超声换能器的制作方法

文档序号:7574469阅读:379来源:国知局

专利名称::超声换能器的制作方法
技术领域
:本发明涉及在超声波或兆声波范围内产生和传送能量的换能器,并特别涉及一种换能器,其中优选为碳化硅或氧化铝的陶瓷材料用作谐振器和/或代替在这种换能器中的金属材料。超声换能器用于产生和传送预定频率的波能量到装在容器中的液体。例如参见题目为超声波清洁系统、装置及其方法的美国专利No.3,575,383。这种类型的换能器可被用于例如超声波清洁装置中。该换能器一般被安装到容纳液体的容器该侧或下侧,或安装在被浸入由金属、塑料或玻璃制成的容器内的液体中的密封盒。然后,单个换能器或多个换能器被用于激励具有声波能量的液体。一旦用声波能量激励时,该液体达到涡凹。这种类型的换能器也称为“叠层”类型换能器,因为它具有夹在前部块(前激励器)和后部块(后激励器)之间的一个或多个晶体。叠层类型换能器应用于例如,塑料焊接、引线接合、白内障和其它医学外科设备,及其它的设备。传统的换能器示于图1并包括矩形基座1、一对电极2a和2b、压电晶体3、绝缘子4、反射体5、垫圈6和螺栓7。然而,当用高频电源激励时,传统的换能器产生在20到100KHz频率范围内的弱振动。传统的换能器证明由于各种外部因素使频率偏移+/-3KHz的趋势。这个偏移需要定期地调节激励换能器的振荡电路的频率,以便与偏移相适应。与异相振荡有关的一个问题在于,它使压电晶体的温度增加。由于压电晶体在它们的温度到达居里点时不再起作用,就有使晶体永久降低的可能性。于是,本发明的目的是提供一种具有在预定频率上产生稳定信号的优良声性能的增强型超声换能器。本发明是一种增强型超声换能器,用于产生和传送预定频率的超声波能量到物体的表面。在一个实施例中,谐振器插在前部块和压电晶体之间。谐振器由具有等于或大于物体的声速的材料,优选为诸如碳化硅或氧化铝之类的陶瓷制成。在优选实施例中,前部块和后部块也都由陶瓷材料制成。通过结合附图所进行的详细描述,本发明的特征和优点将得到更好地理解。图1是传统的换能器的部件分解透视图。图2a是根据本发明的一个换能器实施例的部件分解透视图。图2b是根据本发明的另一个换能器实施例的部件分解透视图。图3a是表示作为通过具有金属部件的现有技术换能器产生的频率的函数的信号和阻抗曲线图。图3b是表示作为通过根据本发明的换能器产生的频率的函数的信号和阻抗的曲线图。图4a是表示作为通过具有金属部件的现有技术换能器产生的频率的函数的信号和阻抗曲线图。图4b是表示作为通过根据本发明的换能器产生的频率的函数的信号和阻抗的曲线图。图5是表示用作塑料组件的超声波焊接的本发明的换能器组件的示意图。图6是表示用作引线接合的超声波焊接的本发明的换能器的示意图。图2a表示根据本发明的增强型超声换能器的一个实施例。该换能器包括基座或前部块11、谐振增强盘或谐振器12、电极13a和13b、压电晶体14、绝缘构件15、反射器或后部块16、垫圈17、螺栓18、和酚醛衬垫19。前部块11一般呈圆柱形的和由适合的金属,例如铝或不锈钢制成。前部块11适于连接到容纳液体的容器,例如清洁水箱的表面。连接到前部块11的是谐振增强盘或谐振器12。该谐振器12可由包括铝、陶瓷、不锈钢或含铅钢的材料制成,但并不局限于这些材料。谐振器材料应该适于容易地传送超声波能量,具体地说,谐振器材料将具有诸如大于或等于物体的邻接块的声速度之类的传输特性,以便得到谐振增强的优点。也就是,谐振器必须位于压电晶体之间和使声音透过物体的表面,并该谐振器必须具有相同于或高于物体的声传输速度。优选的是谐振器12由陶瓷材料制成,最优选的是氧化铝或碳化硅。在现有技术中已经确定了陶瓷、金属或其它材料的声特性,并通过参照Selfridge于1985年5月的声波和超声波的ISEE处理的卷SU-32,No.3发表的各向同性材料中的近似材料特性可容易地实现对根据本发明的组件使用材料的适当选择,该文章收作参考。电极13a和13b一般是诸如铝、黄铜或不锈钢之类的导电金属。压电晶体14一般由锆酸钛酸铅制成的,并在一个实施例中,直径为0.50到4.00吋范围和厚度为0.10-0.50吋的范围。绝缘子15是普通的介质。