专利名称:图形的屏幕显示系统的制作方法
技术领域:
本发明涉及用于电视接收机的OSD系统。
在此处使用术语“电视接收机”包括具有显示装置(通常称为“电视机”)的电视接收机,以及不具有显示装置的电视接收机,例如VCRs、视盘播放器、数字视盘单元(DVD)、电缆变频器盒、卫星接收机等等。
比如象封闭标题、XDS(扩展数据业务)、和Starsight的业务在预定的不被显示的电视水平行间隔内把数据发送到电视接收机。电视接收机包括一个信号处理器或解码器,例如微处理器、微型计算机、或微控制器,提取这种辅助信息成分。一个实例是封闭标题解码器。电视信号的辅助的信息成分迄今主要包括文本和控制字符。已经建议,使用例如用于封闭标题、XDS和Starsight数据的数据规程,图形数据也经过电视信号的辅助信息成分发送。
在这种系统中,在电视接收机中的图形屏幕显示(OSD)系统从发射机接收代表信号的一个图形图像。将这种图形图像划分成象元(象素)的一个阵列。这种象素阵列包括预定的行数,每一行包括预定的象素数目。这种图像代表包括序列的数据值的信号,表示在该阵列中的各个象素的颜色每一序列的数据值指向一个调色板中的位置。在调色板中的该位置反过来包括表示用于对应象素的期望色彩的数据。这种色彩代表数据由在该电视接收机中的一个OSD控制器处理,以便调节该电视接收机显示该期望色彩的一个象素。
例如,StarSight系统将具有在电视屏幕上产生图形图像的能力。这些图像由大致为正方形的象素阵列组成,其中每一象素具有两个电视扫描行的高度。具有3∶4宽高比的标准NTSC电视屏幕的有效面积能够被大约86,400(240×360)象素所填充。由于例如象StarSight数据的辅助信息是使用类似于封闭标题的一个相当低的带宽发送的,所以为了传送一个全屏幕图形图像所需要的时间将是长得无法接受。因此,一个图形图像的最大尺寸可被限制为小于该屏面区域的5%,使得输出现在一个可接受的时段之内。最近提议要求表示每一象素的数据作为4比特二进制值发送,为该象素规定16种可能的颜色之一。每一接收数据值表示在一个十六输入调色板中的地址,其中的数据表示使用在预先以二进制格式存储的给定的任何图形图像中所用的16种可能的颜色的一个规定的颜色。
显示在现有电视接收机,例如由汤姆森消费电子公司制造的电视接收机屏幕上的封闭标题电文是由象素构成,这些象素的尺寸与在StarSight系统中建议的构成图形图像的象素的尺寸相同。众所周知的是,在该封闭标题电文图像中象A和W的字符的对角线的笔画在电视屏幕上看来象是有点参差不齐和粗糙。为了改进对角线的字符笔画的外形,已经设计了在电视接收机中的正文OSD控制器硬件,以便通过沿着该对角线产生和适当地放置小的、即圆的标准象素标准1/4尺寸的象素,即具有标准象素的一个扫描行的高度和一半的宽度。显示的字符图象都是由标准前景象素和小的、一半尺寸的构成这种字符笔画的单色圆前景象素以及围绕该前景象素的不同色彩的“背景”象素组成。圆象素总是以“前景”色彩产生。该操作可以在当前正文屏幕显示(OSD)控制器中容易地完成,因为这些控制器“已知”正在画的是一个字符、“已知”该字符是什么字符、以及“已知”在该字符图象中的什么地方添加该圆点以便产生最合意的字符图象。
但是,当把可能包括表示图文字符以及其它图形对象的像素的一个图形图像发送到电视接收机时,该OSD控制器就没有这样的已知能力。由发送信号表示的图形图像的低分辩率本身不提供为了产生合意平滑的、完全的字符或其它字符单元中的边缘所需要的细节电平。但是,被建议的图形显示也将受益于适宜的边缘平滑的应用。为了得到最佳结果,用于产生圆形元素的规则要比对于图形的规则更复杂,因为通常是包括多于两种颜色,并且“前景”和“背景”的概念可以是不相关联的。而且,在某些情形中进行圆滑可能是不希望的。
体现本发明的一个图形屏幕显示(OSD)系统处理电视信号的辅助的信息成分并且包括一个边缘检测器,用于确定存在于图形图像中的文本或其它图形的边缘。该系统还包括一个边缘平滑器,用于确定该被检测的边缘是否为将要被平滑的或圆滑。此外,该系统自动地确定平滑象素的适当位置和色彩而预先并不了解该象素的形状。该进行平滑的象素可以是在该调色板中的任何色彩。
图1和2是用于理解本发明的实物示意图;图3和4是说明可以使用在本发明中的调色板的存储器布局图5和6是用于理解本发明的实物示意图;图7是根据本发明的一个OSD控制器的一部分的框图;图8是部分地以数据块方式和部分地以逻辑形式示出的详细的示意图,说明在图7中示出的OSD控制器的一个实施例的一部分;和图9是一波形示意图,用于理解图8中示出的OSD产生器部分的操作。
