代价 因子λ 2,计算所述编码图像块的编码代价;并在Μ个编码代价中确定最小的编码代价以及 所述最小的编码代价对应的参考图像块,将所述参考图像块输出,Μ > Ν。
[0034] 本发明的实施例提供一种率失真优化方法及装置,通过提取当前编码图像块的特 征信息,修正了编码代价函数中的代价因子的取值,使得在对当前编码图像块进行率失真 优化时,时准确的反映了编码图像块的复杂程度和质量优劣,尤其是对于复杂性或者图像 特征要求较高的图像块,本方案解决了现有技术中无法针对编码图像块的特征对编码图像 块进行视频编码的问题,从而提高了视频编码的质量,提高画面质量。

【专利附图】

【附图说明】
[0035] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
[0036] 图1为本发明实施例提供的一种率失真优化方法的流程示意图一;
[0037] 图2为本发明实施例提供的一种率失真优化方法的流程示意图二;
[0038] 图3为本发明实施例提供的一种特征信息的提取方法的流程示意图;
[0039] 图4为现有技术与本发明实施例提供的率失真优化后的对比图像一;
[0040] 图5为现有技术与本发明实施例提供的率失真优化后的对比图像二;
[0041] 图6为本发明实施例提供的一种率失真优化装置的结构示意图。

【具体实施方式】
[0042] 以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之 类的具体细节,以便透彻理解本发明。然而,本领域的技术人员应当清楚,在没有这些具体 细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的装置、电路以及 方法的详细说明,以免不必要的细节妨碍本发明的描述。
[0043] 本发明的实施例提供一种率失真优化方法,如图1所示,包括:
[0044] 101、率失真优化装置确定编码图像块的第一代价因子λ lt)
[0045] 其中,第一代价因子λ i是以编码图像块的块slice类型和量化参数QP为变量的 函数,8卩λ i可以由下式表示:
[0046] λ j = F(Slice Type, QP)
[0047] 因此,率失真优化装置在确定编码图像块的第一代价因子λ i时,首先获取编码图 像块的Slice Type (块类型)和量化参数QP,进而根据上述公式计算编码图像块的第一代 价因子入i。
[0048] 具体的,编码图像块的代价因子λ是率失真(distortion-rate)函数中的一个变 量,它决定了图像失真度D与编码码率R二者之间的相互关系,由于在视频压缩过程中,如 果编码码率R过大,很容易造成图像的失真,而编码码率R过小,又无法将数据带宽降低至 计算机可以处理的阈值范围内,所以λ的取值即在提高编码码率R和避免失真之间找到一 个合理的平衡点,以使得在以尽可能小的编码码率下,获取的图像失真度尽可能的少。现有 技术中λ的计算只与Slice Type和QP有关,但是,一幅图像不同区域的细节纹理也是不 一样的,如果同一帧用相同的λ,则不能很好的反映出图像的局部特点,导致最终编码的视 频质量下降。
[0049] 其中,QP是决定视频质量码流的重要指标,Η. 264协议和中Η. 265协议中对Slice Type和QP二者都有详细的规定,故此处不再赘述。
[0050] 进一步地,在H. 264协议中,所述编码图像块可以为宏块;在HEVC协议中,所述编 码图像块可以为编码树单元CTU或者编码单元CU,其中,所述CU为所述CTU中的划分单元。 如此,对整个视频进行编码时便可以精细到CTU层面,甚至⑶层面。其中,H. 265是新一代 视频压缩标准,其压缩效率比H. 264提高一倍,即在相同的压缩质量下,HEVC码流比H. 264 码流可以减少一半。
[0051] 102、率失真优化装置提取编码图像块的特征信息,特征信息用于反映编码图像块 的复杂度和质量参数。
[0052] 具体的,为了反映出图像中图像块的局部特点,率失真优化装置提取编码图像块 的特征信息,并将编码图像块的特征信息作为衡量指标之一计算率失真代价进而进行率失 真优化,以最大程度的在视频编码的过程中还原图像的真实性。
[0053] 其中,特征信息可以是任何能反映图像信息的标量,如Sobel(索贝尔)强度、SSD 值、SAD (sum of absolute difference,绝对差值和)值等。具体特征信息以及复杂度的获 取方法将在下面实施例中详细阐述,故此处不再赘述。
