通信用无线电装置的收发信电路及半导体集成电路装置的制作方法

文档序号:7571178阅读:191来源:国知局
专利名称:通信用无线电装置的收发信电路及半导体集成电路装置的制作方法
技术领域
本发明涉及一种收发信电路及含有该收发信电路的半导体集成电路装置,尤其涉及适用于所使用的发信频率和接收频率相等的通信用无线电装置的收发信电路及半导体集成电路装置。
近年来,通信用无线电装置,象携带电话这样的无线电装置,其小型化、轻量化以及廉价化不断发展,其利用人数急增。现采用的是发信频率和收信频率不一样的通信方式。另一方面,为适应广大利用者的要求,数字化也在不断发展,以前每根电话线路需要2个频率,而这种数字方式通信用无线电装置通过对发信和收信进行分时操作,用同一个频率便能发信、收信。
但是,由于数字式通信无线电装置中所使用的发信放大器、低噪声接收放大器以及用于转换收发信信号的收发信转换开关等的无线电部分采用的都是以往方式的电路,所以开发采用新数字方式的小型收发信电路,特别是开发能集成这些小型收发信电路的半导体集成电路就成为今天的重要课题。
还有,在数字方式通信无线电装置的收发信电路中,发信放大器、低噪声接收放大器以及收发信转换开关常采用含有具有低电压工作性能、高效率、低噪声特性及高分离度特性的砷化镓场效应晶体管(以下简称GaAsFET)的电路。
下面参照附图,说明以往的收发信电路之一例。
图11表示现有的FET数字式收发信电路的构成。在图11中,110为放大输入进来的发信信号并将其输出的发信放大器,120为放大输入进来的收信信号并将其输出的低噪声接收放大器,130为将发信状态和收信状态进行分时转换的转换开关,140为将输入进来的收信信号阻抗和低噪声接收放大器120的输入阻抗进行匹配的第1匹配电路,150为将发信放大器110的输出阻抗匹配为所规定阻抗值的第2匹配电路,160为将前级FET112的输出阻抗和后级FET的输入阻抗进行匹配的第3匹配电路,171为将发信放大器110和第2匹配电路150进行交流耦合的第1耦合电容,172为将转换开关130和第1匹配电路140进行交流耦合的第2耦合电容,173是连接转换开关130和第2匹配电路150,且特性阻抗为50Ω的第1布线,174是连接转换开关130和第1匹配电路140,且特性阻抗为50Ω的第2布线,175是连接转换开关130和收发信两用天线180,且特性阻抗为50Ω的第3布线。
在图11所示的发信放大器110中,111为输入发信信号的输入端,112为栅电极被输入发信信号、源电极接地的前级FET,113为与前级FET112的漏电极相连的第1电源端,114为栅电极通过第3匹配电路160被输入发信信号、源电极接地的后级FET,115为与后级FET114的漏电极相连的第2电源端,116为与后级FET114的漏电极相连的输出端。
在图11所示的低噪声接收放大器120中,121为通过第1匹配电路140后的接收信号输入端,122为栅电极有接收信号输入且源电极接地的低噪声FET,123为接连在低噪声FET122漏电极上的输出端。
在图11所示的转换开关130中,131是连接在第2匹配电路150上的发信侧输入端,132为天线侧输出入端发信时,将被发信放大器110放大且经过第2匹配电路150输入进来的发信信号输出给天线180;收信时,将天线180接收到的信号输进来。133是将由天线侧输出入端132输入进来的接收信号输出的收信侧输出端。134A是控制第1开关用FET135及第3开关用FET137的第1开关控制信号输入端。134B是控制第2开关用FET136及第4开关用FET138的第2开关控制信号输入端。
在图11所示的第1匹配电路140中,141为输入端,它通过第2耦合电容172与转换开关130的收信侧输出端133相连接。142是输出端,它与低噪声接收放大器120的输入端121相连接。143为第1电感线圈,其一端被连接在输入端141上,另一端接地。144为第2电感线圈,其一端被连接在输入端141上,另一端被连接在输出端142上。由第1电感线圈143和第2电感线圈144构成第1匹配电路140。
在图11所示的第2匹配电路150中,151为输入端,它经过第1耦合电容171与发信放大器的输出端116相连接。152为输出端,它与转换开关130的发信侧输入端131相连接。153为第1电容器,其一端被连接在输入端151上,另一端接地。154为电感线圈,其一端与输入端151相连接,另一端与第2电容器155相连接。155为第2电容器,其一端与电感线圈154相连,另一端与输出端152相连接。由第1电容器153、电感线圈154和第2电容器155构成第2匹配电路150。
在图11所示的第3匹配电路160中,161为第1电容器,其一端接发信放大器110中的前级FET112的漏电极,另一端接电感线圈162。162为电感线圈,其一端接第1电容器161,另一端接发信放大器110中的后级FET114的栅电极。163为第2电容器,其一端接电感线圈162及后级FET114的栅电极,另一端接地。第1电容器161、电感线圈162以及第2电容器163构成第3匹配电路160。
上述收发信电路的工作过程说明如下。
首先,说明接收时的工作过程。