图1和2是用于理解本发明的实物示意图。图1和2示出组成一个图形图像的象素阵列,每一象素由一个正方形表示。图1和2中示出的阵列部分1包括13行,由“a”至“m”表示,每一行包括九个象素“1”至“9”。示出的图像部分包括3种颜色。色彩1由双交叉影线示出、色彩2由单交叉影线示出,而色彩3由没有交叉影线示出。通过由图形OSD控制器应用在下面更详细地描述的适当的圆滑规则,该阵列能够被显示为图2中示出。在颜色2和3之间的长的对角线边界2可以通过产生色彩2的1/4尺寸圆滑象素6而被平滑,并且在色彩2区域之内的色彩1的窄的对角线4被通过产生色彩1的圆滑象素8而被平滑。但是,假使色彩3的四个元素10是在该阵列的下层的右区域,就必须不能产生圆滑象素,因为在这种情况下重要的是保持该原图的外形。注意,为了最佳结果,圆滑元素可以是在调色板中的颜色的任何一种。
如上所述,在图象阵列中的每个象素的色彩在接收的信号中被由一个四比特位矢量所规定,该矢量指向在包括表示那种色彩数据的调色板中的16输入项之一。在调色板中的该输入项包括由软件根据当前请求预加载到该调色板中的比特模式。该比特模式可以由接收机自动地预加载,即可以通过在电视接收机从发送位置接收电视信号中的数据被提供到该调色板。例如,在调色板中的每一输入项可以包括一个六比特的输入项,其中两个比特被分配给红、绿和蓝色成分的每一量值,当被组合时,这些成分组成那种色彩的显示象素。图3和4是说明可以使用在本发明中的调色板20的存储器布局示意图。在图3和4中,在调色板20中的16个输入项由对应的矩形表示,具有十六进制的从0到F的地址标号。在图3中,表示色彩1(双重交叉影线)的数据是包含在输入项C中,表示色2(单一交叉影线)的数据是包含在两个输入项中输入项9和输入项5,其原因在下面更详细地描述,而表示色彩3(没有交叉影线)的数据被包含在输入项3中。
为了具有一个灵活的圆滑算法,即当期望平滑一个边缘时操作而当不期望进行平滑时不操作的算法,本发明把在调色板中的16种色彩输入项分成两个组,称作图3和4中的地址组1和2。根据本发明,仅仅当由具有在地址组1中的颜色之一而同时相邻的象素是在地址组2中的颜色之一的象素形成一个边缘被检测时才产生圆滑象素。否则不执行圆滑处理。通过把描述图1阵列的色彩矢量与在图3中排列的调色板20相关联,能够产生图2中示出的期望的显示。
由于色彩2(单一交叉影线)与色彩3(没有交叉影线)形成将要被平滑的边缘,即对角线的边缘2,并且与色彩3形成将不被平滑的另一边缘,即在显示的右下角中的图案10,所以用于色彩2的输入项必须被存储在调色板20中的地址组1和地址组2中,如图3示出。具体地说,为了避免产生环绕该图案10的圆滑象素,环绕该图案10的色彩2象素j6、j8、k7、16和18(在图2中以星号标记)在接收信号中由矢量表示指向调色板20的地址5。由于该输入项是在地址组2中,所以在这些象素中之该OSD控制器将不产生平滑。色彩2的剩余象素在接收信号中由指向调色板20的地址9的矢量表示。由于输入项是在地址组1中,而用于色彩3的调色板输入项是在地址组2中,所以将由该OSD控制器在这些象素之中产生平滑。色彩1的全部象素(双交叉影线)在接收信号中可以由指向调色板20的地址C的一个矢量表示。由于该输入项是在地址组2中的输入项,所以将沿着在色彩1的象素和色彩2的象素之间的边缘产生平滑。
为了实现对于包括指定到阵列象素的全部颜色进行圆滑的灵活性,指定到在调色板20中的两个地址组的颜色可以象在图4中示出的那样被使得完全相同。在图4中,被指定为“m”至“t”的颜色被分别地分配给调色板20的地址7至0,而且被分别地被分配给调色板20的地址F至8。在这样一个排列中的使用在任何给定图像中的颜色数目是八。而且有可能在该接收数据中包括一个共用的控制比特,可用于启动即禁用该平滑算法,以便选择期望的操作方式。
如上所述,由于一个图形图像的内容事先未知,所以该图形OSD产生器必须分析接收的数据,以便检测边缘的位置并且确定那些边缘是否将要被平滑。图5是一个示意图,用于理解本发明的操作。
在图5中,示出的是图1和2中的阵列1的一较小部分。任何单独的象素都被显示在作为两个相邻的扫描行一部分的显示元件上,上面的扫描行称为“奇数”行而下层的扫描行称为“偶数”行,在图5中以虚线示出。表示图形图像象素的数据被接收并且表示不同象素的色彩矢量被存储在对应于在图形图像中的象素的位置的一个显示存储器中。该OSD控制器从显示存储器中检索该数据,并且在象素边界调节该显示元件以便更改颜色。
参考图5,象素由以直线边框的正方形表示。当前显示的象素被指定为W,而紧邻右侧的象素被指定为X。同样地,紧邻在W和X上面的象素被分别地指定为Ya和Za,而紧邻在W和X下面的象素被分别地指定为Yb和Zb。为了产生一个圆滑象素,该OSD控制器调节该显示元件,以便产生在组成的该象素的两个扫描行之一的一个象素单元中的色彩改变。这在图5中由表示奇数扫描行产生的圆滑象素点线矩形Ro、和表示奇数扫描行产生的圆滑象素点线矩形Re示出。这些圆滑象素具有标准象素的一半的高度,但是具有作为标准单元的相同的宽度。它们被水平地转换为标准象素的宽度的一半。该OSD产生器将调节该显示装置以便仅当下面描述的确定的条件被满足时才产生圆滑象素。
