电子电路组件的制作方法

文档序号:8024983阅读:288来源:国知局
专利名称:电子电路组件的制作方法
技术领域
本发明涉及一种平面安装型电子电路组件。
一般来说,这种平面安装型电子电路组件按如下构成,即把各种电路部件软钎焊到设计在基板上的导电图样的软钎焊接区上,再用密封盖覆盖这些电路部件。在基板侧面上设置端面电极,把电子电路组件平面安装到母基板上时,端面电极被软钎焊到母基板的软钎焊接区上。应该根据调谐电路或共振电路或放大电路等所需电路构成使用电路部件,例如放大电路用的电路部件可以使用晶体管、单片电阻、单片电容以及电感等,这些电路部件通过导电图样相互连接。
然而,近几年来,都在大力发展单片部件和晶体管等电路部件的小型化技术,例如使得外形尺寸0.6×0.3mm大小的超小型单片电阻和单片电容实用化。然而,如果在上述现有电子电路组件上也使用这种小型的单片部件或晶体管等,这些部件以相互极小的间隔被安装到基板上,则可使电子电路组件小到某种程度。但是,因为单片部件和晶体管等的电路部件的小型化是有限度的,而且,在把多个电路部件安装到基板上时,各电路部件的软钎焊部件必然会发生短路现象,所以部件间的间隙也是有一定限度的,这些因素成为妨碍电子电路组件更小型化的主要原因。
当这种电子电路组件具有如放大电路时,在上述现有技术中,虽然放大电路所需要的全部电阻使用被预先调整到期望电阻值的通用的单片电阻,但是当装上的单片电阻中存在电阻值偏差时,晶体管的集电极电流就会出现偏差,导致以后的输出调整非常麻烦。
鉴于现有技术中存在的实际问题,本发明的目的在于提供一种既可实现小型化,又能简单地进行输出调整的电子电路组件。
为了达到上述目的,本发明的电子电路组件具备电路元件,该电路元件包括以薄膜形式形成在氧化铝基板上的电容、电阻及电感元件和引线接合到上述氧化铝基板上的晶体管的半导体裸芯片,上述晶体管具有至少一个第1晶体管,只调整该第1晶体管的基极偏压用分压电阻和发射极电阻中的发射极电阻,而设定上述第1晶体管的电流值。
根据上述构成,因为利用薄膜技术高精度地形成包括电容、电阻以及电感的电路元件,而且,晶体管的半导体元件引线接合裸芯片,所以能够把需要的电路部件高密度地安装在氧化铝基板上,使平面安装型电子电路组件更加小型化。即使薄膜形式形成在氧化铝基板上的基极偏压用分压电阻的每个电阻值存在偏差,因为只要调整发射极电阻,就可改变晶体管的集电极电流值,所以只在一个地方就能够进行输出调整所需要的电阻值的调整。
对于上述构成,在晶体管具有相互串联的第1晶体管和第2晶体管的情况下,最好是只调整这些第1及第2晶体管的基极偏压用分压电阻和发射极电阻中的第1晶体管的发射极电阻来设定两晶体管的电流值,若作这样的设定,仅仅调整第1晶体管的发射极电阻,就能够省略全部基极偏压用分压电阻的调整。
本发明的电子电路组件具备电路元件,该电路元件包括以薄膜形式形成在氧化铝基板上的电容、电阻及电感元件和引线接合到上述氧化铝基板上的晶体管的半导体裸芯片,上述晶体管具有至少一个第1晶体管,把向该第1晶体管基极施加电压的基极偏压用分压电阻相互靠近地以薄膜形式形成在上述氧化铝基板上。
根据上述构成,因为利用薄膜技术高精度地形成包括电容、电阻以及电感元件的电路元件,而且,晶体管的半导体元件引线接合裸芯片,所以能够把需要的电路部件高密度地安装在氧化铝基板上,使电子电路组件小型化。虽然,以薄膜状形成在氧化铝基板上的电阻的绝对值具有一定程度的偏差,但因为把施加到晶体管上的多个基极偏压用分压电阻相互接近地以薄膜方式形成,所以这些电阻的偏差比率基本上相同,从而能够省略电阻值的调整。