[0054] 103、率失真优化装置根据第一代价因子λ i和特征信息获得编码图像块的第二代 价因子入2。
[0055] 具体的,在率失真优化装置提取到编码图像块的特征信息后,根据第一代价因子 λi和特征信息计算优化后的第二代价因子λ 2,该第二代价因子λ2中包含有编码图像块 的特征信息,即在提高编码码率R和避免失真之间找到一个最佳点,最大程度的在视频编 码的过程中还原图像的真实性。
[0056] 104、率失真优化装置根据第二代价因子λ 2调用编码代价函数,对所述编码图像 块进行率失真优化。
[0057] 具体的,在率失真优化装置获得第二代价因子λ 2后,率失真优化装置获取所述编 码图像块的失真值D和比特率R,并根据所述编码图像块的失真值D、比特率R以及所述第 二代价因子λ 2,计算所述编码图像块相对于某一参考帧的图像块的率失真代价。其中,所 述失真值D用于指示所述编码图像块的像素与第Ν参考图像块的像素之间的差值,所述比 特率R用于指示所述编码图像块的清晰度,所述第Ν参考图像块为预置的至少一个重构帧 中的与所述编码图像块大小相同的图像块。
[0058] 其中,编码代价函数RDcost可以用下式表示:
[0059] RDcost = D (失真值)+ λ 2*R (比特率)
[0060] 至此,本发明实施例提供一种率失真优化方法,通过增加特征信息变量,获得全新 的编码图像块的第二代价因子λ 2并根据λ 2调用RDcost函数计算率失真代价,准确的反 映出图像的局部特点。
[0061] 本发明的实施例提供一种率失真优化方法,通过获取编码图像块的第一代价因子 λ i;提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图像块的复杂程度 和质量参数;根据所述第一代价因子λ i和所述特征信息计算所述编码图像块的第二代价 因子λ 2;根据所述第二代价因子λ 2调用编码代价函数RDcost,计算所述编码图像块的编 码代价。该方案通过提取当前编码图像块的特征信息,修正了编码代价函数RDcost中的代 价因子的取值,使得在计算当前编码图像块的率失真代价时准确的反映了编码图像块的复 杂程度和质量优劣,尤其是对于复杂性或者图像特征要求较高的图像块,本方案解决了现 有技术中无法针对编码图像块的特征对编码图像块进行视频编码的问题,从而提高了视频 编码的质量,提高画面质量。
[0062] 本发明的实施例提供一种率失真优化方法,如图2所示,包括:
[0063] 201、率失真优化装置确定编码图像块的第一代价因子λ lt)
[0064] 其中,λ i的取值即在提高编码码率R和避免失真之间找到一个合理的平衡点,以 使得在以尽可能小的编码码率下,获取的图像失真度尽可能的少。第一代价因子λ i是以 编码图像块的块slice类型和量化参数QP为变量的函数值,8卩λ i可以由下式表示:
[0065] λ j = F(Slice Type, QP)
[0066] 示例性的,λ i的计算公式可以为下式:
[0067] λ j = F(Slice Type, QP) = dQPFactor*pow(2. 0, QP/3. 0)
[0068] 其中,dQPFactor为以Slice Type为变量的函数值;pow函数是C/C++中的数学函 数,用于计算X的y次幂。P〇w函数在TC2.0中原型为extern float pow(float x,float y);而在 VC6.0 中原型为 double pow(double x, double y)。
[0069] 需要说明的是,在H. 264协议中,所述编码图像块可以为宏块;在H. 265协议中,所 述编码图像块可以为编码树单元CTU或者编码单元CU,其中,所述CU为所述CTU中的划分 单元。
[0070] 202、率失真优化装置获取编码图像块的特征因子,进而获得编码图像块的特征信 肩、。
[0071] 其中,特征因子可以是任何能反映图像信息的标量,可以用于反映所述编码图像 块的复杂度和质量参数,如Sobel强度、SSD值、SAD值等。例如,夜间拍摄的视频对图像的 亮度要求很高,因而率失真优化装置对该视频进行编码时,可以将亮度分布作为特征因子, 进而获得编码图像块的特征信息。
[0072] 具体的,率失真优化装置获取编码图像块的特征因子后,对特征因子的数值进行 判断,若所述特征因子小于第一阈值,则根据所述特征因子根据第一预置函数计算所述编 码图像块的特征信息;若所述特征因子大于第一阈值,则判断所述特征因子是否小于第二 阈值;若所述特征因子小于第二阈值,则根据所述特征因子根据第二预置函数计算所述编 码图像块的特征信息;若所述特征因子大于第二阈值,则根据所述特征因子根据第三预置 函数计算所述编码图像块的特征信息,其中,第二阈值大于所述第一阈值。
