一种基于无载波脉冲超宽带技术的有源定位标签的制作方法
【专利摘要】本实用新型公开了一种基于无载波脉冲超宽带有源定位标签的通信装置,该装置包括电源控制电路,调制电路,脉冲发生器电路和超宽带印刷天线,其特征在于,所述电源控制电路分别接入调制电路和脉冲发生器电路,信号经过调制电路和脉冲发生器电路形成二阶微分高斯脉冲信号输出,经由超宽带印刷天线发射出去。本实用新型采用的无载波通信方式大大简化了整体电路结构,采用脉冲发生器电路,降低了脉冲的直流分量和低频分量,提高了脉冲的频谱利用率,弥补了传统无载波通信体制中频谱利用率低的缺陷。
【专利说明】一种基于无载波脉冲超宽带技术的有源定位标签
【技术领域】
[0001] 本实用新型涉及超宽带无线通信领域,具体涉及一种基于无载波脉冲超宽带技术 的有源定位标签。
【背景技术】
[0002] 超宽带技术是一种采用亚纳秒级窄脉冲信号进行数据通信的无线基带传输技术, 由于其具有商速率,低功耗和低成本等优点,使其在精确定位、探地雷达、无损检测等诸多 领域有着光明的应用前景。
[0003] 目前超宽带无线通信的实现方案主要有无载波脉冲方案、单载波DS-CDMA方案和 MB-TFI-0FDM方案。其中后两种方案频谱利用率高,系统性能也较稳定,但因需要对载波进 行调制,其电路结构复杂,硬件实现难度较大,实现成本也较高。无载波脉冲方案为UWB通 信的传统方式,也是目前文献中介绍得最多的方式,在这种方案中,通信装置产生基带窄脉 冲序列,基带窄脉冲序列直接发送到空中,而无需对载波进行调制,其结构简单,功耗小,定 位精度高,实现成本低,但在FCC关于UWB通信功率谱的规定下,频谱利用率不高。这可以 通过脉冲波形优化设计加以改善。但目前这方面的研究还没有十分理想的可实用的结果。
[0004] 因此在无载波脉冲超宽带通信装置中,窄脉冲发生器是其核心部件,它是决定系 统通信质量和可行性的重要因素,同时也是研究的重点和难点所在。产生脉冲的方式有多 种,有基于数字逻辑器件冒险竞争效应采用异或门和与门来产生窄脉冲,有利用射频三极 管结合微分电路产生窄脉冲,有利用雪崩管的雪崩效应产生窄脉冲,也有利用阶跃恢复二 极管(SRD)的阶跃恢复特性产生高斯窄脉冲。这些器件产生窄脉冲的原理不同,其具体实 现方式也各异,但大多都电路结构复杂,且产生的脉冲在电压转换率,对称性等方面有不 足。
[0005] 中国专利号CN1753399A "基于双载波的超宽带无线通信方法及其装置"(东南大 学,毕国光,张在琢等)给出了一种基于载波的无线收发信机,该信机由十多个模块构成, 其电路实现起来较为复杂。
[0006] 文献"ULTRAWIDEBAND MONOCYCLE PULSE GENERATOR WITH DUAL RESISTIVE LOADED SHUNT STUBS" (Ma TG,Wu C J, Cheng P K,et al. Ultra-wideband monocycle pulse generator with dual resistive loaded shunt stubs[J]. Microwave and Optical Technology Letters, 2007, 49(2) :459-462.)给出了一种基于 SRD 串联结构的一阶微分窄 脉冲产生电路。该电路采用双并联枝节获得了一阶微分的窄脉冲,双电阻加载使脉冲的振 铃更小,但脉冲的峰峰值不足600mV,电压转换率较低。
[0007] 文献 "NOVEL LOW COST HIGHER ORDER DERIVEA CTIVE GAUSSIAN PULSE GERAT0R CIRCUIT,'(Low Z N, Cheong J H, Law C L. Novel low cost higher order derivative Gaussian pulse generator circuit[C]//Communications Systems, 2004. ICCS2004. The Ninth International Conference on. IEEE, 2004:30-34.)给出了一种基于并联 SRD 结构 产生高斯窄脉冲,通过5阶的带通滤波器成形,实现了高阶微分的高斯脉冲,但是带通滤波 器成形网络增加了电路尺寸,提高了成本。