由天线180输入进来的微弱接收信号,通过特性阻抗为50Ω的第3布线175被输入到转换开关130的天线侧输出入端132。此时,在转换开关130中,受由第1开关控制信号输入端134A输入进来的控制信号的控制,第1开关用FET135和第3开关用FET137被接通;受由第2开关控制信号输入端134B输入进来的控制信号的控制,第2开关用FET136和第4开关用FET138被切断,这样,输入进来的信号通过处于导通状态的第3开关用FET137而被转换到低噪声接收放大器120一侧;由于第2开关用FET136被切断,所以发信放大器110这边和低噪声接收放大器120那边失去电气联系;同时,由于第1开关用FET135接通,故发信放大器110这边被短路。
由处于导通状态的第3开关用FET137转换来的信号,通过转换开关130的接收侧输出端133、特性阻抗为50Ω的第2布线174以及第2耦合电容172被输入到第1匹配电路140。然后,由第1匹配电路140的第1电感线圈143和第2电感线圈144进行阻抗匹配,而被输入到低噪声接收放大器120的输入端121。被输入到低噪声接收放大器120的接收信号被低噪声FET122放大,从输出端123输出。
其次,说明发信时的工作过程。
首先,经调制的发信信号被输入到发信放大器110的输入端111。该发信信号的功率通过前级FET112进行第1级放大,再经过第3匹配电路160发生阻抗变换后,被输入到后级FET114。并通过该后级FET114又被放大到所规定的功率值。已放大的发信信号通过第1耦合电容171被输入到第2匹配电路150,特性阻抗被变换为50Ω后,经过特性阻抗为50Ω的第1布线173,最后被输入到转换开关130的发信侧输入端131。
此时,在转换开关130中,受由第2开关控制信号输入端134B输入进来的控制信号的控制,第2开关用FET136和第4开关用FET138接通;受由第1开关控制信号输入端134A输入进来的控制信号的控制,第1开关用FET135和第3开关用FET137断开,这样以来,输入进来的发信信号通过处于导通状态的第2开关用FET136而被转换到天线180一侧;还有,由于第3开关用FET137不通,所以低噪声接收放大器120一侧和发信放大器110一侧失去电气联系;同时由于第4开关用FET138接通,故低噪声接收放大器120一例被短路。
放大后的发信信号经过处于导通状态的第2开关用FET136及特性阻抗为50Ω的第3布线175被输入到天线180。再从天线180被作为电波输出。
但是,在上述以往的收发信电路中,存在着信号通过转换开关130而造成的信号损耗大的问题。特别是对那些需要大功率的发信信号来说,其损耗问题更为严重,故为了避免此问题,必须提高发信侧的只供信号通过的开关用FET的性能。一般说来,为减少通过损耗,必须采用栅电极长度长的开关用FET。此外,如将这些大体积开关用FET集成化,转换开关130所占面积几乎大到可和发信放大器110的面积相比,从而导致芯片面积增大。由于上述原因,存在着难以实现小型化及低价格化的问题。
本发明的目的是一举解决上述问题,消除因通过转换开关所造成的发信信号的通过损耗并降低功率消耗,与此同时,减少转换开关在收发信电路中所占的面积,争取实现通信用无线电装置的小型化。
为达到上述目的,在本发明中所做出的办法为通过将发信放大器断开时的输出阻抗和接收放大器的输出阻抗合在一起进行接收放大器的输入匹配,能做到不通过转换开关来把发信放大器和天线连接起来。
本发明第1方面所涉及的通信用无线电装置的收发信电路包括将输入进来的发信信号放大并输出的发信放大器、将输入进来的接收信号放大并输出的接收放大器以及与收发信两用天线相连,用来转换发信状态和接收状态的转换开关;其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线,接收状态时从上述天线输入将要输入到上述接收放大器的接收信号。上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET、被连接于上述FET的漏电极和上述天线之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路、与上述FET的栅电极相连的控制端、以及不需通过上述转换开关便与上述天线相连的输出端。
按照上述的通信用无线电装置的收发信电路,在发信时,由于发信放大器的输出端不通过转换开关而被连接于天线,所以因开关的存在而造成的发信信号的通过损耗就没有了,从而能降低功率消耗;在接收时,由于备有与发信放大器中的FET的栅电极相连的控制端,通过将所规定的电压施加给该栅电极并将源极接地的FET作电阻用,能使发信侧短路。因此,以往所必须有的发信侧转换开关就不要了。这样,由于只用一个开关元件就能构成接收侧转换开关,所以能缩小转换开关电路的面积,从而能实现整个收发信电路的小型化。
本发明第2方面中所述的通信用无线电装置的收发信电路包括将输入进来的发信信号放大并输出的发信放大器、将输入进来的接收信号放大并输出的接收放大器以及与收发信两用天线相连,用来转换发信状态和接收状态的转换开关;其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线,接收状态时从上述天线输入将要输入到上述接收放大器的接收信号。上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET、被连接于上述FET的漏电极和上述天线之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路、与上述FET的栅电极相连的控制端、以及不需通过上述转换开关便与上述天线相连的输出端。上述转换开关的天线侧输入端被连接于上述匹配电路中发信信号的输出端之外的其他端上。