[0073] 示例性的,如图3所示,阈值1 (Thresh_l)为3000,阈值2 (Thresh_2)取值5000, 以SSD值为编码图像块的特征因子,当SSD值大于阈值1时,使用函数F1计算特征信息;当 SSD值小于阈值1时,判断SSD值是否小于阈值2 ;当SSD值大于阈值2时,使用函数F2计 算特征信息;当SSD值小于阈值2时,使用函数F3计算特征信息。
[0074] 其中,FI = (SSD_Thresh_l) *1. 5/Thresh_l ;
[0075] F2 = (SSD-Thresh_2)*0. 9/Thresh_2 ;
[0076] F3 = (Thresh_2-SSD)*1. 2/Thresh_2 ;
[0077] 优选的,Thresh_l可以为3000,Thresh_2可以为5000。显而易见的,阈值1和阈 值2的取值,可以根据具体的序列场景而定,函数的具体实现可以根据特征因子的不同,做 不同的调整,本发明的实施例对此不做限定。
[0078] 进一步地,特征信息可以用于反映编码图像块的复杂度,即也可以使用复杂度作 为特征因子来表征编码图像块的特征信息。具体的,下面给出一种依边缘强度的测量视频 内容复杂度的方法,具体为:
[0079] 步骤2021,率失真优化装置对当前帧做边缘检出滤波,比如Sobel滤波等,得到各 像素点的横向边缘强度和纵向边缘强度,进而得到各像素点的综合边缘强度,
[0080] V(p)=^K:(/;) + K:(;;)
[0081] 其中,p为像素点,Vx(p)为像素点的横向边缘强度,Vy(p)为像素点的纵向边缘强 度,V(p)为像素点的综合边缘强度。
[0082] 步骤2022,率失真优化装置设定第一阈值T1和第二阈值T2 (T2 > T1),并根据第 一阈值T1和第二阈值T2将各像素点分为三部分,
[0083] V(p) < T1 ;
[0084] T1 ^ V(p) ^ T2 ;
[0085] V(p)>T2。
[0086] 步骤2023,率失真优化装置根据上述三部分的像素点的数量,计算编码图像块的 视频内容的复杂度c,
[0087] S1 =第一像素点数,V(p) < T1,
[0088] S2 =第二像素点数,T1彡V(p)彡T2,
[0089] S3 =第三像素点数,V(p) > T2,
[0090] c = S2AS1+S3+S),其中,0 < s < 0· 01,c用来表示编码图像块中视频内容的复 杂度。
[0091] 当然这里也可用其他方法计算编码图像块的视频内容的复杂度,本发明实施例并 不限于此。
[0092] 至此,率失真优化装置获取编码图像块的特征因子,并获得编码图像块的特征信 肩、。
[0093] 203、率失真优化装置根据所述第一代价因子λ i和所述特征信息计算所述编码图 像块的第二代价因子入2。
[0094] 具体的,在率失真优化装置提取到编码图像块的特征信息后,根据第一代价因子 λi和特征信息计算优化后的第二代价因子λ 2,该第二代价因子λ2中包含有编码图像块 的特征信息,即在提高编码码率R和避免失真之间找到一个最佳点,最大程度的在视频编 码的过程中还原图像的真实性。
[0095] 示例性的,λ 2 = λ # 特征信息=F(Slice Type, QP,特征信息)=F(Slice Type,QP,特征因子)。
[0096] 204、率失真优化装置获取编码图像块的失真值D和比特率R。
[0097] 其中,所述失真值D用于指示所述编码图像块的像素与所述第N参考图像块的像 素之间的差值,所述比特率R用于指示所述编码图像块的清晰度。
[0098] 如步骤201中所述,λ i的取值即在提高编码码率R和避免失真之间找到一个合 理的平衡点,故计算所述编码图像块的编码代价必须要获取编码图像块的失真值D和比特 率R。示例性的,失真值D,一般采用原始图像与编码重建图像之间(即编码图像块与重构 帧中的参考图像块之间)的PSNR(Peak Signal to Noise Ratio,峰值性噪比)来衡量,这 个PSNR可以是亮度PSNR,也可以是亮度与色度PSNR的线性组合。一般最简单的情况下,采 用亮度的PSNR来作为主要衡量依据。其中所谓的峰值信号,即图像中像素的最大值(比方 说像素亮度的最大值);其中所谓的噪声,指的是原始图像与重建图像中各像素值的均方 差(即差值的平方取均值);将峰值信号与噪声两者一除,取其比值,再转换成分贝形式,即 为PSNR。比特率R,指的是选取不同编码参数、量化参数、预测模式时最终所需传输的运动 矢量、参考帧编号、预测残差值等总体编码数据的多少。