金属反射器或后部块16一般呈圆柱形并象前部块一样用钢或含铅钢制成。通过使螺栓18拧紧到从低功率应用的150吋一磅到高功率应用的500呎一磅的转矩压力范围,上面所述的所有部件被安装和连接到基块11。最佳地,转矩压力对于低功率应用(5到25W)是在200到300吋一磅之间,和对于高功率应用(等于3000W)是在300到500呎一磅之间。基座11、谐振器12和反射器16的厚度被选择为在介质中纵向声音振动的1/4波长(λ/4)的整数倍。在换能器的压电晶体14和基座11之间的谐振器12的衬垫使谐振频率信号的强度增加30-40%。此外,减少了频率的周期性偏移,和稳定了压电晶体的温度。谐振器12的衬垫也会导致呈现代替原来或除了原来谐振频率以外的新谐振频率。例如,通过把0.20吋碳化铝谐振器插入换能器叠层,呈现代替46KHz、122KHz和168KHz的59KHz、101KHz、160KHz的频率。谐振器的替换可用产生相同结果的同样的不锈钢、铝和顺磁含铅钢的材料制成。于是,当通过在新换能器组件中压电阻抗(欧姆)的减小测量时,谐振器由使所有原始谐振频率的强度增加30-60%的陶瓷和金属制成。这种增强大大地增加了超声换能器的效率和使它产生稳定的预定频率信号。当使用传统的方法从40KHz换能器变到80KHz换能器时,垂直和水平尺寸被减半,和该块减小到原始尺寸的1/4。这便导致在换能器传送声波的能力方面相应减小。然而,由于本发明的使用,40KHz换能器可改变成196KHz换能器,而不需要减小晶体的垂直和水平尺寸。在一次试验中,我们发现,在122KHz比在40KHz的原始固有频率上建立增强的40KHz晶体的压力要大。应该注意,谐振增强盘由聚合材料,特别是高密度聚四氟乙烯制成,不能起由金属和陶瓷制成的盘增加原始谐振频率的强度的作用。在不受特定理论的限制的情况下,可相信是由于诸如高密度聚四氟乙烯的材料衰减,而不是传送超声波能量。于是,有用于作谐振增强盘的这些材料不包括这种衰减材料,而应包括能起增加原始谐振频率的强度的作用的任何材料。通过使用由陶瓷材料制成的谐振器,该陶瓷材料被选择为具有等于或好于邻接块的声传输特性(即、传送声音的换能器或其它金属的或石英材料以执行其预定的作用),可得到下列优点(1)增强声音的清晰度;(2)频率可上升到较高固有频率(高达500%);(3)降低阻抗电平,由此改善声音的传输;和(4)由压电晶体产生的功率是与频率没有被移动的功率相同。在本发明的最佳实施例中,陶瓷材料替换在换能器叠层中的金属材料,由此导致具有优良声性能的增强设备,如将要更详细描述的。参照图2b,根据本实施例的换能器除了去除垫圈17以外与图2所示的相同。前部块和后部块由陶瓷材料,优选为碳化硅或氧化铝制成。如前面所讨论的,其优点是,在叠层中具有谐振器12,它也可由陶瓷材料,例如氧化铝或碳化硅制成。然而,已经发现在声特性方面的有效改进仅通过用陶瓷材料代替在换能器叠层中的金属来得到的。于是,虽然已对最大的好处作了一定介绍,在本实施例中不需要包括谐振器12。已经发现,某些陶瓷材料具有适当的物理特性,以便可用金属互换,但是也具有优良的声特性。在构造传送超声波声音的超声设备和换能器中,用陶瓷材料,例如氧化铝或碳化硅代替在基座11和在反射器16中的金属(主要是不锈钢、铝和钛)是可能的,导致了优良的声特性(1)改进和增强现有频率的特性;(2)使它易于得到较高的频率;和(3)允许使用较低频率PZT’s来建立与较低频率的功率相同的较高频率,用先前的全部金属前部和后部块(或仅前部块)的设计是不可能实现的。陶瓷材料,例如氧化铝和碳化硅可提供极好的平直度,和可满足或超过金属的强度和耐久性的要求以及仍能得到改进的声特性,如由表1所列的选择材料的相对声特性表示的</tables>于是,在现今大多数应用中所使用的最好的可用金属是铝,例如,优于铝的碳化硅具有2.034。这是由计算得出13.06(碳化硅指数)÷6.42(铝指数)=2.034。例如,如果0.2吋谐振器由碳化硅制成,并插入叠层中代替由铝制成的谐振器,该叠层必须除去0.4068吋的铝。同样地,如果1吋铝前部块整个变成碳化硅,前部块的高度就变成1÷(13.06÷6.42)=0.4916吋。