按照上述的通信用无线电装置的收发信电路,在发信时,由于发信放大器的输出端不通过转换开关而被连接于天线,所以因开关的存在而造成的发信信号的通过损耗就没有了,从而能降低功率消耗;在接收时,由于备有与发信放大器中的FET的栅电极相连的控制端,通过将所规定的电压施加给该栅电极并将源极接地的FET作电阻用,能使发信侧短路。因此,以往所必须有的发信侧转换开关就不要了。这样,由于只用一个开关元件就能构成接收侧转换开关,所以能缩小转换开关电路的面积,从而能把整个收发信电路小型化。还有,在转换开关和接收放大器之间设置用来匹配接收信号阻抗和接收放大器的输入阻抗的接收用匹配电路的情况下,由于可以自由地选择使接收用匹配电路的电路常数达到最优化的那一端,因此增加了接收用匹配电路设计方面的自由度,即能缩小接收用匹配电路。
本发明第3方面中所述的半导体集成电路装置包括半导体基板、在该半导体基板上形成的将输入进来的发信信号放大并输出的发信放大器、在该半导体基板上形成的将输入进来的接收信号放大并输出的接收放大器、以及在上述半导体基板上形成,与收发信两用天线侧输出入端相连,用来转换发信状态和接收状态的转换开关;其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线侧输出入端,接收状态时从上述天线侧输出入端输入将要输入到上述接收放大器的接收信号。上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET、被连接于上述FET的漏电极和上述天线侧输出入端之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路、与上述FET的栅电极相连的控制端、以及不需通过上述转换开关便与上述天线侧输出入端相连的输出端。
按照上述的半导体集成电路装置,在发信时,由于发信放大器的输出端不通过转换开关而被连接于天线侧输出入端,所以因开关的存在而造成的发信信号的通过损耗就没有了,从而能降低功率消耗;在接收时,由于备有与发信放大器中的FET的栅电极相连的控制端,通过将所规定的电压施加给该栅电极并将该FET作电阻用,能使发信侧短路。因此,发信侧转换开关就不要了。这样,由于只用一个开关元件就能构成接收侧转换开关,所以能减少转换开关电路的面积,有利于高集成化,从而能实现装置的小型化。
本发明第4方面中所述的半导体集成电路装置包括半导体基板、在该半导体基板上形成的将输入进来的发信信号放大并输出的发信放大器、在该半导体基板上形成的将输入进来的接收信号放大并输出的接收放大器、以及在上述半导体基板上形成,与收发信两用天线侧输出入端相连,用来转换发信状态和接收状态的转换开关;其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线侧输出入端,接收状态时从上述天线侧输出入端输入将要输入到上述接收放大器的接收信号。上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET、被连接于上述FET的漏电极和上述天线侧输出入端之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路、与上述FET的栅电极相连的控制端、以及不需通过上述转换开关便与上述天线侧输出入端相连的输出端。上述转换开关的天线侧输入端被连接于上述匹配电路中发信信号的输出端之外的其他端上。
按照上述的半导体集成电路装置,在发信时,由于发信放大器的输出端不通过转换开关而被连接于天线侧输出入端,所以因开关的存在而造成的发信信号的通过损耗就没有了,从而能降低功率消耗;在接收时,由于备有与发信放大器中的FET的栅电极相连的控制端,通过将所规定的电压施加给该栅电极并将该FET作电阻用,能使发信侧短路。因此,发信侧转换开关就不要了。这样,由于只用一个开关元件就能构成接收侧转换开关,所以能缩小转换开关电路的面积。还有,在转换开关和接收放大器之间设置用来匹配接收信号阻抗和接收放大器的输入阻抗的接收用匹配电路的情况下,由于可以自由地选择使接收用匹配电路的电路常数达到最优化的那一端,因此增加了接收用匹配电路设计方面的自由度,即能缩小接收用匹配电路。结果,能使该装置进一步的小型化。
下面对附图进行简单说明图1是本发明第1实施例的通信用无线电装置的收发信电路图。
图2是本发明第1实施例的通信用无线电装置的收发信电路在接收时的等效电路图。
图3是本发明第2实施例的通信用无线电装置的收发信电路图。
图4是本发明第2实施例的通信用无线电装置的收发信电路在接收时的等效电路图。
图5(a)~(d)是本发明第2实施例的通信用无线电装置的收发信电路中第2匹配电路和接收信号输出端的变形电路图。
图6(a)~(d)是本发明第2实施例的通信用无线电装置的收发信电路中第2匹配电路和接收信号输出端的变形电路图。
图7是本发明第3实施例的在半导体基板上集成GaAsFET收发信电路的半导体集成电路装置的电路图。
图8是本发明第4实施例的在半导体基板上集成GaAsFET收发信电路的半导体集成电路装置的电路图。
图9是本发明第5实施例的通信用无线电装置的收发信电路图。
图10是本发明第5实施例的通信用无线电装置的收发信电路在发信时的等效电路图。
图11是以往的FET数字式收发信电路图。
(第1实施例)下面,参照


本发明第1实施例。
