光纤放大器的制作方法

文档序号:7578461阅读:660来源:国知局
专利名称:光纤放大器的制作方法
技术领域
本发明涉及光纤放大器,更具体地,本发明涉及通过级连掺有不同材料的光纤而获得平坦增益特性的光纤放大器。
在九十年代后期已经出现波分多路传输(WDM)的装置,用于通过多路复用和传输不同波长的光信号。因此,需要适用于WDM传输的光纤放大器。然而,目的广泛使用的掺铒光纤(EDF)放大器显示出对不同波长的不同的放大率及噪声系数。


图1为传统EDF放大器的方框图,其包含第一隔离器100、一激光源102、一波长选择耦合器(WSC)104、一EDF106及第二隔离器108。
下面对其操作进行描述。首先,激光源102产生中心波长为980nm的激光。WSC104将激光与通过其输入接口进入的1500nm波带的信号光耦合。EDF106根据从WSC104入射的激光放大信号光。也即,激光EDF激励基态的铒离子,而信号光被受激发射的铒离子放大。而被放大的光信号,通过第二隔离器108输出。第二和第三隔离器100及106防止信号光被诸如输入及输出连接器110及112等器件反射而重新进入EDF。
然而,此类传统光纤放大器的问题在于,对不同波长的信号光无法提供平稳的增益。也即,当相同功率的光射进输入信号信道1、2、3和4时,传统光纤放大器在不同波长处输出具有不同功率的信号信道。
为了解决上述问题,现有技术使用滤波器或改变EDF结构。然而,滤波器的使用增加了成本并增大了传统光纤放大器的尺寸。上述方法的结果会导致增益的降低,这是因为它们对不同波长在输出功率为最小功率时能使输出功率平坦。使用掺有不同基本成分(如氟化物)的EDF增大了增益平坦带宽,却降低了增益并显示出受环境影响的特性。
为解决上述问题,本发明的目的是提供一种光纤放大器,其通过级连掺有不同材料的EDF而使其具有平坦化的增益。
相应地,为实现上述目的,所提供的光纤放大器包含掺铒或掺亚磷的第一光纤,其用于放大由铒激励的信号光;与第一光纤一端相连的第二光纤,其掺铒或掺铝,并根据铒的粒子数反转而与第一光纤具有相反的增益谱斜率,用于放大由第一光纤输出的信号光;一与第一光纤的另一端相连的激光源,用于激发第一及第二光纤的铒离子;及光耦合器,用于将来自激光源的激光与信号光耦合并向第一光纤输出合成光。
通过下面结合相应附图的描述会对本发明的上述目的及优点有更清楚的了解。
图1为传统光纤放大器的方框图;图2为根据本发明的光纤放大器的方框图;图3A及3B示出图2的第一及第二EDF的根据粒子数反转分布的增益谱;图4为当四个信道信号光被多路复用并被输入到图2的光纤放大器时作为波长函数的增益及噪声系数;图5为在激光功率被保持恒定的情况下,在用于不同信道的信号光功率改变时而测出的增益及噪声系数;图6为在用于四个信道的信号光功率保持恒定的情况下在激光功率改变时所测出的增益及噪声系数;图7为根据本发明的具有双向激光源的光纤放大器的方框图;图8为当四个信道信号光入射到图7的光纤放大器时,作为波长函数的增益及噪声系数的示意图;图9为在保持激光功率恒定的同时,当用于不同信道的信号光功率改变时而测出的增益及噪声系数的示意图;图10为在用于四个信道的信号光功率保持恒定的情况下在激光功率改变时所测出的增益及噪声系数的示意图。
参考图2,光纤放大器包括第一隔离器200、激光源202、与第一隔离器200及激光源202相连的波长选择耦合器(WSC)204、缓冲EDF206、第一及第二EDF208及210和第二隔离器212。
第一EDF208为掺铒(Er)及磷(P)的光纤,或掺铒(Er)、铝(Al)及P的光纤。
缓冲EDF206及第二EDF210为掺Er及Al的光纤。缓冲EDF206不一定必须是掺Er及Al的光纤。缓冲EDF206最好是一种能降低由WSC204及第一EDF208间的模场直径差所造成的连接损耗。缓冲EDF206较短从而不会影响整个放大器的增益。缓冲EDF206的Er及Al的浓度可以等于或不同于第二EDF210中的浓度。由于缓冲EDF206虽然降低连接损耗但对光纤放大器增益平坦不起作用因此可以不用。
下面对它们的操作进行描述。首先,几个信道光通过第一隔离器200入射到WSC204,其中隔离器200可防止来自每个EDF的放大的自发发射光向后反射。入射信号光与来自激光源202(如激光二极管)的激光通过WSC204耦合用于提供具有中心波长为980nm的功率并用于放大。信号光由第一及第二EDF208及210进行放大。
第一EDF208放大比1540nm到1560nm间波长短的大部分信号光。第二EDF210放大比1540nm到1560nm间波长相对长的大部分光。这样的结果来自于依赖于第一及第二EDF208及210的波长的增益光谱特性。