图6(a)至6(d)说明这种必须存在的条件,用于产生两个圆滑象素Ro或Re的适当的一个。例如,图6(a)中示出的条件要求当存在下面的情况时产生圆滑象素Ro(a)用于象素X和Ya的调色板地址矢量是完全相同的,即象素X和Ya是相同的色彩(如交叉影线显示);(b)用于色彩的调色板地址是在地址组1中(图3或4);和(c)用于象素W的调色板地址是在地址组2中。如果象素X和Ya的颜色是相同的,则表明在象素X和Ya之间的从左上方到右下方的对角线的边缘以及象素W已经被检测。如上所述,如果在调色板中的用于象素X和Ya的地址的地址组是在地址组1中,并且用于象素W的地址是在地址组2中,则表明圆滑将出现。在这种情况下,将产生具有和X和Ya象素(如由交叉影线显示)相同的色彩的一个圆滑象素Ro。如图6(a)中示出,这种圆滑象素平滑在象素X和Ya以及象素W之间边缘。否则就不出现圆滑。
图6(b)示出在偶数扫描行期间的边缘检测和圆滑处理。图6(b)中示出的条件要求当存在下面的情况时产生圆滑象素Re(a)用于象素X和Yb的调色板地址是完全相同的;(b)用于色彩矢量的地址是在地址组1中;和(c)用于象素W的调色板地址是在地址组2中。如果象素X和Yb的颜色是相同的,则表明在象素X和Yb之间的从右上方到左下方的对角线的边缘以及象素W已经被检测。如上所述,如果在调色板中的用于象素X和Yb的输入项的地址组是在地址组1中,并且用于象素W的地址是在地址组2中,则表明圆滑将出现。在这种情况下,将产生具有和X和Yb象素(如由交叉影线显示)相同的色彩的一个圆滑象素Re。如图6(b)中示出,这种圆滑象素平滑在象素X和Yb以及象素W之间边缘。否则就不出现圆滑。
图6(c)也涉及在奇数扫描行期间的边缘检测和圆滑,但检测的是由图6(a)检测的那些方向的其它方向的边缘。图6(c)中示出的条件要求当存在下面的情况时产生圆滑象素Ro(a)用于象素W和Za的调色板地址矢量是完全相同的;(b)用于那些象素的调色板地址是在地址组1中;和(c)用于象素X的调色板地址是在地址组2中。如果象素W和Za的颜色是相同的,则表明在象素W和Za之间的从右上方到左下方的对角线的边缘以及象素X已经被检测。如上所述,如果在调色板中的用于象素W和Za的输入项的地址组是在地址组1中,并且用于象素X的地址是在地址组2中,则表明圆滑将出现。在这种情况下,将产生具有和W和Za象素相同的色彩的一个圆滑象素Ro。如图6(c)中示出,这种圆滑象素平滑在象素W和Za以及象素X之间边缘。否则就不出现圆滑。
依次,图6(d)也涉及在偶数扫描行期间的边缘检测和圆滑,但检测的是由图6(d)检测的那些方向的其它方向的边缘。图6(d)中示出的条件要求当存在下面的情况时产生圆滑象素Re(a)用于象素W和Zb的调色板地址矢量是完全相同的;(b)用于这些象素的调色板地址是在地址组1中;和(c)用于象素X的调色板地址是在地址组2中。如果象素W和Zb的颜色是相同的,则表明在象素W和Zb之间的从左上方到右下方的对角线的边缘以及象素X已经被检测。如上所述,如果在调色板中的用于象素W和Zb的输入项的地址组是在地址组1中,并且用于象素X的地址是在地址组2中,则表明圆滑将出现。在这种情况下,将产生具有和W和Zb象素相同的色彩的一个圆滑象素Re。如图6(d)中示出,这种圆滑象素平滑在象素W和Za以及象素X之间边缘。否则就不出现圆滑。
参考图6(a)和(c),可见在奇数扫描行期间仅上面的相邻象素(Ya和Za)的地址矢量与在当前扫描行(W和X)中的象素进行比较。参考图6(b)和(d),可见在偶数扫描行期间仅下面的相邻象素(Yb和Zb)的地址矢量与在当前扫描行(W和X)中的象素进行比较。在图6(a)-(d)中示出的四个规则因此可以被合并成两个。第一准则涉及对于在象素X和Y(在奇数扫描行期间的Ya和在偶数扫描行期间的Yb)以及象素W之间的边缘进行的检测,并且被示出在图6(a)和(b)中。该准则是如果(a)用于象素X的调色板矢量是相同于用于象素Y的调色板矢量,(b)用于这些象素的调色板地址是在地址组1中和(c)用于象素W的调色板矢量是在地址组2中,则产生一个圆滑象素。第二准则涉及对于在象素W和Z(在奇数扫描行期间的Za和在偶数扫描行期间的Zb)以及象素X之间的边缘进行的检测,并且被示出在图6(c)和(d)中。该准则是如果(a)用于象素W的调色板矢量是相同于用于象素Z的调色板矢量,(b)用于这些象素的调色板地址是在地址组1中和(c)用于象素X的调色板矢量是在地址组2中,则产生一个圆滑象素。
再次参考图6,在示出实施例中的圆滑象素Ro和Re具有相同的宽度,作为标准的、全尺寸的象素,但仅是单一扫描行的高度,即一个标准象素高度的1/2。即使圆滑象素Ro和Re具有一个全尺寸象素的宽度,它们也是以一个实际大小象素的一半的宽度水平地移动,因此部分地重叠在相同色彩的、相邻的实际大小象素上。因此重叠相邻的实际大小象素的这一半将是不可见的,并且实际上不改变显示。根据本发明的这样一个设计能够简化实现一个OSD产生器需要的硬件。