图1是本发明第1实施例所涉及的通信用无线电装置的收发信电路图。在图1中,10是将输入进来的发信信号放大并输出的发信放大器,20是将所输入的接收信号放大并输出的低噪声接收放大器,30是分时转换发信状态和接收状态的转换开关,40是将输入进来的接收信号阻抗和低噪声接收放大器20的输入阻抗进行匹配的第1匹配电路,50是将发信放大器10的输出阻抗匹配为所规定阻抗值的第2匹配电路,60是将所输入的发信信号阻抗和发信放大器10的大功率FET 12的输入阻抗进行匹配的第3匹配电路,70是将转换开关30、发信放大器10与收发信两用天线80相连,且特性阻抗为50Ω的布线,71是对转换开关30和第1匹配电路40进行交流耦合的耦合电容。
在图1所示的发信放大器10中,11是输入发信信号的输入端,12是所输入的发信信号经由第3匹配电路60输入到栅电极且其源极接地的大功率FET,13是连接于大功率FET12的漏电极的电源端,14是通过电阻连接到大功率FET12的栅电极的控制端,15A是通过特性阻抗为50Ω的布线70连接到天线80的同时,连接于转换开关30的输入端31的输出端。
在图1所示的低噪声接收放大器20中,21是接收信号通过第1匹配电路40输入的输入端,22是栅电极有接收信号输入且源电极接地的低噪声FET,23是连接于低噪声FET22的漏电极的输出端。
在图1所示的转换开关30中,31是通过特性阻抗为50Ω的布线70连接于天线80的同时,又连接于发信放大器10的输出端15A的输入端,32是用来控制开关用FET34的开关控制信号的输入端,33是将从天线80输入进来的接收信号输出的输出端。
在图1所示的第1匹配电路40中,41是通过耦合电容71与转换开关30的输出端33相连接的输入端,42是与低噪声接收放大器20的输入端21相连接的输出端,43是其一端连接于输入端41、另一端接地的第1电感线圈,44是其一端连接于输入端41、另一端连接于输出端42的第2电感线圈。由第1电感线圈43和第2电感线圈44构成第1匹配电路40。
在图1所示的第2匹配电路50中,51是一端连接于大功率FET12的漏电极、另一端接地的第1电容器,52是一端连接于大功率FET12的漏电极、另一端连接于第2电容器53的电感线圈,53是一端连接于电感线圈52、另一端连接于输出端15A的第2电容器。由第1电容器51、电感线圈52和第2电容器53构成第2匹配电路50。
在图1所示的第3匹配电路60中,61是一端连接于发信放大器10的输入端11、另一端连接于电感线圈62的第1电容器,62是其一端连接于第1电容器61、另一端连接于发信放大器10中大功率FET12的栅电极的电感线圈,63是一端连接于电感线圈62和大功率FET12的栅电极、另一端接地的第2电容器。由第1电容器61、电感线圈62和第2电容器63构成第3匹配电路60。
另外,在本实施例中,假定发信放大器10、低噪声接收放大器20和转换开关30的FET是由GaAsFET或者硅MOSFET构成的。
下面,参照图1和图2说明按上述所构成的收发信电路的工作过程。
图2是本发明第1实施例所涉及的通信用无线电装置的收发信电路接收信号时的等效电路图。对图2中和图1所示的收发信电路相同的构成元件使用相同的表示符号,故不再另加说明。
首先,对接收时的工作过程进行说明。
如图1所示,由天线80输入进来的微弱接收信号,通过特性阻抗为50Ω的布线70被输入到转换开关30。
其次,在转换开关30中,受由开关控制信号输入端32输入进来的控制信号的控制,开关用FET34导通,这样,输入进来的接收信号通过开关用FET34从转换开关30的输出端33经由耦合电容71被输入到第1匹配电路40。
然后,将输入进来的接收信号的阻抗和低噪声接收放大器20的输入阻抗进行匹配后,该接收信号被输入到低噪声接收放大器20的输入端21。此时,在发信放大器10中,通过对大功率FET12的控制端14施加控制电压使大功率FET12导通,如图2所示,就能使大功率FET12与纯电阻12A等效,因此在接收时,能使发信侧电路短路。从而,借助于构成第1匹配电路40的第1电感线圈43和第2电感线圈44以及构成第2匹配电路50的电感线圈52,能进行低噪声接收放大器20的输入阻抗匹配。
然后,被输入到低噪声接收放大器20中的接收信号经过低噪声FET22放大之后,从低噪声接收放大器20的输出端23输出。
另外,发信放大器10是由多个FET进行多级放大时,将控制端14设在最后一级FET上即可。
下面,参照图1对发信时的工作过程进行说明。
首先,经过调制而被放大到所规定的信号水平的发信信号被输入到发信放大器10的输入端11。
其次,由第3匹配电路60将输入进来的发信信号的阻抗和大功率FET12的输入阻抗进行匹配之后,将所输入的发信信号由大功率FET12放大到所希望的功率值。
其次,被放大了的发信信号经过第2匹配电路50发生阻抗变换后,通过特性阻抗为50Ω的布线70被输入到天线80,再作为电波从该天线80输出。另外,由于转换开关30中的开关用FET34断开,所以接收侧电路与天线80和发信放大器10之间失去电路上的联系。
本实施例的特征为通过将发信放大器10断开时的输出阻抗和低噪声接收放大器20的第1匹配电路40的输出阻抗合在一起进行低噪声接收放大器20的输入阻抗匹配,不经由开关就能把发信放大器10和天线80连接起来。因此,就不需要发信用开关,从而发信放大器10的输出信号因通过开关元件而造成的通过损耗消除了,能做到发信时低功耗化。
