资源重分配方法及装置的制造方法
【专利摘要】本发明公开了一种资源重分配方法及装置,其中,该方法包括:计算系统的总体收益;根据该总体收益判断是否对该系统进行资源重分配;在判断结果为是的情况下,对该系统进行资源重分配,通过本发明,解决了相关技术中针对动态变化的用户不能进行动态的资源分配的问题,提高了有限的频谱资源利用率。
【专利说明】
资源重分配方法及装置
技术领域
[0001] 本发明涉及通信领域,具体而言,涉及一种资源重分配方法及装置。
【背景技术】
[0002] 随着无线用户数量/业务量的高速增长,用户需求与有限频谱资源间的矛盾日益 激化。利用网络流量的时间和空间分布不均匀性,根据用户的需求动态地调整频谱资源分 配,实现负荷的动态均衡,是解决上述矛盾的一种有效手段。采用无线资源的动态分配,可 以避免传统通过接入控制机制和固定的频谱资源分配方法所带来的无线资源在空间和时 间上分配的低效性,即在某些时段或地区的无线资源过度紧缺而其它时段或地区的无线资 源又过度空闲的问题,从而极大地提高频谱资源利用率。但是,采用动态资源分配将给无线 网络资源分配算法的设计带来极大的挑战。
[0003] 无线网络的负荷均衡问题在学术界已经获得了一些研究成果,例如A.Awada,B. Wegmann等人采用非合作博弈的方式来解决小小区的负荷均衡问题,X. Chen, J. Huang等人 利用空间拥塞博弈的构架设计了一种分布式的频谱接入机制,用户通过调整自己的地理位 置寻求更加优质的频谱资源等等。然而上述方法要求用户调整其自身需求和位置,这种要 求在实际无线系统中无法使用。此外,目前已有的针对蜂窝网络负载均衡技术,也主要是针 对静态用户。当用户有多种负载均衡策略可选择时,用户可以选择优先级最高的,并根据效 果动态地调整其优先级。由于用户在时间和空间上变化可能会使上述基于静态用户的调度 策略无法收敛到最优解,甚至于无法收敛,引起整个无线系统频谱资源分配的失败。
[0004] 针对相关技术中针对动态变化的用户不能进行动态的资源分配的问题,目前尚未 提出有效的解决方案。
【发明内容】
[0005] 本发明提供了一种资源重分配方法及装置,以至少解决相关技术中针对动态变化 的用户不能进行动态的资源分配的问题。
[0006] 根据本发明的一个方面,提供了一种资源重分配方法,包括:计算系统的总体收 益,其中,所述总体收益为每个小区资源利用率的总和;根据所述总体收益判断是否对所述 系统进行资源重分配;在判断结果为是的情况下,对所述系统进行资源重分配。
[0007] 进一步地,在计算所述系统的总体收益之前,还包括:计算所有小区当前的资源 7.4 数和实测负载数,包括:将每天24小时以δ为间隔分成T份,其中7 = ^^将每δ的时 δ 间段按Λ为间隔分成J份,其中在第k天的j时刻,收集所有小区当前的资源数 > 和实测负载数;其中,所述实测负载数为l"<ν)=[4ω*4(Λ·…所述资源数为 其中,k e [1,···,00 ),j e [1,...,TJ] ;M为小区数目。
-
[0008] 进一步地,判断是否进行资源重分配包括:对所述系统的所述总体收益进行实时 监测,在第k天时刻t的总体收益U (Ck (t),t)为
[0009] 其中,
其中,SFjt)为满意度,指的是系统的资源利用率,
[0010]
[0011] 其中ε为保证分母不为〇的因 - "'
9 子,σ是一个控制SFjt)随资源增多而递减的速率量;判断所述总体收益U(Ck(t),t)是 否低于预定阈值Ξ。
[0012] 进一步地,在对所述系统进行资源重分配之前,还包括:通过对预定时长内预测窗 口长度的平均负载进行估计得到预测负载数,包括:在第k天时刻t的所述预测窗口长度 为:
[0013] 其中,Ω是一个时间估计常数,Μ是取整函数;对第k天的t时刻起,对c〇k(t) 时长内的平均负载进行估计得到所述预测负载数^ :
[0014]
[0015] 其中,a e (〇, 1]为一个调控因子,调控过去数据对当前统计的重要 性,<(?)为负载预测参数,是第k天的t时刻至t+cok(t)时刻内实测负载数
〖]的平均数,
[0016]
〇
[0017] 进一步地,对所述系统进行资源重分配包括:根据所述预测负载数确定对小区m 7 时刻t进行资源重分配后的资源分配值为
[0018] 根据本发明的另一方面,提供了一种资源重分配装置,包括:第一计算模块,用于 计算系统的总体收益,其中,所述总体收益为每个小区资源利用率的总和;判断模块,用于 根据所述总体收益判断是否对所述系统进行资源重分配;重分配模块,用于在判断结果为 是的情况下,对所述系统进行资源重分配。