图7是根据本发明的一个OSD控制器100的一部分的框图。在图7中,显示RAM102把第一输出端耦合到第一4比特移位寄存器104的一个输入端,并且第二输出端耦合到第二4比特移位寄存器106的一个输入端。第一移位寄存器104的一个输出端被耦合到第三4比特移位寄存器108的一个输入端,并且耦合到圆滑逻辑电路112的X输入端。第三移位寄存器108的一个输出端被耦合到圆滑逻辑电路112W输入端。第二移位寄存器106的一个输出端被耦合到第四4比特移位寄存器110的一个输入端,并且被耦合到圆滑逻辑电路112。第四移位寄存器110的一个输出端被耦合到该圆滑逻辑电路112的Y输入端。
圆滑逻辑电路112的一个输出端被耦合到调色板存储器114的一个输入端。调色板114的一个输出端被耦合到一个数字-模拟(D/A)变频器和显示装置驱动电路116的输入端。D/A转换器和显示驱动器电路116的分别的输出端产生彩色信号R、G和B。这些信号可以与其它的R、G和B彩色信号结合,例如与来自电视接收电路(没示出)的R、G和B彩色信号结合,并且表示一个接收的电视视频信号,并且该组合耦合到能够再生由这些信号表示的组合图像的一个显示装置(也没示出)。
解码器117从视频信号VID IN的辅助的信息成分提取例如封闭标题数据和图形数据。信号VID IN可以是一个模拟电视信号,例如一个NTSC兼容信号,或数字视频信号,例如一个数字直接广播卫星信号,例如由DirecTV*业务提供的卫星信号。在一个NTSC信号中,辅助的信息成分可以被包括在NTSC兼容信号的垂直消隐内的行间隔中。在例如一个数字广播卫星信号的数字视频信号中,辅助的信息成分可以包括在与一个辅助的信息数据流相关的数据信息包中。解码器117和在图7中示出的其它特征的某些或全部可以包括在一个集成电路中,例如一个微控制器或微型计算机中。
同样在图7中,装入逻辑电路118具有一个输入端,以便接收数据,例如由解码器117从一个辅助的信息成分提取的图形数据。装入逻辑电路118具有分别的输出端耦合到对应的显示RAM102和调色板114的写入到控制输入端。RAM地址和控制逻辑电路120被耦合到控制输入端和显示RAM102的第一和第二地址输入端。一个时钟输入端被耦合到同步与接收电视信号的时钟信号的信号源(没示出)。这些时钟信号包括同步于接收的电视信号的同步成分和一个象素(点)显示时钟控制。时钟输入端被耦合到RAM地址和控制逻辑电路120的分别的时钟输入端,分别地耦合到第一、第二、第三和第四移位寄存器104、106、108、110,以及圆滑逻辑电路112。该时钟输入端可以被耦合到在图7中示出的其它单元,或在该OSD控制器100没示出的其它单元。
操作中,其中实现图7的OSD产生器100的电视接收机通过解码器117接收来自已收电视信号的图形OSD图象数据(例如象素彩色数据和/或调色板数据),并且在装入逻辑118的控制之下把调色板数据储存(即加载)到调色板114,并且把表示该OSD图像的象素色彩矢量数据储存到在显示RAM102中的预定的位置。如上所述并且如同在图6中示出,在图7中示出的OSD产生器100分析用于四个相邻的象素的象素色彩矢量W,X,Ya或Yb,和Za或Zb。因此该OSD产生器100在奇数扫描期间请求与象素W、X以及Ya和Za相关的四个4比特调色板地址矢量,或在同时存在偶数扫描期间请求与象素W、X以及Yb和Zb相关的四个4比特调色板地址矢量。该RAM地址和控制逻辑电路120产生被提供到该显示RAM102的两个多比特地址信号A1和A2。
第一地址信号A1由在RAM地址中的一个第一计数器(没示出)产生,并且控制逻辑电路120由象素时钟信号进行时钟控制。该信号调节显示RAM102以便从显示RAM102中的其位置检取当前象素。第二地址信号A2由一个第二计数器(也没示出)产生并且调节该显示RAM102以便从在该显示RAM102中的其位置检取与当前象素垂直邻接的象素。RAM地址和控制逻辑电路120还响应来自电视接收机(没示出)同步电路的信号O/E,该信号O/E表示当前扫描行是奇数扫描行或偶数扫描行。在奇数扫描行期间,第二地址信号A2调节该显示RAM102,以便从在当前行上面的行检取垂直地相邻的象素。在偶数扫描行期间,第二地址信号A2调节该显示RAM102,以便从在当前行下面的行检取垂直地相邻的象素。
来自当前行的象素数据在显示RAM102的第一输出端01产生,耦合到第一移位寄存器104。来自适当垂直相邻扫描行的象素数据(对于奇数扫描行是在上面,对于偶数扫描行是在下面)在该显示RAM102的第二输出端02产生,耦合到第二移位寄存器106。第一和第二移位寄存器104和106的操作对于来自显示RAM102的象素进行检取。如果直接从显示RAM102输出的信号具有充足的驱动器容量,并且具有正确的定时,则可以使用不同于在图7中描述的方案。例如,具有适当的驱动和定时特性的RAM输出信号可以允许第一和第二移位寄存器104和106被省略,并且允许该显示RAM102的输出直接耦合到第三和第四移位寄存器108和110的适当输入端,以及圆滑逻辑电路112。