并且,有一个开关用FET就足够了,因此转换开关的小面积化和高集成化变得容易起来。
另外,在发信侧断开时,将电压施加到大功率FET12的控制端14使其导通而使用时的电阻值在普通FET的正向电阻(即1欧姆)以下,所以可以忽视其对低噪声接收放大器20的输入阻抗匹配的影响。
(第2实施例)下面,参照

本发明第2实施例。
图3是本发明第2实施例所涉及的通信用无线电装置的收发信电路图。在图3中,10是将所输入的发信信号放大并输出的发信放大器,20是将所输入的接收信号放大并输出的低噪声接收放大器,30是分时转换发信状态和接收状态的转换开关,40是将输入进来的接收信号的阻抗和低噪声接收放大器20的输入阻抗进行匹配的第1匹配电路,50是将发信放大器10的输出阻抗匹配为所规定阻抗值的第2匹配电路,60是将输入进来的发信信号的阻抗和发信放大器10的大功率FET 12的输入阻抗进行匹配的第3匹配电路,70是将发信放大器10的发信用输出·接收用输入两用端15B和收发信两用天线80连接起来的特性阻抗为50Ω的布线,71是将转换开关30和第1匹配电路40进行交流耦合的耦合电容。另外,对图3中与图1所示的各电路相同的构成元件使用相同的表示符号,故不再另加说明。
与第1实施例不同之处为转换开关30的输入端31没连接在发信放大器10的发信用输出·接收用输入两用端15B,而连接在接收信号输出端16;该接收信号输出端16为第2匹配电路50中的大功率FET12的漏电极和第1电容器51的非接地端的共用端。
下面,参照图3和图4说明按上述所构成的收发信电路的工作过程。
由于发信时的工作过程与第1实施例中所说明过的收发信电路相同,省略其说明,只对接收时的工作过程进行说明。
图4是本发明第2实施例所涉及的通信用无线电装置的收发信电路接收信号时的等效电路图。
首先,如图3所示,由天线80输入进来的微弱接收信号,通过特性阻抗为50Ω的布线70被输入到发信放大器10的发信用输出·接收用输入两用端15B,然后经由第2匹配电路50再被输入到转换开关30。
其次,在转换开关30中,由开关控制信号输入端32输入进来的控制信号控制开关用FET34使其导通,这样,输入进来的接收信号通过开关用FET34从转换开关30的输出端33经由耦合电容71被输入到第1匹配电路40。
然后,由第1匹配电路40将所输入的接收信号阻抗和低噪声接收放大器20的输入阻抗进行匹配之后,该接收信号被输入到低噪声接收放大器20的输入端21。此时,在发信放大器10中,通过对大功率FET12的控制端14施加控制电压使大功率FET12导通,如图4所示,能使大功率FET12与纯电阻12A等效,因此在接收时能使发信侧电路短路。从而,借助于构成第1匹配电路40的第1电感线圈43和第2电感线圈44以及构成第2匹配电路50的电感线圈52,能进行低噪声接收放大器20的输入阻抗匹配。
然后,被输入到低噪声接收放大器20中的接收信号经过低噪声FET22放大之后,从低噪声接收放大器20的输出端23输出。
另外,发信放大器10是由多个FET进行多级放大时,将控制端14设在最后一级FET上即可。
这样,如果采用第2实施例,在接收时,如图4所示,通过把第2匹配电路50中的电感线圈52兼作第1匹配电路40所需的电感线圈43用,能减少元件数,结果能缩小第1匹配电路40。
也就是说,在接收时,只要由第1匹配电路40和第2匹配电路50的元件匹配天线80和低噪声接收放大器20的阻抗即可,因而与第1实施例相比,提高了设计第1匹配电路40的自由度。
例如,第1匹配电路40一旦固定下来,第1匹配电路40自身就不能改变了。但尽管如此,如果在第2匹配电路50中将接收信号输出端16设在与低噪声接收放大器20的阻抗匹配达到最优化的位置上,也能把转换开关30的输入端31连接到该接收信号输出端16,所以能同时减少元件数。
图5和图6表示第2匹配电路50的各变形例以及在该各变形例中与低噪声接收放大器20的阻抗匹配能最优化的位置上所设置的接收信号输出端16的变形例。在图5(a)所示的第2匹配电路50中,接收信号输出端16A被连接在电感线圈52和第2电容器53的结点上。在图5(b)所示的第2匹配电路50A中,电感线圈被分割为52A和52B,接收信号输出端16B被连接在大功率FET12的漏电极(图中未示)和第1电容器51的非接地端的共用端上。在图5(c)所示的第2匹配电路50A中,接收信号输出端16C被连接在电感线圈52A和52B的共用端上。在图5(d)所示的第2匹配电路50B中,电感线圈52的一端接地、另一端与大功率FET12的漏电极和第1电容器51的非接地端的共用端相连,接收信号输出端16D被连接在该共用端上。图6(a)所示的第2匹配电路50C是对第2匹配电路50追加了一个第2电感线圈54,第2电感线圈54的一端接地、另一端与大功率FET12的漏电极和第1电容器51的非接地端的共用端相连,接收信号输出端16E被连接在该共用端上。在图6(b)所示的第2匹配电路50C中,接收信号输出端16F被连接在电感线圈52和第2电容器53的结点上。图6(c)所示的第2匹配电路50D是对第2匹配电路50C追加了一个第3电容器55,第3电容器55的一端接地、另一端与电感线圈52和第2电容器53的结点相连,接收信号输出端16G被连接在大功率FET12的漏电极(图中未示)和第1电容器51的非接地端的共用端上。在图6(d)所示的第2匹配电路50D中,接收信号输出端16H被连接在电感线圈52、第2电容器53和第3电容器55的共同结点上。