[0008] 从目前的研究来看,还没有理想的技术方案来实现一种结构简单,且性能良好的 基于无载波脉冲超宽带有源定位标签的通信装置。 实用新型内容
[0009] 本实用新型要解决的技术问题是提供一种电路结构简单,容易实现,性能较好,且 体积小,重量轻的基于无载波脉冲超宽带有源定位标签的通信装置。
[0010] 为解决上述技术问题,本实用新型采用的技术方案是,该基于无载波脉冲超宽带 有源定位标签的通信装置包括电源控制电路,调制电路,脉冲发生器电路和超宽带印刷天 线,所述电源控制电路分别接入调制电路和脉冲发生器电路,信号经过调制电路和脉冲发 生器电路形成二阶微分高斯脉冲信号输出,经由超宽带印刷天线发射出去。
[0011] 与有载波方式相比,无需本振电路的变频,通信装置的电路中只有电源控制电路, 调制电路和脉冲发生器电路,三个主要模块,产生的二阶微分高斯脉冲(纳秒窄脉冲)信号 有丰富高频分量,可直接由超宽带印刷天线辐射出去,从而大大简化了电路结构,体积小, 重量轻,实现起来更加容易。
[0012] 进一步的改进在于,该基于无载波脉冲超宽带有源定位标签的通信装置采用先调 制后成形的工作方式,所述调制电路将信号进行调制之后,接入所述脉冲发生器电路输入 端,产生二阶微分高斯脉冲信号之后由输出端输出,经由超宽带印刷天线发射出去。
[0013] 进一步的改进在于,该装置采用先成形后调制的工作方式,所述脉冲发生器电路 将信号进行脉冲成形后产生二阶微分高斯脉冲信号,接入所述调制电路输入端,经调制电 路调制后,经由超宽带印刷天线发射出去。
[0014] 无载波脉冲超宽带和有载波超宽带方式相比,主要有以下几方面的优点:
[0015] 1、系统结构简单、低功耗、低成本及更小的尺寸。无载波脉冲超宽带采用纳秒甚至 亚纳秒的窄脉冲携带数据信息,极窄的脉冲含有丰富的高频分量,可直接由天线辐射。有载 波超宽带体制,发射时需将基带数据和本地振荡器混频,调制到高频载波上,经上变频至发 射频率发射。因此,无载波体制和有载波体制相比,无需混频和本振模块,降低了系统的复 杂度、成本及功耗,有助于设备的小型化。
[0016] 2、更宽的带宽。脉冲所占据的带宽主要由脉冲上升沿和下降沿的时间决定,设计 良好的极窄脉冲,带宽可达1GHz?2GHz,甚至更宽。在有载波体制中,通常将FCC免授权的 3. 1GHz?10. 6GHz的频段分成若干个子带,每个子带占据500MHz的带宽。在满足FCC辐射 功率谱密度的前提下,更宽的带宽意味着更大的功率、更远的作用距离。另外,基于超宽带 技术的高精度实时定位系统,定位精度与带宽有关,2GHz的带宽定位精度可达15cm。
[0017] 无载波超宽带系统本质上属于基带传输系统,在基带传输系统中,调制主要是脉 冲在某个时刻的开关或者位置的改变,脉冲成形的过程本质上是将较宽的脉冲压缩为窄脉 冲。采用先调制后成形的方式,即时间间隔均匀的时钟信号经调制电路由数据信号控制某 个时刻开关或位置偏移,然后将调制好的脉冲在原位置压缩形成窄脉冲。先成形后调制的 方式,即先将均匀时间间隔的时钟信号压缩成窄脉冲,然后经调制电路由数据信息控制脉 冲在某时刻开关或位置移动。原理上,两种方式是等价的。
[0018] 无载波系统调制可通过单片机由软件控制脉冲在时间轴上的位置移动或开关,有 载波系统的调制,本质上是频谱的搬移,需要额外的硬件支撑。
[0019] 进一步的改进在于,所述电源控制电路采用纽扣电池供电,进一步减小了体积,替 换电池也方便。
[0020] 进一步的改进在于,所述调制电路采用ΤΗ-PPM或PAM或00K调制。