第一和第二移位寄存器104和106的输出端产生当前的、随后的水平以及对应的垂直相邻象素的缓存的和流水线版本。参考图5和6,这些象素分别是X象素和Z象素(Za用于奇数扫描行,而Zb用于偶数扫描行)。第三和第四移位寄存器108和110分别产生延迟了一个象素时间间隔的象素。这些象素是W象素和Y象素(Ya用于奇数扫描行而Yb用于偶数扫描行)。该第一、第二、第三和第四移位寄存器104、106、108和110配合,从在显示RAM102中的适当位置提取象素色彩矢量数据并且使得该圆滑逻辑电路112同时地可用该数据。
以图6中描述的方式,圆滑逻辑电路112分析经过移位寄存器104、106、108和110从显示RAM102来的W、X、Y和Z象素数据,下面将更详细地描述。该圆滑逻辑电路112则产生用于调色板114的控制信号。该控制信号调节该调色板,以便产生表示已收图形图像加上所在之处的圆滑象素的彩色信号。反过来,调色板114响应来自圆滑逻辑电路112的控制信号,以便产生适当的彩色信号R、G和B。这些彩色信号可以与表示已收电视节目图像的R、G和B信号结合,以便产生一个组合的图像。
图8是部分地以数据块形式和部分地以逻辑形式示出的一个更详细的示意图,表示在图7中示出的圆滑逻辑电路112的一个实施例。在图8中,较粗的行表示多比特数字信号行,而细的行表示一位数字信号行或时钟信号行。图8示出该圆滑逻辑电路112的门电路结构,该圆滑逻辑电路确定是否应该根据W、X、Y和Z象素数据产生该圆滑单元Ro或Re(如图6中示出)之一。
在图8中,W、X、Y和Z输入端接收不同的四个比特调色板地址信号,[3..0]、X[3..0]、Y[3..0]和Z[3..O],用于W、X、Y和Z象素。X输入端的全部四个比特被耦合到第一多路复用器202的第二数据输入端B。该第一多路复用器202的一个输出端被耦合到锁存器206的一个输入端I。该锁存器206的输出端0被耦合到第二多路复用器204的第二数据输入端B。第二多路复用器204的一个输出端被耦合到圆滑逻辑电路112的一个输出端,反过来,该输出端被耦合到调色板114的控制输入端(图7)。
W输入端WO的最低有效比特被耦合到第一异或(XOR)门电路208的第一输入端,并且Z输入端的最低有效比特ZO被耦合到该第一XOR门208的第二输入端。类似地,比特W1和Z1被耦合到第二XOR门210的分别的输入端,比特W2和Z2被耦合到第三XOR门212的分别的输入端,比特W3和Z3被耦合到第四XOR门214的分别的输入端。该Z象素的最高有效比特Z3还被耦合到一个反相输出与(NAND)门电路216。X象素X3的最高有效比特还被耦合到倒相器218的一个输入端。倒相器218的一个输出端被耦合到“与非”门216的第二输入端。
第一、第二、第三和第四XOR门208-214的分别的输出端以及NAND门216的输出端被耦合一个五输入或非输出(NOR)门电路220的对应的输入端。该第一、第二、第三和第四XOR门208-214、NAND门216、倒相器218以及NOR门220形成第一组合逻辑电路250,该组合逻辑电路250提取作为输入的四个比特W和Z象素数据信号和X象素的最高有效比特,并从NOR门220产生单一比特的输出信号Rw。
NOR门220的一个输出端被耦合到一个两输入端的NOR门电路222的第一输入端,并且耦合到第一多路复用器202的一个选择输入端。NOR门220的一个输出端被耦合到一个D触发器224的D输入端。该D触发器224的Q输出端被耦合到第二多路复用器204的一个选择控制输入端S。
一个第二组合逻辑电路270的结构与第一组合逻辑电路250的结构相同,并且在图8中仅由数据块示出。X和Y输入端被分别耦合到第一和第二输入端,并且X输入端的最高有效位X3被耦合到该第二组合逻辑电路250的一个第三输入端。该第二组合逻辑电路270的一个输出端产生一个信号Rx,耦合到NOR门222的第二输入端。时钟信号输入端被耦合到第二倒相器226的输入端。该第二倒相器226的一个输出端被分别耦合到D触发器224的时钟输入端和锁存器206的时钟输入端。
操作中,组合逻辑电路对250和270分别地包括一个四个比特相等性检测器(在图8中用虚线表明),由第一、第二、第三和第四XOR门208-214以及NOR门220形成(250的电路),用于两个象素调色板地址;以及由倒相器218、NAND门216以及NOR门220(250的电路)形成的单一位比较器,用于确定是否在地址组1中的两个象素的地址组被比较,并且确定在地址组2(如在图6中示出)中的空间相邻的象素的。参考该第一组合逻辑电路250,如果WO比特相等该ZO比特,则该第一XOR门208产生一个逻辑’0’信号,否则产生一个逻辑’1’信号。该第二、第三以及第四XOR门210-214类似地操作。如果W象素以及Z象素的全部相应的比特是都一样,即W象素是与Z象素的色彩相同,则全部四个XOR门208-214都产生逻辑’0’信号。