[0099] 需要说明的是,步骤204并不限制在步骤203之后执行,失真值D和比特率R的获 取可以在步骤201-203之间任意时刻进行。
[0100] 205、率失真优化装置根据所述编码图像块的失真值D、比特率R以及所述第二代 价因子λ 2,计算所述编码图像块的编码代价。
[0101] 具体的,在率失真优化装置获取所述编码图像块的失真值D和比特率R,且率失 真优化装置获取到第二代价因子λ 2后,可以根据所述编码图像块的失真值D、比特率R以 及所述第二代价因子λ2,计算所述编码图像块的编码代价RDcost。其中,编码代价函数 RDcost可以用下式表示:
[0102] 编码代价RDcost = D(失真值)+入2吨(比特率)
[0103] 206、率失真优化装置将编码代价最小的编码图像块输出。
[0104] 具体的,执行玩步骤201-205后,获得编码图像块相对于参考帧中的一个相同大 小的图像块的编码代价。当率失真优化装置使用上述方法和步骤205中的公式,遍历所有 参考帧和所有参考帧中相同大小的图像块后,获得N个编码代价,比较后将取值最小的编 码代价所对应的参考图像块确定为与编码图像块最为匹配的图像块进行输出,完成对编码 图像块的率失真优化。
[0105] 进一步地,应用本实施例中的率失真优化方法,通过优化编码图像块的第二代价 因子λ2,由于累积效应,遍历所有参考帧和所有参考帧中相同大小的图像块后最终输出的 匹配图像,在没有增加额外复杂度的基础上,图像的主观质量上有显著提高,如如图4和图 5所示,右侧图像为相同码率下,使用本发明的率失真优化方法最后终输出的压缩视频中的 图像,显而易见的,特征框内的图像质量大幅提高,图像画面更加精细。
[0106] 其中,图像的主观质量是图像质量评价的一个方面。图像质量评价可以分为主观 评价和客观评价两类,客观评价虽然简单快捷易于实现,但是由于它只注重视频的绝对误 码率,没有考虑人眼的实际感受,因此出现了客观评价结果与主观人眼感受不相符的现象。 本实施例中提供的率失真优化方法在对客观评价质量影响不大的基础上,显著提高了图像 的主观质量,可以使用户获得更加真实的视觉体验。
[0107] 本发明的实施例提供一种率失真优化方法,通过获取编码图像块的第一代价因子 λ i;提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图像块的复杂程度 和质量参数;根据所述第一代价因子λ i和所述特征信息计算所述编码图像块的第二代价 因子λ 2;根据所述第二代价因子λ 2调用编码代价函数RDcost,计算所述编码图像块的编 码代价。该方案通过提取当前编码图像块的特征信息,修正了编码代价函数RDcost中的代 价因子的取值,使得在计算当前编码图像块的率失真代价时准确的反映了编码图像块的复 杂程度和质量优劣,尤其是对于复杂性或者图像特征要求较高的图像块,本方案解决了现 有技术中无法针对编码图像块的特征对编码图像块进行视频编码的问题,从而提高了视频 编码的质量,提高画面质量。
[0108] 本发明的实施例提供一种率失真优化装置,如图6所示,包括:
[0109] 获取单元01,用于确定编码图像块的第一代价因子,所述第一代价因子\1是 以所述编码图像块的块slice类型和量化参数为变量的函数;
[0110] 提取单元02,用于提取所述编码图像块的特征信息,所述特征信息用于反映所述 编码图像块的复杂度和质量参数;
[0111] 计算单元03,用于根据所述第一代价因子λ i和所述特征信息计算所述编码图像 块的第二代价因子λ 2;并根据所述第二代价因子λ 2调用编码代价函数RDcost,计算所述 编码图像块的编码代价。
[0112] 进一步地,
[0113] 计算单元03,具体用于若所述特征因子小于第一阈值,则根据所述特征因子以及 第一预置函数计算所述编码图像块的特征信息;若所述特征因子大于第一阈值,且所述特 征因子小于第二阈值,则根据所述特征因子以及第二预置函数计算所述编码图像块的特征 信息,其中,所述第二阈值大于所述第一阈值;若所述特征因子大于第二阈值,则根据所述 特征因子以及第三预置函数计算所述编码图像块的特征信息;
[0114] 其中,所述特征信息是以所述编码图像块的特征因子为变量的函数,所述特征因 子为所述编码图像块的平方差值和,或者,所述特征因子为所述编码图像块的索贝尔算子。
[0115] 进一步地,