[0021] 进一步的改进在于,所述脉冲发生器电路采用基于SRD的二阶微分高斯脉冲发生 器电路,包括由串联电容C1与并联电阻R1构成的微分电路,由并联阶跃恢复二极管SRD1、 串联电容C2、并联电阻R2、串联阶跃恢复二极管SRD2构成的窄脉冲发生电路,由微带短路 枝节、串联电容C3构成的二阶微分高斯脉冲成形电路。
[0022] 采用SRD的二阶微分高斯脉冲发生器电路,能够产生亚纳秒级二阶微分的脉冲信 号,由于时域上脉冲宽度很窄,在频域上能够得到丰富的谐波分量,其功率-10dB带宽约 5. 6GHz,脉冲的直流分量及低频分量较小,频谱利用率高,另外采用平面电路设计,电路简 单、体积小易于集成,适合短距离超宽带无线通信系统。
[0023] 与传统的高斯脉冲发生器相比,本实用新型采用的基于SRD的二阶微分高斯脉冲 发生器电路结构更加简单,更加易于调试与实现;且产生的亚纳秒级、二阶微分高斯脉冲信 号,频谱利用率高,脉冲对称性好,振铃小;采用SRD脉冲发生技术,通过多次微分,降低了 脉冲的直流分量和低频分量,提高了脉冲的频谱利用率,弥补了传统无载波通信体制中频 谱利用率低的缺陷。
【专利附图】
【附图说明】
[0024] 以下结合附图和【具体实施方式】对本实用新型做进一步的详细说明。
[0025] 图1为本实用新型基于ΤΗ-PPM的超宽带有源标签的结构框图;
[0026] 图2为本实用新型基于ΤΗ-PPM的超宽带有源标签的调制流程图;
[0027] 图3为本实用新型基于ΤΗ-PPM的超宽带有源标签的电原理图;
[0028] 图4为数据经过ΤΗ-PPM调制后的脉冲波形测试图;
[0029] 图5为本实用新型基于ΤΗ-PPM的超宽带有源标签输出端的脉冲波形测试图;
[0030] 其中,1-电源控制电路;2-调制电路;3-脉冲发生器电路;4-超宽带印刷天线。
【具体实施方式】
[0031] 整个基于无载波脉冲超宽带有源定位标签的通信装置由电源控制电路1,调制电 路2,脉冲发生器电路3和超宽带印刷天线4构成,电源控制电路1分别接入调制电路2和 脉冲发生器电路3,信号经过调制电路2和脉冲发生器电路3形成二阶微分高斯脉冲信号 输出,经由超宽带印刷天线4发射出去,具体有两种工作方式,采用先调制后成形的工作方 式,所述调制电路将信号进行调制之后,接入所述脉冲发生器电路输入端,产生二阶微分高 斯脉冲信号之后由输出端输出,经由超宽带印刷天线发射出去;或者采用先成形后调制的 工作方式,所述脉冲发生器电路将信号进行脉冲成形后产生二阶微分高斯脉冲信号,接入 所述调制电路输入端,经调制电路调制后,经由超宽带印刷天线发射出去。
[0032] 如图1所示的是采用先调制后成形的工作方式,电源控制电路1采用纽扣电池供 电,调制电路2采用ΤΗ-PPM (也可以采用PAM或00K调制)。
[0033] 发射信号的调制方式不仅决定了整个系统的可靠性和有效性,也影响了信号的频 谱特性以及后端接收机的复杂度等。因此为了保证超宽带无线通信系统的可靠性,必须要 对发射的超宽带信号进行适当的、高效的调制。
[0034] 超宽带脉冲信号的调制方式有多种调制方式,例如脉冲位置(PPM)方式,但不限 于 PPM 调制,TH-PPM(Time Topping Pulse Position Modulation)是最常用的超宽带调制 方式之一,其在周期脉冲串中引入随机时移,并用位置的不同代表不同的信息。使离散功率 谱线得到了一定程度的平滑,并随着TH码的周期增大,功率谱中的离散谱线将进一步得到 平滑。
[0035] 典型的ΤΗ-PPM调制信号波形表达式为: ·+〇〇
[0036] ^(0= ~α?ε) J=-tX)
[0037] 其中,整数值序列 c = (···,cQ, q,…Cj, cj+1,…)、二进制序列 a = (···,aQ, ai,… 8^」+1,?)、Τ。和ε是常量,对所有的c/^+ε <TS,通常ε <T。。