再一次参考图3和4,用于一个象素的调色板地址的最高有效位是一个其中象素属于的地址组的指示。如果调色板地址的最高有效位(比特3)是一个逻辑’0’信号,则该地址是在0-7的范围中,并且该象素是在地址组2中。如果调色板地址的最高有效位是一个逻辑’1'信号,则该地址是在8-F的范围中,并且象素是在地址组1中。
再一次参考图8,如上所述,如果用于X象素的调色板地址是在地址组2中而W和Z象素的调色板地址是在地址组1中,则圆滑将要出现,否则不出现圆滑。当Z象素的最高有效位Z3是一个逻辑’1’信号时,倒相器218和NAND门216的配合产生一个逻辑’0’信号,表明X象素的调色板地址是在地址组2中。如上所述,这表明将要出现圆滑。否则,倒相器218和NAND门的配合产生一个逻辑’1’信号。
当来自第一、第二、第三和第四XOR门208-214以及NAND门216的信号全部是逻辑’0’信号时,NOR门 220产生一个逻辑’1’信号,表明W和Z象素是相同的色彩并且在地址组1中,并且X象素的调色板地址是在地址组2中。这对应于在图6(c)的奇数扫描行期间和图6(d)偶数扫描行期间的调节。表明将要产生对于一个象素进行的圆滑。否则,NOR门220产生一个逻辑’0’信号,表明将不产生象素圆滑。
当来自第一、第二、第三和第四XOR门(没示出)和其NAND门(也没示出)的信号全部是逻辑‘0’信号时,组合逻辑电路270类似地操作来产生一个逻辑‘1'信号Rx,表明该X和Y象素是相同的色彩并且在地址组1中,并且表明W象素的调色板地址是在地址组2中。这对应于在图6(a)中示出的在奇数扫描行期间和在图6(b)中示出的在偶数扫描行期间的条件。这表明将要产生一个圆滑象素。否则,NOR门(也没示出)产生一个逻辑‘0’信号,表明将不产生圆滑象素。因此,组合逻辑电路250和270检测在该图形OSD图像中的边缘的出现,并且确定将要产生的圆滑象素是否平滑该边缘。
当需要时,图8中示出的圆滑逻辑电路112的其余部分将操作产生该圆滑象素。再一次参考图6,当由组合逻辑电路250(图6(c)和(d))产生的逻辑‘1’Rw信号时,圆滑象素具有与W象素一样的色彩。当由组合逻辑电路270产生逻辑‘1'Rx信号时,圆滑象素具有与X象素一样的色彩。当Rw信号是一个逻辑‘1'信号时,第一多路复用器202被调节以便把W输入端耦合到其输出端,并且当Rw信号是一个逻辑‘0’信号时,该第一多路复用器202被调节以便把X输入端耦合到其输出端。因此,如果需要,第一多路复用器202的输出端将产生一个表示圆滑象素将要具有的色彩的信号。
图9是用于理解在图8中示出的圆滑逻辑电路112的剩余部分的操作的波形示意图。在由图9中的波形描述的实例中,示出用于将要在一象素期间变得有效的适当的调节。这对应于邻居环绕象素h7(图1)。在图9中的最高波形DC是来自圆滑逻辑电路112(图8)的时钟输入端的象素、即象点、时钟。如能从图9看到的,在该象点时钟信号DC的上升边缘产生新的象素。在图9中的第二波形DC*是来自第二倒相器226的倒置象点时钟的DC。
第三波形是W和Z象素数据流。在象素数据流中的每一序列的象素由一个矩形表示。在矩形中的十六进制数是描述该象素的色彩的调色板地址,在某些示出象素之下的坐标表示在图1中示出的图像中的相应的象素。在一般条件之下,两个象素数据流W和Z不需要完全相同的。但是,在本实例中,在图1的模范邻近的中的W和Z象素数据流是完全相同的,并且在图9中由单一波形表示。第四波形是以和W和Z象素数据流相同方式示出的X象素数据流。
第五波形是来自NOR门220(图8)的输出信号Rw。第六波形是来自D触发器224的输出信号Sw。第七波形是从第二多路复用器204的输出端提供到调色板114的调色板地址信号。
标准操作,即不产生圆滑象素的操作在图9的第一完整象素期间示出。在标准操作期间,来自第一和第二组合逻辑电路250和270的输出信号都是逻辑‘O’信号。因此,来自NOR门222的输出信号是一个逻辑‘1’信号。来自NOR门222的逻辑’1’信号在倒相的象点时钟信号DC*的上升边经过D触发器224。响应来自D触发器224的Q输出端的延迟的逻辑’1’信号,该第二多路复用器耦合其运载表示W象素的信号的第一输入端A到其输出端。因此,在标准操作期间,被提供到该调色板114的信号是以流水线方式表示该W象素的信号。