[0019] 进一步地,所述装置还包括:第二计算模块,用于计算所有小区当前的资源数 和实测负载数,包括:将每天24小时以δ为间隔分成T份,其中7 = #将每δ的时 间段按Λ为间隔分成J份,其中2 = 1 ^在第k天的j时刻,收集所有小区当前的资源数 和实测负载数;其中,所述实测负载数戈
^所述资源数为
其中,k e [1,...,00),j e [1,...,TJ] ;M为小区数目。
[0020] 进一步地,所述判断模块包括:监测单元,用于对所述系统的所述总体收益进行 实时监测,在第k天时刻t的总体收益u(ck(t),t)为:
其中,
其中,SFjt)为满意度,指的是系统的资源利用率,
[0021]
[0022] 其中
ε为保证分母不为〇的因 子,σ是一个控制SFjt)随资源增多而递减的速率量;
[0023] 判断单元,用于判断所述总体收益U(Ck(t),t)是否低于预定阈值Ξ。
[0024] 进一步地,所述装置还包括:得到模块,用于通过对预定时长内预测窗口长 度的平均负载进行估计得到预测负载数,包括:在第k天时刻t的所述预测窗口长度 为:
其中,Ω是一个时间估计常数,Ld是取整函数;对 第k天的t时刻起,对C〇k(t)时长内的平均负载进行估计得到所述预测负载数 =1
[0025] 其中,a e (〇, 1]为一个调控因子,调控过去数据对当前统计的重要 性,<(?)为负载预测参数,是第k天的t时刻至t+cok(t)时刻内实测负载数
?勺平均数
[0026] 进一步地,所述重分配模块包括:重分配单元,用于根据所述预测负载数确定对小 区m时刻t进行资源重分配后的资源分配值为
[0027] 通过本发明,采用计算系统的总体收益;根据所述总体收益判断是否对所述系统 进行资源重分配;在判断结果为是的情况下,对所述系统进行资源重分配,解决了相关技术 中针对动态变化的用户不能进行动态的资源分配的问题,提高了有限的频谱资源利用率。
【附图说明】
[0028] 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发 明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
[0029] 图1是根据本发明实施例的资源重分配方法的流程图;
[0030] 图2是根据本发明实施例的资源重分配装置的框图;
[0031] 图3是根据本发明优选实施例的资源重分配装置的框图一;
[0032] 图4是根据本发明优选实施例的资源重分配装置的框图二;
[0033] 图5是根据本发明优选实施例的资源重分配装置的框图三;
[0034] 图6是根据本发明优选实施例的资源重分配装置的框图四;
[0035] 图7是根据本发明实施例的无线网络系统的示意图;
[0036] 图8是根据本发明实施例的满意因子随小区负荷和资源变化的示意图;
[0037] 图9是根据本发明实施例的满意因子随系统总负载数和资源变化的示意图;
[0038] 图10是根据本发明实施例的实时监测与基于阈值的资源重分配时间的示意图;
[0039] 图11是根据本发明实施实例的小区阵列的示意图。
【具体实施方式】
[0040] 下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的 情况下,本申请中的实施例及实施例中的特征可以相互组合。
[0041] 在本实施例中提供了一种资源重分配方法,图1是根据本发明实施例的资源重分 配方法的流程图,如图1所示,该流程包括如下步骤:
[0042] 步骤S102,计算系统的总体收益,其中,该总体收益为每个小区资源利用率的总 和;
[0043] 步骤S104,根据该总体收益判断是否对该系统进行资源重分配;
[0044] 步骤S106,在判断结果为是的情况下,对该系统进行资源重分配。
[0045] 通过上述步骤,计算系统的总体收益;根据该总体收益判断是否对该系统进行资 源重分配;在判断结果为是的情况下,对该系统进行资源重分配,解决了相关技术中针对动 态变化的用户不能进行动态的资源分配的问题,提高了有限的频谱资源利用率。
[0046] 进一步地,在计算该系统的总体收益之前,计算所有小区当前的资源数和实测负 24 载数,包括:将每天24小时以δ为间隔分成T份,其中f = y将每δ的时间段按Λ为间 隔分成J份,其中y 在第k天的j时刻,收集所有小区当前的资源数和实测负载数;
[0047] 其中,该实测负载数为
| >该资源数为
其中,k e [1,···,00),j e [1,...,TJ] ;M 为小区数目。
[0048] 进一步地,判断是否进行资源重分配包括:对该系统的该总体收益进行实时监测, 在第k天时刻t的总体收益u (ck (t),t)为