[0038] 本实用新型通过对单片机编程来实现TH-PPM的调制,程序流程图如图2所示。首 先进行程序初始化,定义输出端口,设定定时/计数器的工作模式;接着设定标签数据信 息、跳时码序列、码元时间和PPM偏移量,根据TH-PPM调制表达式计算每位数据信息的偏移 位置并将其存入到特定的存储器中;然后从存储器中读取数据,利用定时/计数器的定时 功能完成特定时间的延时,当定时器溢出时,在特定的输出端口输出一个脉冲。
[0039] 程序经过软件调试和硬件测试无误,写入微控制器以便后续的脉冲发生器电路使 用。
[0040] 基于TH-PPM的超宽带有源标签的电原理图如图3所示,调制电路2的输出端接入 脉冲发生器电路3。脉冲发生器电路3由微分电路、脉冲发生电路与脉冲成形电路依次组 成,微分电路由串联电容C1与并联电阻R1构成,电阻R1另一脚接地;微分电路的输出端接 脉冲发生电路的输入端,脉冲发生电路由并联阶跃恢复二极管SRD1、串联电容C2、并联电 阻R2、串联阶跃恢复二极管SRD2构成,SRD1与R2的另一脚均接地;窄脉冲发生电路输出端 接脉冲成形电路,脉冲成形电路由微带短路枝节、串联电容C3构成。脉冲成形电路输出端 接入天线。
[0041] 将整个电路制作在相对介电常数为4. 2、厚度0. 6mm的FR-4介质基片上,整个电路 大小约25mmX 45mm,采用3V纽扣电池做为电源控制电路1对调制电路2与脉冲发生器电 路3供电,使用AgilentInfiniiMax90000系列示波器对调制电路2与脉冲发生器电路3的 输出结果分别进行了时域测量,其结果如图4与图5所示。
[0042] 得到的TH-PPM基带脉冲序列如图4所示,每个脉冲的相对位置与理论计算所得有 些误差,这是由于在实测的过程中,导线的长短对信号的传输有一定的延时,这些都是在可 以接受的误差范围内。
[0043] 图5所示为脉冲发生器电路3形成的二阶微分高斯脉冲,脉冲峰-峰值约1. 2V, 50%幅度的脉冲宽度约450ps,脉冲的振铃较低约-17dB,波形对称性较好。
【权利要求】
1. 一种基于无载波脉冲超宽带技术的有源定位标签,该基于无载波脉冲超宽带技术的 有源定位标签包括电源控制电路,调制电路,脉冲发生器电路和超宽带印刷天线,其特征在 于,所述电源控制电路分别接入调制电路和脉冲发生器电路,信号经过调制电路和脉冲发 生器电路形成二阶微分高斯脉冲信号输出,经由超宽带印刷天线发射出去。
2. 根据权利要求1所述的基于无载波脉冲超宽带技术的有源定位标签,其特征在于, 该基于无载波脉冲超宽带技术的有源定位标签采用先调制后成形的工作方式,所述调制电 路将信号进行调制之后,接入所述脉冲发生器电路输入端,产生二阶微分高斯脉冲信号之 后由输出端输出,经由超宽带印刷天线发射出去。
3. 根据权利要求1所述的基于无载波脉冲超宽带技术的有源定位标签,其特征在于, 该基于无载波脉冲超宽带技术的有源定位标签采用先成形后调制的工作方式,所述脉冲发 生器电路将信号进行脉冲成形后产生二阶微分高斯脉冲信号,接入所述调制电路输入端, 经调制电路调制后,经由超宽带印刷天线发射出去。
4. 根据权利要求1所述的基于无载波脉冲超宽带技术的有源定位标签,其特征在于, 所述电源控制电路采用纽扣电池供电。
5. 根据权利要求2-4任一项所述的基于无载波脉冲超宽带技术的有源定位标签,其特 征在于,所述调制电路采用ΤΗ-PPM或PAM或00K调制。
6. 根据权利要求5所述的基于无载波脉冲超宽带技术的有源定位标签,其特征在于, 所述脉冲发生器电路采用基于SRD的二阶微分高斯脉冲发生器电路,包括由串联电容C1与 并联电阻R1构成的微分电路,由并联阶跃恢复二极管SRD1、串联电容C2、并联电阻R2、串联 阶跃恢复二极管SRD2构成的窄脉冲发生电路,由微带短路枝节、串联电容C3构成的二阶微 分高斯脉冲成形电路。
【文档编号】H04B1/7163GK203883826SQ201420220175
【公开日】2014年10月15日 申请日期:2014年4月30日 优先权日:2014年4月30日
【发明者】李冀, 肖岩, 袁子伦, 陈燕林 申请人:郑州联睿电子科技有限公司