在晶体管具有相互串联的第1晶体管和第2晶体管的情况下,最好是在氧化铝基板上相互靠近地以薄膜形式形成第1及第2晶体管的基极偏压用分压电阻,如果这样处理,则能够省略全部基极偏压用分压电阻的调整。
对于上述构成,最好把多个基极偏压用分压电阻的一部分或全部并排成多列,如果这样布置,则可在氧化铝基板上有限的空间内更有效地配置基极偏压用分压电阻。
在氧化铝基板上以薄膜形式形成包括电容、电阻及电感元件的电路元件的同时,引线接合晶体管半导体裸芯片,且只调整该晶体管的基极偏压用分压电阻和发射极电阻中的发射极电阻,所以不仅能够把需要的电路部件高密度地安装在氧化铝基板上,使电子电路组件小型化,而且,即使薄膜形式形成在氧化铝基板上的基极偏压用分压电阻的每个电阻值存在偏差,因为只要调整发射极电阻,就可改变晶体管的集电极电流值,所以能够省略基极偏压用分压电阻的调整工作。
在氧化铝基板上以薄膜形式形成包括电容、电阻及电感元件的电路元件的同时,引线接合晶体管半导体裸芯片,以薄膜形式形成该晶体管的基极偏压用分压电阻并使两者相互靠近,所以不仅能够把需要的电路部件高密度地安装在氧化铝基板上,使电子电路组件小型化,而且,即使每个分压电阻相对于期望值产生偏差,由于分压电阻整体的偏差比率几乎不变,因此,省略了相对于晶体管基极偏压用分压电阻的电阻值的调整,就能够简单地进行输出调整。
下面参照附图对本发明进行详细说明。


图1是本发明实施例涉及的电子电路组件的透视图。
图2是示出电路构成布局的氧化铝基板的平面图。
图3是氧化铝基板的内表面图。
图4是电路构成的说明图。
图5是示出端面电极的透视图。
图6是端面电极的截面图。
图7A和图7B是表示半导体裸芯片和连接区的关系的说明图。
图8A至图8J是表示电子电路组件制造步骤的说明图。
图9是其它电路构成的说明图。
图10是示出其它电路构成布局的氧化铝基板的平面图。
本实施例是频率同步型升压放大器的适用例,该频率同步型升压放大器,为了提高携带式视频仪的信号接受性能(特别是信号接受灵敏度和抗干扰特性)而与图未示出的超高频(UHF)调谐器组合使用,并具有选择所希望频率的电视(TV)信号,且放大所选的电视信号后,输入到超高频调谐器内的功能。
图1示出所述频率同步型升压放大器(电子电路组件)的外观,如该图所示,该频率同步型升压放大器由以下部件构成,即由装载了后述的电路构成元件的氧化铝基板1和安装在该氧化铝基板1上的密封盖2构成,成为被软钎焊到图未示出的母基板上的平面安装部件。氧化铝基板1呈方形的平板,是把大版基板分割成长方形分割片后,通过对该分割片进一步细分割而得到。密封盖2是把金属板弯折成箱形后加工而成的,因此,该密封盖2覆盖了氧化铝基板1上的电路构成元件。
如图2所示,在氧化铝基板1的表面上设计了电路构成构件和与这些元件连接的导电图样,另外,如图3所示,作为背面电极的导电图样设置在氧化铝基板1的内表面上。本实施例的频率同步型升压放大器为了选择和放大电视信号而具有调谐电路和放大电路,构成了如图4所示的电路。对图2示出的各电路构成元件标以与图4的电路图对应的符号。但是,图4是示出电路构成的一例,本发明还可适用于具备除此以外电路构成的电子电路组件。
如图4所示,频率同步型升压放大器具有作为调谐电路及放大电路的电路构成元件的电容C1-C7、电阻R1-R3、电感L1-L3、二极管D1、晶体管Tr1、电路S1、S2等,这些电路构成元件和与它们连接的导电图样被设在氧化铝基板1的表面上。该导电图样是利用喷溅如Cr或Cu等薄膜技术而形成,图2中,标以符号P,用剖面线来表示。