对于下列说明,假设当前的扫描行是一个奇数扫描行。参考在图9中的波形和在图1以及图6(c)中示出的图像部分,在图9中示出的第二完整象素期间,对于W和Z象素来说,调色板地址两者都是C,即色彩1(双交叉影线),并且对于X象素来说,该调色板地址是5,即色彩2(单一交叉影线)。参考图1,出现在当现在的象素W是象素h6时,随后象素X是h7并且适合的垂直相邻的象素Z来自该当前行上面的行,并且是象素g7。该位置由在图1中的粗线框出,并且对应于图6(c)。
由于W和Z象素具有相同的调色板地址,即地址C,所以该第一、第二、第三和第四XOR门208、210、212和214全部产生逻辑‘0’信号。由于W和Z象素是在地址组1中(即地址C)而象素X是在地址组2中(即地址5),所以该NAND门216也产生一个逻辑‘0’信号。因此,对于信号Rw,NOR门220产生一个逻辑’1’信号,如图9中示出。如上所述,调节该第一多路复用器202以便把W象素信号耦合到其输出端。锁存器206是由倒相的象素(象点)时钟DC*时钟控制,半象素周期滞后。W象素信号保持在锁存器的输出端,直到随后象素周期的中间。
同时地,NOR门222产生一个逻辑’0’信号。在随后的倒置点时钟信号DC*的前沿,来自NOR门222的逻辑’0’信号被时钟控制,通过D触发器224,如在图9中示出的波形Sw。该Sw信号调节该第二多路复用器以便把其耦合到锁存器206输出并且具有值C的A输入端耦合到其输出端。Sw信号保持一个信号的逻辑直到倒相的点时钟信号DC*的下一个前沿,在这一时间,来自NOR门222的输出是一个逻辑’1’信号。这将调节第二多路复用器以便把来自W象素输入端的信号耦合到其输出端,并且恢复标准操作。
结果是,存储在调色板中的地址C圆滑象素的色彩被“延伸”半距(half-way)成为存储在地址5的色彩的下一个象素。单一圆滑单元因此产生,并且该产生图案在图2的部分中示出,对应图1的圈滑部分并且在图6(c)中示出。
在上面示出的图形和相应的详细描述中展示和描述的是一个能够产生在图形OSD显示中的有利的圆滑的边缘的实施例。但是,本专业技术人员将理解,可以设计和制造其它的实施例,同样实现对于接收的OSD图象数据的影象增强。
权利要求
1. 一种图形屏幕显示(OSD)系统,包括一个解码器,用于提取包括在电视信号的辅助的信息成分中的图形OSD图像代表数据;一个边缘检测器,用于处理该OSD图像代表数据,以便检测在该图形OSD图像中的一个边缘;和一个边缘平滑器,耦合到该解码器和该边缘检测器,当一个边缘被检测时,用于产生表示具有一个平滑边缘的一个OSD图像的信号。
2. 根据权利要求1的系统,还包括耦合到该解码器的电路,用于处理该图形OSD图像代表数据,以便确定何时期望平滑一个在该OSD图像中的被检测边缘;其中该边缘平滑器还被耦合到一个用于确定何时期望平滑一个被检测边缘的电路,并且当一个边缘被检测以及期望平滑该检测的边缘时,产生一个表示具有平滑边缘的该再生OSD图像的信号。
3. 根据权利要求2的系统,其中该图形OSD图像包括一个象素阵列,并且该图形OSD图像的代表数据包括表示在该图形OSD图像中的分别象素的数据值;系统还包括耦合到解码器的电路,用于同时地产生表示形成一个边缘的两个相邻象素、以及相邻该两个边缘形成象素的一个象素的分别的数据值,以及用于确定何时期望平滑一个被检测的边缘的电路,包括一个比较器,耦合到该数据值产生电路,用于把表示该两个边缘形成象素的数据值与表示相邻该两个边缘形成象素的该象素的数据值相比较,并且当表示该两个边缘形成象素的数据值和表示相邻该两个边缘形成象素的该象素的数据值满足一个预定的准则时产生一个信号;以及耦合到该数据值产生电路和该比较器的电路,并且当表示该两个边缘形成象素的数据值和表示相邻该两个边缘形成象素的该象素的数据值满足该预定的准则时,用于产生一个表示圆滑象素的信号。
4. 根据权利要求3的系统,其中其中的圆滑象素表示信号发生器包括耦合到该数据值产生电路和该比较器的电路,用于产生具有该两个边缘产生象素之一的数据值的圆滑象素代表信号。
5. 根据权利要求3的系统,其中在该象素阵列中的每一象素具有预定的高度和宽度,并且该圆滑象素代表信号发生器包括耦合到该数据值产生电路和该比较器的电路,用于产生该圆滑象素代表信号,该信号具有在象素阵列中的象素的高度的一半、在象素阵列中的象素的宽度、和被偏移在该象素阵列中的象素宽度的一半。
6. 根据权利要求3的系统还包括耦合到该解码器和该边缘平滑器的一个调色板,用于产生表示在该再生的OSD图像中的分别象素的色彩的一个信号;其中该图形OSD图像代表的数据值是指示在该调色板中的输入项的地址,其中该地址被划分成第一和第二地址组;该比较器把表示两个边缘形成象素的数据值的地址组和表示相邻于该两个边缘形成象素的象素的数据值的地址组相比较,并且当表示该两个边缘形成象素的数据值的地址组是该第一和第二地址组之一、并且表示相邻于该两个边缘形成象素的该象素的数据值的地址组是在该第一和第二地址组的另一个地址组中时,产生该准则指示信号。