(第3实施例)下面,参照

本发明第3实施例。
图7是本发明第3实施例所涉及的半导体集成电路装置的电路图。将第1实施例中所说明的通信用无线电装置的GaAsFET收发信电路集成在半导体基板上,便可形成此装置。
在图7中,10是将输入进来的发信信号放大并输出的发信放大器,20是将输入进来的接收信号放大并输出的低噪声接收放大器,30是分时转换发信状态和接收状态的转换开关,40是将输入进来的接收信号的阻抗和低噪声接收放大器20的输入阻抗进行匹配的第1匹配电路,50是将发信放大器10的输出阻抗匹配为所规定阻抗值的第2匹配电路,60是将输入进来的发信信号的阻抗和发信放大器10的大功率FET 12的输入阻抗进行匹配的第3匹配电路,70是将天线侧输出入端72和收发信两用天线80相连接的特性阻抗为50Ω的布线,71是将转换开关30和第1匹配电路40进行交流耦合的耦合电容。
以上所说明的包括第2匹配电路50和第3匹配电路60的发信放大器10、低噪声接收放大器20、转换开关30以及第1匹配电路40都形成在半导体基板1上。
在图7所示的发信放大器10中,11是输入发信信号的输入端,12是所输入的发信信号通过第3匹配电路60被输入栅电极且源电极接地的大功率FET,13是与大功率FET12的漏电极相连的电源端,14是与大功率FET12的栅电极相连的控制端,15A是与天线侧输出入端72和转换开关30的输入端31相连的输出端。
在图7中所示的低噪声接收放大器20中,21是接收信号通过第1匹配电路40被输入的低噪声接收放大器20的输入端,22是栅电极有接收信号输入、源电极接地的低噪声FET,23是与低噪声FET22的漏电极相连的低噪声接收放大器20的输出端。
在图7中所示的转换开关30中,31是通过特性阻抗为50Ω的布线70连接于天线80的同时,又连接于发信放大器10的输出端15A的输入端,32是用来控制开关用FET的开关控制信号的输入端,33是将从天线80输入进来的接收信号输出的输出端,34是构成转换开关30的开关用FET。另外,对图7中与图1所示的各匹配电路相同的构成元件使用相同的表示符号,故不再另加说明。
再者,本实施例的半导体集成电路装置的工作过程与第1实施例的相同,所以省略其说明。
如果采用本实施例,通过将发信放大器10断开时的输出阻抗和低噪声接收放大器20的第1匹配电路40的输出阻抗合在一起进行低噪声接收放大器20的输入阻抗匹配,不经由开关也能将发信放大器10和天线80连接起来。这样,就不要使用发信用开关,故能消除发信放大器10的输出信号因通过开关元件而产生的通过损耗,从而能做到发信时低功耗化。
还有,有一个开关用FET就足够了,所以能缩小转换开关在收发信电路中的占有面积,高集成化就容易起来,进而对装有本实施例所涉及的半导体集成电路装置的通信用无线电装置的小型化和低成本化能有贡献。
另外,虽在本实施例中,使用GaAsFET作为构成发信放大器10、低噪声接收放大器20和转换开关30的FET,但代替此,使用硅MOSFET也可。
再者,在发信侧断开时,给大功率FET12的控制端14施加电压使其导通而使用时的电阻值在普通FET的正向电阻值(即1Ω)以下,所以能忽视其对低噪声接收放大器20的输入阻抗匹配的影响。
(第4实施例)下面,参照

本发明第4实施例。
图8是本发明第4实施例所涉及的半导体集成电路装置的电路图。将第2实施例中所说明的通信用无线电装置的GaAsFET收发信电路集成在半导体基板上,便可形成此装置。
在图8中,10是将输入进来的发信信号放大并输出的发信放大器,20是将输入进来的接收信号放大并输出的低噪声接收放大器,30是分时转换发信状态和接收状态的转换开关,40是将所输入的接收信号的阻抗和低噪声接收放大器20的输入阻抗进行匹配的第1匹配电路,50是将发信放大器10的输出阻抗匹配为所规定阻抗值的第2匹配电路,60是将所输入的发信信号的阻抗和发信放大器10的大功率FET12的输入阻抗进行匹配的第3匹配电路,70是将天线侧输出入端72与收发信两用天线80相连的特性阻抗为50Ω的布线,71是将转换开关30和第1匹配电路40进行交流耦合的耦合电容。另外,对与图3所示的各电路元件相同的构成元件使用相同的表示符号,故不再另加说明。
以上所说明的包括第2匹配电路50和第3匹配电路60的发信放大器10、低噪声接收放大器20、转换开关30以及第1匹配电路40都形成在半导体基板1上。
第4实施例的特征为转换开关30的输入端31没连接在发信放大器10的发信用输出·接收用输入两用端15B,而连接在第2匹配电路50中的接收信号输出端16。
另外,收发信电路接收时和发信时的工作过程与第2实施例中所说明过的相同,故不再加以说明。
如果采用第4实施例,在接收时,在图8所示的发信放大器10中,通过将控制电压施加到大功率FET12的控制端14使大功率FET12导通,从而将它作为纯电阻12A而使用,由此能把发信侧短路而断开。
并且,如图8所示,通过把第2匹配电路50中的电感线圈52兼作第1匹配电路40所需的电感线圈用,结果能减少元件数,并能缩小第1匹配电路40。
也就是说,在接收时,只要由第1匹配电路40和第2匹配电路50的元件匹配天线80和低噪声接收放大器20的阻抗即可,因此与第3实施例相比,提高了设计第1匹配电路40的自由度。例如,在第2匹配电路50中,通过将接收信号输出端16设在与低噪声接收放大器20的阻抗匹配达到最优化的位置上,能把转换开关30的输入端31连接到该接收信号输出端16,所以能同时减少元件数。不用说在图5和图6中所示的第2匹配电路50的各变形例50A~50D以及该各变形例中的接收信号输出端的变形例16A~16H在这里也都适用。