下面,简单说明频率同步型升压放大器的电路构成,为了选择和放大所希望频率的电视信号,由调谐电路和放大电路构成,其中的调谐电路由电感元件L2、L3,电容C3、C4以及二极管D1构成,而放大电路由晶体管Tr1和其周边电路元件(电阻R1-R3,电容C6)以及不平衡/平衡变换元件T构成。多个频率电视信号经过电容C1被输入调谐电路。由于调谐电路的调谐频率(共振频率)通过控制加到二极管D1阴极上的电压(Vct1)而可改变,因此,通过与所期望的电视信号的频率保持一致,只选择了期望的电视信号,并通过电容C5输入到放大电路的晶体管Tr1的基极上。对于晶体管Tr1的基极,向基极偏压用分压电阻R1、R2提供偏压,晶体管Tr1的集电极电流(发射极电流)就由发射极电阻R3的电阻值设定。由晶体管Tr1放大的电视信号被从集电极输出,在集电极上设置不平衡/平衡变换元件T。该不平衡/平衡变换元件T由电感元件构成,而其中的电感元件由相互耦合的一对电路S1、S2构成,从电路S2的两端输出平衡电视信号,并被输入到上述超高频调谐器内。
如图2所示,在氧化铝基板1的端部上形成了接地用电极(GND),输入用电极(Vcc,Vct1,RFin)以及输出用电极(RFout)。这些电极由导电图样P的一部分构成。接地用电极、输入用电极以及输出用电极只形成在方形氧化铝基板1的相对的2条长边上,而不形成在除此之外相对的2条短边上。即,在氧化铝基板1的一条长边的两角上形成接地用电极(GND),在这些接地用电极(GND)间形成Vcc电极和RFin电极以及Vct1电极。在氧化铝基板1的另一条长边的两个角上以及其附近的某处共3个部位上形成接地用电极(GND),在这些接地用电极(GND)间形成2个RFout电极。如后所述,氧化铝基板1的2条长边对应于把大版基板切割成短边的分割片时的分割线,而氧化铝基板1的2条短边相应于把该分割片进一步细分割时的分割线。
另一方面,如图3所示,被设计在氧化铝基板1的内表面上的导电图样P1(背面电极)对着各接地用电极(GND),输入用电极(Vcc,Vct1,RFin)以及输出用电极(RFout),如图5及图6所示,两者通过端面电极3而导通。该端面电极3是按顺序在Ag厚膜层上叠加Ni衬底镀层和Au镀层而成的,最下层的Ag厚膜层是低温烧成材料,该低温烧成材料是把不含玻璃成份的Ag膏形成厚膜后,以约200℃的温度对其进行烧成。中间层的Ni衬底镀层能使Au镀层容易附着,最上层的Au镀层是在把端面电极3软钎焊到图未示出的母基板的软焊区上时,用于防止最下层的Ag因软钎焊而析出。对于密封盖2被安装到氧化铝基板1上后的电子电路组件的成品,在密封盖2的侧面上弯折形成脚片2a,该脚片2a被软钎焊到与接地用电极(GND)导通的端面电极3上,密封盖2成为了在氧化铝基板1的四个角上接地的状态。
前述各电路构成元件中的电容C1-C7是把上部电极通过SiO2等电介体膜重叠在下部电极上方而成的,这些电容是用喷溅技术等以薄膜而形成的。在上部电极的表面设Cu层,该Cu层提高了共振电路的Q。电容C1-C7的下部电极和上部电极连接到导电图样P上,如图2所示,在电容C7和Vcc电极间的导电图样P,电容C7和RFout电极间的导电图样P以及电容C2和Vct1电极间的导电图样P上分别设计了放电用的靠近部(airgap)G。该靠近部G是由一对突出部构成,该对突出部是分别设置在彼此相对且并行的导电图样P上,两突出部的尖端彼此存在确定间隙并相对着。