7. 根据权利要求6的系统,其中当表示两个边缘形成象素的数据值的地址组是在第一地址组中、并且表示相邻于该两个边缘形成象素的象素数据值的地址组是在第二地址组中时,该比较器产生该准则指示信号。
8. 根据权利要求6的系统,其中该数据值是具有一个最高有效位的多比特的数字数据值,并且该调色板地址被划分成一个其中最高有效位是一个逻辑’1’信号的第一地址组,以及一个其中最高有效位是一个逻辑’0’信号的第二地址组;以及该比较器包括用于进行比较的电路,把表示两个边缘形成象素之一的数据值的最高有效位和相邻于该两个边缘形成象素的该象素的最高有效位相比较。
9. 根据权利要求1的系统,其中该图形OSD图像包括一个象素阵列,并且该图形OSD图像代表数据包括表示在该图形OSD图像中的分别的象素的外形的数据值;系统还包括耦合到该解码器的电路,用于同时地产生表示两个相邻的象素的分别的数据值;并且该边缘检测器包括一个耦合到该数据值产生电路的比较器,用于比较表示该相邻的象素的分别的数据值;和耦合到该比较器的电路,当表示相邻的象素的比较器分别的数据表明该相邻的象素具有相同的外形时,产生表明一个边缘被检测的一个信号。
10. 根据权利要求9的系统,其中;该象素外形数据值包括n-比特数字数据;该边缘检测器包括一组n个异或(XOR)门电路,每一XOR门具有响应表示两个相邻的象素之一的数字数据的分别比特的一个第一输入端、响应表示两个相邻的象素另一个的数字数据的分别比特的一个第二输入端,和一个或非(NOR)门,具有耦合到该n个XOR门的分别的输出端的n个输入端,以及产生该边缘指示的信号的一个输出端。
11. 用于产生表示屏幕显示(OSD)图像上的再生图形的信号的方法,包括步骤从一个视频信号的辅助的信息成分提取图形OSD图像代表数据;处理该OSD图像代表数据,以便检测在该图形OSD图像中的一个边缘;和当一个边缘被检测时,在该再生的OSD图像中产生一个平滑边缘。
12. 根据权利要求11的方法还包括步骤在边缘检测步骤之后,进一步处理该OSD图像代表数据,以便确定是否期望在该再生的OSD图像中产生一个平滑的边缘;以及当该边缘被检测以及被确定期望一个圆滑的边缘时,在该再生的OSD图像中产生一个平滑的边缘。
13. 根据权利要求12的方法,其中该图形OSD图像包括一个象素阵列,并且该已收图形OSD代表数据包括表示在该图形OSD图像中的分别象素的数据值;并且该确定是否期望产生一个圆滑的边缘的步骤包括步骤把表示形成一个边缘的两个相邻的象素的分别数据值与相邻该两个边缘形成象素的一个第三象素的数据值相比较;以及如果分别的数据值满足一个预定的准则,则确定期望一个圆滑的边缘。
14. 根据权利要求13的方法,其中该数据值是指示包括表示用于每一分别的象素的期望颜色的数据的一个调色板中的输入项的地址;该调色板输入项的地址被划分成第一和第二地址组;并且该比较分别的数据值的步骤包括步骤把表示两个相邻的象素的数据值的地址组与表示该第三象素的数据值的地址组相比较;以及如果表示该两个相邻象素的数据值是在第一和第二地址组之一中,并且表示该第三象素的数据值是在该第一和第二地址组该另外一个中,则确定期望产生一个圆滑的边缘。
15. 根据权利要求13的方法,其中该数据值是指示包括表示用于每一分别的象素的期望颜色的数据的一个调色板中的输入项的地址;该调色板输入项的地址被划分成第一和第二地址组;并且该比较分别的数据值的步骤包括步骤把表示两个相邻的象素的数据值的地址组与表示该第三象素的数据值的地址组相比较;以及如果表示该两个相邻象素的数据值是在第一地址组中,并且表示该第三象素的数据值是在第二地址组中,则确定期望产生一个圆滑的边缘。
16. 根据权利要求11的方法,其中该图形OSD图像包括一个象素阵列,并且该已收图形OSD代表数据包括表示在该图形OSD图像中的分别象素的数据值;该边缘检测步骤包括步骤比较在图形OSD图像中的表示两个相邻的象素的分别的数据值,以及如果表示两个相邻的象素的分别的数据值是相同的,则检测一个边缘。
17. 根据权利要求16的方法,其中两个相邻的象素是对角相邻的。
18. 根据权利要求17的方法,其中在该象素阵列中的每一象素具有一个预定的高度以及宽度,并且该平滑边缘产生步骤包括产生一个平滑象素的步骤,该平滑象素具有在该象素阵列中的象素的一半高度以及一半宽度。
全文摘要
一个图形屏幕显示(OSD)系统,包括一个解码器,用于提取包括在电视信号的辅助的信息成分中的图形OSD图像代表数据;一个边缘检测器,用于处理该OSD图像代表数据,以便检测在该图形OSD图像中的一个边缘;和一个边缘平滑器,耦合到该解码器和该边缘检测器,当一个边缘被检测时,用于产生表示具有一个平滑边缘的一个OSD图像的信号。
文档编号H04N5/445GK1240087SQ97180331
公开日1999年12月29日 申请日期1997年10月7日 优先权日1996年10月7日
发明者J·图特斯 申请人:汤姆森消费电子有限公司