[0116] 所述获取单元01,还用于获取所述编码图像块的失真值和比特率,所述失真值用 于指示所述编码图像块的像素与第N参考图像块的像素之间的差值,所述比特率用于指示 所述编码图像块的清晰度,所述第N参考图像块为预置的至少一个重构帧中的与所述编码 图像块大小相同的图像块,N > 1 ;
[0117] 所述计算单元03,还用于根据所述编码图像块的失真值、比特率以及所述第二代 价因子λ 2,计算所述编码图像块的编码代价;并在Μ个编码代价中确定最小的编码代价以 及所述最小的编码代价对应的参考图像块,将所述参考图像块输出,Μ > Ν。
[0118] 进一步地,
[0119] 在Η. 264协议中,所述编码图像块为宏块;
[0120] 在HEVC协议中,所述编码图像块为编码树单元CTU或者编码单元CU,其中,所述 ⑶为所述CTU中的划分单元。
[0121] 本发明的实施例提供一种率失真优化装置,通过获取编码图像块的第一代价因子 入i ;提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图像块的复杂程度 和质量参数;根据所述第一代价因子λ i和所述特征信息计算所述编码图像块的第二代价 因子λ 2;根据所述第二代价因子λ 2调用编码代价函数RDcost,计算所述编码图像块的编 码代价。该方案通过提取当前编码图像块的特征信息,修正了编码代价函数RDcost中的代 价因子的取值,使得在计算当前编码图像块的率失真代价时准确的反映了编码图像块的复 杂程度和质量优劣,尤其是对于复杂性或者图像特征要求较高的图像块,本方案解决了现 有技术中无法针对编码图像块的特征对编码图像块进行视频编码的问题,从而提高了视频 编码的质量,提高画面质量。
[0122] 所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能 模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模 块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功 能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过 程,在此不再赘述。
[0123] 在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或 单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元 或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所 显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的 间接耦合或通信连接,可以是电性,机械或其它的形式。
[0124] 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个 网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目 的。
[0125] 另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单 元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
[0126] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上 或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式 体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机 设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各 个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储 器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光 盘等各种可以存储程序代码的介质。
[0127] 以上所述,仅为本发明的【具体实施方式】,但本发明的保护范围并不局限于此,任何 熟悉本【技术领域】的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵 盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