同样通过使用适当的声指数变换后部块。整个换能器或传输设备将表示如果所有的部件由具有比它们代替的金属的声特性更好的陶瓷制成情况的改型。碳化硅是一种用来构成传送超声波声音的换能器或设备的所有部件的优良陶瓷。相对于其它已知的金属或材料来说,碳化硅是较平直、较硬(除了金钢石以外)、更耐用和更好的声特性。碳化硅可用作谐振器、前部块、后部块、或传输容器如下(1)作为容纳超声激盛的液体的谐振容器,用于清洁、洗涤、除油、涂复和处理等;(2)作为具有超声液体处理器传送设备;(3)作为供超声引线或楔形焊接机使用的毛细管或楔子;(4)作为从塑料组件或焊接机接收声信号的集音器;(5)作为引爆用超声波点燃的导弹、鱼雷、或其它爆炸设备的引爆设备;(6)用于超声焊接或粘接的声音的传送器。碳化硅在声特性方面比在从超声波中得到它们的能量的线焊和楔焊中使用的其它陶瓷优良在于(1)根据其13.06的声指数值设计的毛细管要比氧化铝(10.52)优良;和(2)优于用作楔焊的碳化钨。用陶瓷代替金属的性能改进可在图3a和3b中表示,图中表示了在单组换能器中包括3,000到5,000W的超声清洁换能器。图2a表示通过具有金属部件的68KHz叠层的换能器产生的信号,而图2b表示通过具有陶瓷部件的68KHz叠层的换能器产生的信号。注意与金属叠层相比较的陶瓷换能器叠层的尖峰信号。而且,当陶瓷替代金属时,阻抗落在84.613到37.708范围内。较低的阻抗与声音的更好传输和更大效率有关。在低功率换能器的应用中当陶瓷替代金属时所得的改进的另一个例子示于图4a和4b中。图4a表示用具有陶瓷元件的换能器叠层产生的信号。由此可见,在图3b中图示的陶瓷叠层产生两个可用的频率,即具有193欧姆的80KHz,和具有127欧姆的164KHz。根据上文,通常这些熟悉的换能器和超声波的人们将理解为,本发明已应用在许多场合,包括但不局限于超声波清洁或精密清洁,超声波塑料组件或塑焊、超声擦胶焊、超声线焊(即用金或铝线)、非破坏的超声测试装置、超声元件爆炸器(也称为液体处理器)、超声波乳化器,从200-1200KHz频率的兆超声波、医学超声波和喷雾器。其它可能的应用包括军用水听器、测深机、熔断设备、液面指示器、声波发射器、导弹发射器、导弹、声纳浮标、目标、电话、地下底断面形状、环形激光回转仪、鱼雷发射器、鱼雷。汽车爆震检测器、无线电滤波器、车胎磨损指示器、燃料雾化、火花引燃、无钥匙门入口、轮均衡器、阀座皮带、蜂音器、气流和轮胎压力指示器、声音报警。商业超声波含水的清洁器、超声波半含水清洁器、超声线焊、超声楔焊、厚度测量、液面指示器、地音探测器、tv和无线电谐振器、引燃系统、继电器、非破坏性的材料测试、液体处理、超声波塑料焊接器、超声波锁线装订机、超声波除油器、探伤、流量表、超声波钻孔、延迟线、飞机信标定位器、通风器、油墨印刷、报警系统。医用微脑外科、超声白内障切除、胰岛素泵、流量表、超声波成象、汽化器、液体处理器、超声解剖、超声疗法、致命的心脏检测器、喷雾器、处置病人监测器,超声牙科设备、细胞分裂器。用户加湿器、电话设备、微波炉、唱机针座、香烟点火器、乐器、鱼群探测器、气体烘烤引燃、吸烟检测器、珠宝类工艺品清洁器、扬声器、防卫发光体、超声波锁线装订机。现在参照图5和6对本发明的其它实施例予以描述。图5表示供超声波塑料焊接的换能器叠层30的装置。在该叠层中,具有陶瓷后部块或后激励器31、压电晶体32a和32b、设备在晶体之间的铝电极33、陶瓷谐振器34和陶瓷前部块或前激励器35。为此用途,换能器30用螺栓37连接到焊接喇叭36,以使前部块35与焊接喇叭连接。焊接喇叭36与超声接合的部件相连。该设备通常称为变换器,并能处理到达3000W的高功率塑料焊接。图6表示供引线接合使用的换能器叠层40。在该叠层中,具有陶瓷后部块或后激励器41、压电晶体42a和42b及42c、联锁黄铜电极43a和43b、陶瓷谐振器44和陶瓷前部块或前激励器45。为此用途,换能器用螺钉或螺栓47按与前面的实施例相同的方法连接到喇叭48,以使前部块与喇叭相连。通常这种设备称为用于引线焊接的电极,并能处理大约10到15W的低功率焊接的要求。