图3A示出依赖于第一EDF208的粒子数反转分布的增益光谱图。图3B示出依赖于第二EDF210的粒子数反转分布的增益光谱图。其中每一个光谱示出粒子反转在0到1之间以0.1为单位的比率上升。在图3A及3B中,处于不同波长处的EDF的增益特性随粒子数反转比率而变化的增益特性,也即,在图3A中,当粒子数反转比率为0.6或更大时,第一EDF208的增益随1540nm至1560nm间波长的增大而变低。当粒子数反转比率为0.5或更小时,增益随波长增加而变大。然而,在当增益随波长变长而增加时,不需要作为放大器的第一EDF208,这是因为其每单位长度的增益为0.5dB/m或更小,即其放大水平较低。而当粒子数反转比率为0.6或更大时,第一EDF208是适宜的。在此情况下,第一EDF208放大增益在短波长时比长波长变得更高。
在图3B中,随波长变长第二EDF210的增益变小,此时的波长范围与图3A中相同,且粒子数反转比率为0.8或更大。当粒子数反转比率为0.7或更小时,随波长变长增益变大。因此,为了增大在长波长处被第一EDF208相对降低了的增益,第二EDF210粒子数反转比率最好为0.7或更小。
如果第一EDF208和第二EDF210都用在粒子数反转比率为0.6及0.7之间,在第一EDF208中激光功率高而信号光功率变低,使得粒子数反转的比率更大。另一方面,在第二EDF210中,激光功率变低而信号光功率变大,这样使得粒子数反转比率降低。由此可获得具有平坦增益的光纤放大器。
在放大后,信号光通过第二隔离器212输出用于防止前面自发发射的光反向回流。
图4为分别具有波长1542nm、1548nm、1554nm及1560nm的四个信道信号光被输入到图2的光纤放大器时的作为波长函数的增益及噪声系数。在1542nm于1560nm间波长的增益及噪声系数变化被平整到±0.5dB上下误差间。标号401及402分别表示噪声系数及增益。
图5为在激光功率恒定时,上述四个信道信号的功率从-20dBm变到-11dBm时测得的增益及噪声系数。如图5中所示,增益及噪声系数的变化被平整到±0.5dB误差之间。标号501及502表示噪声系数及增益。
图6为保持四个信道信号功率恒定时而激光功率从70mW变到130mW时测得的增益及噪声系数。如图6中所示,增益及噪声系数被平整到±0.5dB误差之间。标号601及602分别表示噪声系数及增益。
图7为向图2的光纤放大器加入第二激光源701及第二WSC702以获得双向泵激的光纤放大器结构的方框图。其余元件与图2中的相同。
图8为分别具有波长1542nm、1548nm、1554nm及1560nm的四个信道信号光入射到图7的光纤放大器时的增益及噪声系数与波长的示意图。如图8中所示,在1542nm到1560nm间增益及噪声系数变化被平整到±0.5dB上下误差间。标号801及802分别表示噪声系数及增益。
图9为在激光功率恒定时,上述四个信道信号的功率从-20dBm变到-11dBm时测得的增益及噪声系数。如图9中所示,增益及噪声系数的变化被平整到±0.5dB误差之间。标号901及902表示噪声系数及增益。
图10为保持四个信道信号功率恒定时而激光功率从140mW变到260mW时测得的增益及噪声系数。如图10中所示,增益及噪声系数被平整到±0.5dB误差之间。标号1001及1002表示噪声系数及增益。
当用诸如滤波器等无源件时,增益平整度随信号光功率或激光功率而变化。然而,本发明使用两类具有不同增益谱线的EDF,这样,每个EDF的增益谱线会随输入信号光功率或激光功率而变化。因此,可获得整体的平稳增益。
权利要求
1.一种光纤放大器,其特征在于包括掺有铒及磷的第一光纤,用于放大由铒激发的信号光;与第一光纤的一端相连的第二光纤,掺有铒及铝,并根据铒的粒子数反转而具有与第一光纤相反的增益光谱斜率,用于放大由第一光纤输出的信号光;与第一光纤的另一端相连的一激光源,用于激发第一及第二光纤的铒;及用于将来自激光源的激光与信号光耦合并向第一光纤输出所得光的光耦合器。
2.根据权利要求1所述的光纤放大器,其特征在于第一或第二光纤具有0.6至0.7间的铒的粒子数反转比率。
3.根据权利要求1所述的光纤放大器,其特征在于包括一缓冲光纤,用于将光耦合器与第一光纤相连以减少第一光纤与光耦合器间的连接损耗。
4.根据权利要求3所述的光纤放大器,其特征在于缓冲光纤为掺铒及铝光纤。
5.根据权利要求1所述的光纤放大器,其特征在于包括一第二激光源,其与第二光纤相连以增加激光的功率。
6.根据权利要求1所述的光纤放大器,其特征在于第一光纤为掺铝的光纤。
全文摘要
一种光纤放大器,包括掺有铒及磷的第一光纤,用于放大铒激发的信号光;掺有铒及铝与第一光纤相连的第二光纤,其具有与第一光纤相反的增益光谱斜率,用于放大由第一光纤输出的信号光;与第一光纤的另一端相连的激光源,用于激发第一及第二光纤的铒;及用于将来自激光源的激光与信号光耦合并向第一光纤输出所得光的光耦合器。使用了两类不同增益光谱的EDF,每个EDF的增益光谱随输入信号光功率或泵浦功率而变化以保持整个增益平坦。
文档编号H04B10/17GK1218317SQ98124939
公开日1999年6月2日 申请日期1998年11月19日 优先权日1997年11月20日
发明者黄星泽, 尹秀永, 金贞美, 金性准, 丁来声, 拉尔斯·约翰·阿尔宾森·尼尔森 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1