还有,有一个开关用FET就足够了,所以能缩小转换开关30和第1匹配电路40在收发信电路中的占有面积,更容易做到高集成化,进而对装有本实施例所涉及的半导体集成电路装置的通信用无线电装置的小型化和低成本化能有进一步的贡献。
(第5实施例)下面,参照

本发明第5实施例。
图9是本发明第5实施例所涉及的通信用无线电装置的收发信电路图。
第5实施例的特征为不象上述所说明过的实施例那样把收发信转换开关连接到天线和低噪声接收放大器之间,而是将其连接到天线和发信放大器之间。在图9中,10是将输入进来的发信信号放大并输出的发信放大器,20是将输入进来的接收信号放大并输出的低噪声接收放大器,30是分时转换发信状态和接收状态的转换开关,40是将所输入的接收信号的阻抗和低噪声接收放大器20的输入阻抗进行匹配的第1匹配电路,50是将发信放大器10的输出阻抗匹配为所规定阻抗值的第2匹配电路,60是将所输入的发信信号的阻抗和发信放大器10的大功率FET 12的输入阻抗进行匹配的第3匹配电路,70是将转换开关30和第1匹配电路40连接到收发信两用天线80,特性阻抗为50Ω的布线,71是将转换开关30和第1匹配电路40进行交流耦合的耦合电容。
在图9所示的发信放大器10中,11是输入发信信号的输入端,12是所输入的发信信号通过第3匹配电路60输入到栅电极且源电极接地的大功率FET,13是与大功率FET12的漏电极相连的电源端,15A是与转换开关30的输入端31相连的输出端。
在图9所示的低噪声接收放大器20中,21是接收信号通过耦合电容71和第1匹配电路40被输入的输入端,22是栅电极有接收信号输入、源电极接地的低噪声FET,23是与低噪声FET22的漏电极相连的输出端,24是与低噪声FET22的栅电极相连的控制端。
在图9所示的转换开关30中,31是与发信放大器10的输出端15相连的输入端,32是用来控制开关用FET的开关控制信号的输入端,33是将放大后的发信信号输出到天线80的输出端,34是构成转换开关30的开关用FET。
在图9所示的第1匹配电路40中,41是通过耦合电容71和特性阻抗为50Ω的布线与天线80相连,同时与转换开关30的输出端33相连的输入端,42是与低噪声接收放大器20的输入端21相连的输出端,43是一端与第1匹配电路40的输入端41相连、另一端接地的第1电感线圈,44是一端与第1匹配电路40的输入端41相连、另一端与输出端42相连的第2电感线圈。由第1电感线圈43和第2电感线圈44构成第1匹配电路40。
在图9所示的第2匹配电路50中,51是一端与大功率FET的漏电极相连、另一端接地的第1电容器,52是一端与大功率FET的漏电极相连、另一端与第2电容器53相连的电感线圈,53是一端与电感线圈52相连、另一端与发信放大器10的输出端15A相连的第2电容器。由第1电容器51、电感线圈52和第2电容器53构成第2匹配电路50。
另外,在该收发信电路中,假定发信放大器10、低噪声接收放大器20和转换开关30的各FET是由GaAsFET构成的。
下面,参照图9和图10说明按上述所构成的收发信电路的工作过程。
图10是本发明第5实施例所涉及的通信用无线电装置的收发信电路发信时的等效电路图。对图10中与图9所示的收发信电路相同的构成元件使用相同的表示符号,故不再另加说明。
首先,对接收时的工作过程进行说明。
如图9所示,从天线80输入进来的微弱接收信号,通过特性阻抗为50Ω的布线70之后,经由耦合电容71被输入到第1匹配电路40。
然后,由第1匹配电路40将所输入的接收信号和低噪声接收放大器20的输入阻抗进行匹配之后,该接收信号被输入到低噪声接收放大器20的输入端21。所输入的接收信号由低噪声FET22放大之后,从低噪声接收放大器20的输出端23输出。由于转换开关30中的开关用FET34断开,发信侧与天线80和低噪声接收放大器20之间失去电路上的联系。
其次,对发信时的工作过程进行说明。
首先,经调制而被放大到所规定信号水平的发信信号被输入到发信放大器10的输入端11。
然后,经过第3匹配电路60将所输入的发信信号的阻抗和大功率FET12的输入阻抗进行匹配后,所输入的发信信号被大功率FET12放大到所希望的功率值。
此时,在图9所示的低噪声接收放大器20中,通过将肖脱基电压以上的正电位施加给低噪声FET22的控制端24使低噪声FET22导通,如图10所示,能使低噪声FET22与纯电阻22A等效,所以发信时能把接收侧电路短路。从而,借助于构成第1匹配电路40的第1电感线圈43和第2电感线圈44以及构成第2匹配电路50的电感线圈52,能把发信放大器10的输出阻抗匹配为所规定的阻抗值。
然后,阻抗匹配后的发信信号通过特性阻抗为50Ω的布线70被输入到天线80,从该天线80作为电波被输出。
另外,还要进行第1匹配电路和第2匹配电路的阻抗匹配以免放大后的发信信号传流到低噪声接收放大器20一侧。
如上所述,按照第5实施例,通过将低噪声接收放大器20断开时的阻抗和发信放大器10的第2匹配电路50的阻抗合在一起进行发信放大器10的输出匹配,不经由开关也能把低噪声接收放大器20和天线80相连接。因此,就不要使用接收用开关,从而能消除低噪声接收放大器20的输入信号通过开关元件时所发生的通过损耗。