在大多数的例子中,其优点可以是,具有陶瓷谐振器和介入陶瓷块而不是具有单个陶瓷块。也可以完全除去前部块并具有直接焊接在晶体或谐振器和有关的表面之间。总之,本发明涉及一种改进的超声换能器,用于产生和传送预定频率的超声波能量。该改进属于谐振器的使用和/或陶瓷材料,优选的碳化硅或氧化铝代替在换能器叠层中的金属元件。一旦本领域的普通技术人员理解如在此公开的用陶瓷材料代替金属的优点时,在换能器叠层中所需的元件的厚度可容易地用最佳性能确定,并可容易地确定对特定应用所需的特定的几何形状。然而,应该理解为,本发明企图不受以上所述的实施例的特定所限制,而是由附加权利要求所规定。权利要求1.一种用于产生和传送超声波能量到一个物体的装置,包括在压电材料的相对侧设置的第一和第二电极,该改进包括设置在电极之一附近的一个谐振器,它的电极被设置在压电材料和物体之间,其中谐振器是由具有等于或大于物体的声速度的材料制成的。2.根据权利要求1的装置,其中谐振器由陶瓷材料制成。3.根据权利要求2的装置,其中陶瓷材料是碳化硅或氧化铝。4.根据权利要求1的装置,其中物体是由与谐振器相同的材料制成的。5.一种用于产生和传送声波能量到有关的表面的超声换能器,包括,一个压电晶体,一个由陶瓷材料制成的和连接在压电晶体和有关的表面之间的前部块,和一个由陶瓷材料制成的和连接到相对前部块的压电晶体的后部块。6.根据权利要求5的超声换能器,还包括由陶瓷材料制成的并设置在前部块和压电晶体之间的谐振器。7.根据权利要求5的超声换能器,还包括由陶瓷材料制成的和设置在后部块和压电晶体之间的绝缘子。8.根据权利要求5的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。9.根据权利要求6的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。10.根据权利要求7的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。11.根据权利要求5的换能器叠层,还包括设置在前部块和压电晶体之间的第一电极和设置在后部块和压电晶体之间的第二电极。12.一种用于产生和传送声波能量到有关的表面的超声换能器叠层,包括一个由陶瓷材料制成并连接到有关的表面的前部块,一个由陶瓷材料制成的后部块,至少两个设置在前部块和压部块之间的压电晶体,和一个设置在至少两个压电晶体之间的电极。13.根据权利要求12的超声换能器,还包括一个由陶瓷材料制成的并设置在前部块和压电晶体之一之间的谐振器。14.根据权利要求12的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。15.根据权利要求13的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。16.一种用于产生和传送声波能量到有关的表面的超声换能器叠层,包括一个由陶瓷材料制成的和连接到有关的表面的前部块,一个由陶瓷材料制成的后部块,多个设置在前部块和后部块之间的压电晶体,和一个设置在至少两个压电晶体之间的电极。17.根据权利要求11的超声换能器,还包括一个由陶瓷材料制成的和设置在前部块和压电晶体之间的谐振器。18.根据权利要求11的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。19.根据权利要求12的换能器叠层,其中陶瓷材料是碳化硅或氧化铝。全文摘要一种用于产生和传送预定频率的超声波能量到物体的表面的超声换能器。在一个实施例中,谐振器(12)插在前部块(11)和压电晶体(14)之间。谐振器由具有声速度等于或大于物体的材料,优选为诸如碳化硅或氧化铝之类的陶瓷材料制成。在另一个实施例中,前部块(11)和后部块(16)由陶瓷材料制成。文档编号H04R17/00GK1196862SQ97190824公开日1998年10月21日申请日期1997年5月9日优先权日1996年5月9日发明者J·M·古德森申请人:克里斯特超声波公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1