[0049] 其中
实中,SFjt)为满意度,指的是系统的资源利用率,
[0050]
[0051] 其中,
ε为保证分母不为〇的因 子,σ是一个控制SFjt)随资源增多而递减的速率量;
[0052] 判断该总体收益U(Ck(t),t)是否低于预定阈值Ξ。
[0053] 进一步地,在对该系统进行资源重分配之前,通过对预定时长内预测窗口长度的 平均负载进行估计得到预测负载数,包括:在第k天时刻t的预测窗口长度c〇 k(t)是一个 当前总体收益U(Ck(t),t)的函数
[0054] 其中,Ω是一个时间估计常数,[^j是取整函数;对第k天的t时刻起,对c0k(t) 时长内的平均负载进行估计得到该预测负载数^:
[0055]
[0056] 其中,a e (〇, 1]为一个调控因子,调控过去数据对当前统计的重要 性,为负载预测参数,是第k天的t时刻至t+c〇k(t)时刻内实测负载数
1]的平均数,
[0057]
[0058] 进一步地,对该系统进行资源重分配包括:根据该预测负载数确定对小区m时刻t 进行资源重分配后的资源分配值戈
[0059] 本发明实施例还提供了一种资源重分配装置,该装置用于实现上述实施例及优选 实施方式,已经进行过说明的不再赘述。如以下所使用的,术语"模块"可以实现预定功能 的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件, 或者软件和硬件的组合的实现也是可能并被构想的。
[0060] 图2是根据本发明实施例的资源重分配装置的框图,如图2所示,包括:
[0061] 第一计算模块22,用于计算系统的总体收益,其中,该总体收益为每个小区资源利 用率的总和;
[0062] 判断模块24,用于根据该总体收益判断是否对该系统进行资源重分配;
[0063] 重分配模块26,用于在判断结果为是的情况下,对该系统进行资源重分配。
[0064] 图3是根据本发明优选实施例的资源重分配装置的框图一,如图3所示,该装置还 包括:
[0065] 第二计算模块32,用于计算所有小区当前的资源数和实测负载数,包括:将每天 24 24小时以δ为间隔分成T份,其中F = y将每δ的时间段按Λ为间隔分成J份,其中
=|_在第k天的j时刻,收集所有小区当前的资源数和实测负载数;其中,该实测负载数 为 该资源数为 其中, 9: k e [1,…,00 ),j e [1,…,TJ] ;M 为小区数目。
[0066] 图4是根据本发明优选实施例的资源重分配装置的框图二,如图4所示,判断模块 24包括:
[0067] 监测单元42,用于对该系统的该总体收益进行实时监测,在第k天时刻t的总体收 益U(Ck(t),t)为: 其中,SFjt)为满意
9 度,指的是系统的资源利用率,
[0068]
[0069] 其中
ε为保证分母不为〇的因 子,σ是一个控制SFjt)随资源增多而递减的速率量;
[0070] 判断单元44,用于判断该总体收益U(Ck(t),t)是否低于预定阈值Ξ。
[0071] 图5是根据本发明优选实施例的资源重分配装置的框图三,如图5所示,该装置还 包括:
[0072] 得到模块52,用于通过对预定时长内预测窗口长度的平均负载进行估计得到预 测负载数,包括:在第k天时刻t的预测窗口长度ω k (t)是一个当前总体收益U (Ck (t),t)
的函数: 其中,ω是一个时间估计常数,是取整函数; % 对第k天的t时刻起,对c〇k(t)时长内的平均负载进行估计得到该预测负载数
[0073] 其中,a e (〇, 1]为一个调控因子,调控过去数据对当前统计的重要 性,为负载预测参数,是第k天的t时刻至t+c〇k(t)时刻内实测负载数
彳平均数,
[0074]
[0075] 图6是根据本发明优选实施例的资源重分配装置的框图四,如图6所示,重分配模 块26包括:
[0076] 重分配单元62,用于根据该预测负载数确定对小区m时刻t进行资源重分配后的 资源分配值为
[0077] 下面结合可选实施例对本发明实施例进行进一步说明。
[0078] 图7是根据本发明实施例的无线网络系统的示意图,在如图7所示的系统的基础 上,本可选实施例提出了一种通过跟踪负载变化来重分配资源来实现蜂窝网负荷均衡的方 法,包括:
[0079] 中心控制器收集当前实测负载数。两层时间尺度,小时间尺度进行监测,大 24 时间尺度进行统计。首先将每天24小时以δ为间隔分成T份,其中F = y再将每 S的时间段按Λ为间隔分成J份,其中= |在第k天(k e [1,...,…的j时刻 (j e [1,...,TJ]),收集所有小区当前的资源数和实测负载数,得到小区数目M,所有小 区的实测负载数矢量,