再者,微弱的接收信号也不会衰减,所以能提高放大时的信噪比。另外,由于有一个开关用FET就足够了,因此容易做到开关的小型化和集成化。
综上所述,按照本发明所涉及的通信用无线电装置的收发信电路,发信时,由于发信放大器的输出端不通过转换开关而连接到天线,所以能消除因通过开关所造成的发信信号的损耗,从而能降低功耗;接收时,通过把发信放大用FET作电阻用,便能使发信侧短路,因此发信侧就不需要转换开关,从而只用一个开关元件就能构成接收侧转换开关。这样,能缩小转换开关的电路面积,从而能达到整个收发信电路小型化的目的。
再者,由于本发明所涉及的半导体集成电路装置是由本发明中所述的通信用无线电装置的收发信电路构成的,所以如果采用此装置,能降低发信时的功耗,同时还能使整个收发信电路小型化,对高集成化有利。其结果,可降低半导体集成电路装置的价格。
权利要求
1.一种通信用无线电装置的收发信电路,其特征在于包括将输入进来的发信信号放大并输出的发信放大器;将输入进来的接收信号放大并输出的接收放大器;以及与收发信两用天线相连,用来转换发信状态和接收状态的转换开关,其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线,接收状态时从上述天线输入将要输入到上述接收放大器的接收信号,上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用场效应晶体管(FET);被连接于上述FET的漏电极和上述天线之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路;与上述FET的栅电极相连的控制端;以及不需通过上述转换开关便与上述天线相连的输出端。
2.一种通信用无线电装置的收发信电路,其特征在于包括将输入进来的发信信号放大并输出的发信放大器;将输入进来的接收信号放大并输出的接收放大器;以及与收发信两用天线相连,用来转换发信状态和接收状态的转换开关,其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线,接收状态时从上述天线输入将要输入到上述接收放大器的接收信号,上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET;被连接于上述FET的漏电极和上述天线之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路;与上述FET的栅电极相连的控制端;以及不需通过上述转换开关便与上述天线相连的输出端,上述转换开关的天线侧输入端被连接于上述匹配电路中发信信号的输出端之外的其他端上。
3.一种半导体集成电路装置,其特征在于包括半导体基板;在该半导体基板上形成的将输入进来的发信信号放大并输出的发信放大器;在该半导体基板上形成的将输入进来的接收信号放大并输出的接收放大器;以及在上述半导体基板上形成,与收发信两用天线侧输出入端相连,用来转换发信状态和接收状态的转换开关,其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线侧输出入端,接收状态时从上述天线侧输出入端输入将要输入到上述接收放大器的接收信号,上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET;被连接于上述FET的漏电极和上述天线侧输出入端之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路;与上述FET的栅电极相连的控制端;以及不需通过上述转换开关便与上述天线侧输出入端相连的输出端。
4.一种半导体集成电路装置,其特征在于包括半导体基板;在该半导体基板上形成的将输入进来的发信信号放大并输出的发信放大器;在该半导体基板上形成的将输入进来的接收信号放大并输出的接收放大器;以及在上述半导体基板上形成,与收发信两用天线侧输出入端相连,用来转换发信状态和接收状态的转换开关,其中发信状态时上述发信放大器所输出的发信信号被输出到上述天线侧输出入端,接收状态时从上述天线侧输出入端输入将要输入到上述接收放大器的接收信号,上述发信放大器具有栅电极与发信信号的输入端相连,漏电极与电源端相连,并源电极接地的放大用FET;被连接于上述FET的漏电极和上述天线侧输出入端之间,用来将上述FET的输出阻抗和上述天线侧阻抗进行匹配的匹配电路;与上述FET的栅电极相连的控制端;以及不需通过上述转换开关便与上述天线侧输出入端相连的输出端,上述转换开关的天线侧输入端被连接于上述匹配电路中发信信号的输出端之外的其他端上。
全文摘要
本发明的收发信电路包括:低噪声接收放大器(20)、进行低噪声接收放大器(20)的输入阻抗变换的第1匹配电路(40)、具有变换发信信号阻抗的第2匹配电路(50)和第3匹配电路(60)的发信放大器(10)以及转换收发信状态的转换开关(30)。发信放大器(10)具有与大功率FET(12)的栅电极相连的控制端(14),并且发信放大器(10)的输出端(15A)无需通过转换开关(30)便能与天线(80)相连。
文档编号H04B1/44GK1203710SQ9619869
公开日1998年12月30日 申请日期1996年12月17日 优先权日1995年12月18日
发明者伊藤顺治 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1