【权利要求】
1. 一种率失真优化方法,其特征在于,所述方法包括: 确定编码图像块的第一代价因子λi,所述第一代价因子λi是以所述编码图像块的块 slice类型和量化参数为变量的函数; 提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图像块的复杂度和 质量参数; 根据所述第一代价因子λ i和所述特征信息得到所述编码图像块的第二代价因子λ2; 根据所述第二代价因子λ 2调用编码代价函数,对所述编码图像块进行率失真优化。
2. 根据权利要求1所述的方法,其特征在于,所述特征信息是以所述编码图像块的特 征因子为变量的函数,其中, 所述特征因子为所述编码图像块的平方差值和,或者,所述特征因子为所述编码图像 块的索贝尔算子。
3. 根据权利要求2所述的方法,其特征在于,所述提取所述编码图像块的特征信息,包 括: 若所述特征因子小于第一阈值,则根据所述特征因子以及第一预置函数计算所述编码 图像块的特征信息。
4. 根据权利要求3所述的方法,其特征在于,所述提取所述编码图像块的特征信息,包 括: 若所述特征因子大于第一阈值,且所述特征因子小于第二阈值,则根据所述特征因子 以及第二预置函数计算所述编码图像块的特征信息,其中,所述第二阈值大于所述第一阈 值。
5. 根据权利要求4所述的方法,其特征在于,所述提取所述编码图像块的特征信息,包 括: 若所述特征因子大于第二阈值,则根据所述特征因子以及第三预置函数计算所述编码 图像块的特征信息。
6. 根据权利要求1所述的方法,其特征在于,所述根据所述第二代价因子λ 2调用编码 代价函数,对所述编码图像块进行率失真优化,包括: 获取所述编码图像块的失真值和比特率,所述失真值用于指示所述编码图像块的像 素与第Ν参考图像块的像素之间的差值,所述比特率用于指示所述编码图像块的清晰度, 所述第Ν参考图像块为预置的至少一个重构帧中的与所述编码图像块大小相同的图像块, Ν ^ 1 ; 根据所述编码图像块的失真值、比特率以及所述第二代价因子λ 2,计算所述编码图像 块的编码代价; 在Μ个编码代价中确定最小的编码代价以及所述最小的编码代价对应的参考图像块, 并将所述参考图像块输出,Μ > Ν。
7. -种率失真优化装置,其特征在于,所述装置包括: 获取单元,用于确定编码图像块的第一代价因子λ i,所述第一代价因子λ 1是以所述 编码图像块的块slice类型和量化参数为变量的函数; 提取单元,用于提取所述编码图像块的特征信息,所述特征信息用于反映所述编码图 像块的复杂度和质量参数; 计算单元,用于根据所述第一代价因子λ i和所述特征信息得到所述编码图像块的第 二代价因子λ2;并根据所述第二代价因子λ2调用编码代价函数,对所述编码图像块进行 率失真优化。
8. 根据权利要求7所述的装置,其特征在于, 所述计算单元,具体用于若所述特征因子小于第一阈值,则根据所述特征因子以及第 一预置函数计算所述编码图像块的特征信息;若所述特征因子大于第一阈值,且所述特征 因子小于第二阈值,则根据所述特征因子以及第二预置函数计算所述编码图像块的特征信 息,若所述特征因子大于第二阈值,则根据所述特征因子以及第三预置函数计算所述编码 图像块的特征信息,所述第二阈值大于所述第一阈值; 其中,所述特征信息是以所述编码图像块的特征因子为变量的函数,所述特征因子为 所述编码图像块的平方差值和,或者,所述特征因子为所述编码图像块的索贝尔算子。
9. 根据权利要求7所述的装置,其特征在于, 所述获取单元,还用于获取所述编码图像块的失真值和比特率,所述失真值用于指示 所述编码图像块的像素与第Ν参考图像块的像素之间的差值,所述比特率用于指示所述编 码图像块的清晰度,所述第Ν参考图像块为预置的至少一个重构帧中的与所述编码图像块 大小相同的图像块,Ν彡1 ; 所述计算单元,还用于根据所述编码图像块的失真值、比特率以及所述第二代价因子 入2,计算所述编码图像块的编码代价;并在Μ个编码代价中确定最小的编码代价以及所述 最小的编码代价对应的参考图像块,将所述参考图像块输出,Μ > Ν。
【文档编号】H04N19/154GK104093022SQ201410294385
【公开日】2014年10月8日 申请日期:2014年6月25日 优先权日:2014年6月25日
【发明者】翟海昌, 韩庆瑞, 刘苑文 申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1