^所有小区的正交资源数矢量为
[0080] 其中, 〇 v m - i
[0081] 中心控制器计算系统总体收益并判决是否开启资源重分配。中心控制器计算第k 天当前t时刻
的总体收益U(ck(t),t)为:
[0082]
[0083] 其中SFjt)定义为满意度,用来描述系统的资源利用率,对于每个小区,其满意度 为:
[0084]
[0085] 其中,ε是保证分母不为0的因子,σ是一个控制SF随资源增多(越过极值)的 递减速率的量。当资源数C = 1000,系统总负载数Ν = 800下满意因子随小区负荷和资源 变化的满意因子曲线如图8所示,当资源数C= 1000,小区负荷200下满意因子随系统总负 载数和资源变化的满意因子曲线如图9所示。
[0086] 图10是根据本发明实施例的实时监测与基于阈值的资源重分配时间的示意 图,如图10所示,中心控制器对系统的总体收益进行实时监测,当在时刻t,发现总收益 U(ck(t),t)低于阈值Ξ,则开启资源重分配,执行第三步,否则返回执行第一步,继续收集 实测负载数并更新预测参数。
[0087] 中心控制器计算预测窗口长度并估计预测负载数。在第k天、时刻t的预测窗口 长度《k(t)是一个当前总体收益U(C k(t),t)的函数:
[0088] L
a (3)
[0089] 其中,Ω是一个时间估计常数,[>j是取整函数。
[0090] 中心控制器对第k天的t时刻起,未来c〇k(t)时长内的平均负载进行 估计,采用的是对过去?天的相同时刻的负载预测参数的加权平均,记为
[0091]
其计算公式为:
[0092] 其中,a e (〇, 1]为一个调控因子,调控过去数据对当前统计的重要 性,为负载预测参数,是第k天的t时刻至t+?k(t)时刻内实测负载数
]的平均数,其计算公式如下
[0093]
[0094] 中心控制器根据预测负载数实施资源重分配,其中,小区m、时刻t的资源分配值 为 _5]
(6)
[0096] 其中
I根据第三步所得的预测负载值。
[0097] 实施例一
[0098] 图11是根据本发明实施实例的小区阵列的示意图,如图11所示,收集数据,考虑 了一个2X2的小小区阵列(M = 4,m = (1,2, 3, 4)),假设每个小小区面积相同并拥有相同 的初始频谱资源Cinitlal= 250。其中3个小小区阵列为办公区,1个小小区阵列为食堂区。
[0099] 中心控制器计算系统总体收益并判决资源重分配状态。分别取阈值Ξ = 0, 40, 80, 120。按照式(1)对系统总收益进行计算。所需的参数见表格1.系统对整体满意 度进行监测,当发现21#匕< S时,中心控制器计算预测窗口长度并估计预测负载数。我 们根据式(3)算出需要重分配时刻的预测窗口长度〇k(t),所需参数见表格1.再根据式 (4) (5)算出预测负载数,所需参数见表格1。根据式(6)实施资源重分配。
[0100] 实施例二
[0101] 收集数据,同样考虑了一个2X2的小小区阵列(M = 4, m= (1,2, 3, 4)),假设每 个小小区面积相同并拥有相同的初始频谱资源Cinitlal= 250。如图11所示,其中3个小小 区阵列为办公区,1个小小区阵列为食堂区。
[0102] 中心控制器计算系统总体收益并判决资源重分配状态。我们取分别取阈值Ξ = 0, 50, 100, 150。按照式(1)对系统总收益进行计算。所需的参数见表格2.系统对整体满意 度进行监测,当发现S==1SFm < Ξ时,中心控制器计算预测窗口长度并估计预测负载数。我 们根据式(3)算出需要重分配时刻的预测窗口长度:(〇,所需参数见表格2.再根据式(4) (5) 算出预测负载数,所需参数见表格2。根据式(6)实施资源重分配。
[0103] 通过本可选实施例的动态分配方法能够非常好地缓解负荷过重的问题,随着预设 阈值的不同,资源对人流的跟踪情况有所不同。阈值越高,跟踪情况越好,系统总收益越高。
[0104] 显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用 的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成 的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储 在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示 出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
[0105] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技 术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修 改、等同替换、改进等,均应包含在本发明的保护范围之内。
【主权项】
1. 一种资源重分配方法,其特征在于,包括: 计算系统的总体收益,其中,所述总体收益为每个小区资源利用率的总和; 根据所述总体收益判断是否对所述系统进行资源重分配; 在判断结果为是的情况下,对所述系统进行资源重分配。2. 根据权利要求1所述的方法,其特征在于,在计算所述系统的总体收益之前,还包 括: 计算所有小区当前的资源数和实测负载数,包括: 将每天24小时W 6为间隔分成T份,其4将每5的时间段按A为间隔分成 J份,其中在第k天的j时刻,收集所有小区当前的稱源骄巧立娜I债裁骄, 其中,所述实测负载数为所述资源数为 .9.库中,ke [1,...,-),j e [i,...,TJ] ;M 为小区数目。3. 根据权利要求2所述的方法,其特征在于,判断是否进行资源重分配包括: 对所述系统的所述总体收益进行实时监测,在第k天时刻t的总体收益U(Ck (t),t) 为:其中:其中,SFm (t)为满意度,指的是系统的资源利用率,其中,e为保证分母不为O的因子,O是 一个控制SFm (t)随资源增多而递减的速率量; 判断所述总体收益U (Ck (t),t)是否低于预定阔值曰。4. 根据权利要求3所述的方法,其特征在于,在对所述系统进行资源重分配之前,还包 括: 通过对预定时长内预测窗口长度的平均负载进行估计得到预测负载数,包括: 在第k天时刻t的所述预测窗口长度为:其中,Q是一个时间估计常数,[?_]是取整函数; 对第k天的t时刻起,对《k(t)时长内的平均负载进行估计得到所述预测负载数 项;其中,a e (0,1]为一个调控因子,调控过去数据对当前统计的重要性,^^(0为负载 预测参数,是第k天的t时刻至t+ ?k (t)时刻内实测负载数/_t (r),r e [/./.(/ + w't (〇)./-- U的 平均数,5. 根据权利要求4所述的方法,其特征在于,对所述系统进行资源重分配包括: 根据所述预测负载数确定对小区m时刻t进行资源重分配后的资源分配值为6. -种资源重分配装置,其特征在于,包括: 第一计算模块,用于计算系统的总体收益,其中,所述总体收益为每个小区资源利用率 的总和; 判断模块,用于根据所述总体收益判断是否对所述系统进行资源重分配; 重分配模块,用于在判断结果为是的情况下,对所述系统进行资源重分配。7. 根据权利要求6所述的装置,其特征在于,所述装置还包括: 第二计算模块,用于计算所有小区当前的资源数和实测负载数,包括:将每天24小时 W 5为间隔分成T份,其中将每5的时间段按A为间隔分成J份,其中在第k天的j时刻,收集所有小区当前的资源数和实测负载数;其中,所述实测负载数为所述资源数为其中, k e [1,...,OO ),j e [1,...,U] ;M 为小区数目。8. 根据权利要求7所述的装置,其特征在于,所述判断模块包括: 监测单元,用于对所述系统的所述总体收益进行实时监测,在第k天时刻t的总体收益 U(Ck(t),t)为:其中,化(t)为 满意度,指的是系统的资源利用率, 其中9因子,O是 一个控制SFm (t)随资源增多而递减的速率量; 判断单元,用于判断所述总体收益U (Ck (t),t)是否低于预定阔值曰。9. 根据权利要求8所述的装置,其特征在于,所述装置还包括: 得到模块,用于通过对预定时长内预测窗口长度的平均负载进行估计得到预测负载 数,包括:在第k天时刻t的所述预测窗口长度为其中,Q是 一个时间估计常数是取整函数;对第k天的t时刻起,对《k(t)时长内的平均负载进 行估计得到所述预测负载数,其中,a e (〇,1]为一个调控因子,调控过去数据对当前统计的重要性,为负载 预测参数,是第k天的t时刻至t+ ?k (t)时刻内实测负载数/_t (r X r e- [/./,(M- w'' (〇)./ -;1]的 平均数,10. 根据权利要求9所述的装置,其特征在于,所述重分配模块包括: 重分配单元,用于根据所述预测负载数确定对小区m时刻t进行资源重分配后的资源分配值为 3:
【文档编号】H04W16/10GK105992218SQ201510085363
【公开日】2016年10月5日
【申请日】2015年2月16日
【发明人】张冬英, 甘小莺, 王绍鹏, 李楠, 秦洪峰
【申请人】中兴通讯股份有限公司