在此情况下,因为导电图样P和接地用电极(GND)的尺寸精度无论哪种薄膜技术均可得到提高,所以能够使靠近部G的间隙变得更窄,使在低电压下的放电成为可能。虽然各电容C1-C7中,电容C1和C3-C5为单纯的方形,而电容C2和C7却是将2个以上的方形组合成的异形。即,电容C2是从一个矩形的一边使两个矩形突出的凹状,电容C7是3个矩形在纵向上错位连接而形成的形状。电容C2和C7是必须具备比较大容量值的接地用电容,若把接地电容C2和C7制作成这样的异形,则就能够有效地利用氧化铝基板1上的有限空间,能够高密度地安装期望容量值的电容。
此外,各电容C1-C7中的电容C6由大小不同的2个接地用电容构成,两者通过彼此分离的一对导电图样P并联连接。即,如图2所示,两接地用电容C6的各一个电极部与连接接地用电极(GND)的接地用导电图样P连接,而两接地用电容C6的各另一电极部通过相互分离的2个导电图样P连接晶体管Tr1的连接区SL。从图4中可知,因为电容C6设计在晶体管Tr1和接地点之间,上述连接区SL是晶体管Tr1的发射极电极被引线接合的部位,所以电容C6的容量值就可以由通过相互分离的导电图样P并排连接的2个接地用电容进行设定。因而,从晶体管Tr1的发射极电极经电容C6,至接地的导电图样P整体的电感得到减少,接地用电容C6提高了连接区SL的接地效果,另外,因为由各接地电容C6和各导电图样P产生的寄生振荡频率提高,所以通过把该频率设定在晶体管TR1的动作点频率以上,就能够消除该寄生振荡。
电阻R1-R3是用喷溅等薄膜技术形成如TaSiO2等电阻膜而形成的,根据需要,可以在其表面上设SiO2等电介体膜。如图2所示,3个电阻R1-R3中的电阻R1和R2是并排地设置在氧化铝基板1上的相互靠近的位置上的薄膜,余下的电阻R3是形成在远离电阻R1和R2位置上的薄膜。因为把电阻R1和R2以薄膜状形成在靠近的位置上,所以即使各电阻R1、R2的电阻值相对于期望值产生偏差,仍能使电阻R1、R2整体的偏差比率保持相同。从图4中可知,电阻R1和R2是晶体管Tr1的基极偏压用分压电阻,R1/(R1+R2)×Vcc的电压施加到晶体管Tr1的基极上。这里,因为作为基极偏压用分压电阻的电阻R1、R2整体的偏差比率如前所述通常是相同的,所以相对于这些电阻R1、R2的电阻值的调整就没有必要了。另一方面,电阻R3是晶体管Tr1的发射极电阻,电流从Vcc电极流向晶体管Tr1的集电极和发射极,再通过电阻R3至接地点。这里,因为各电阻R1-R3中、作为发射有电阻的电阻R3对晶体管Tr1的增大幅度产生的影响最大,所以在电流值保持一定的条件下,只调整电阻R3而调整输出。
如图9所示,对于把另一个晶体管Tr2串联连接到晶体管Tr1上的电路构成的情况,如果将作为两晶体管Tr1、Tr2的基极偏压用分压电阻的电阻R1、R2、R4以薄膜状形成在氧化铝基板1上相互靠近的位置上,则对这些电阻R1、R2、R4的电阻值不需要进行调整。因而,在这种情况下,也通过只调整作为发射极电阻的电阻R3,就能够设定两晶体管Tr1、Tr2的电流值。
电感元件L1-L3和电路S1、S2是使用薄膜技术喷溅Cr或Cu形成的,与导电图样P连接。在各电感元件L1-L3的表面上设置Cu层,由该Cu层提高共振电路的Q。电感元件L1和L2都呈矩形涡卷状,各自的一端被电缆结合到Vct1电极和接地用导电图样P上。电感L2是用于设定概略的共振频率的,电感L3与电感L2的另一端连接。电感L3是用于调整共振频率的调整用导电图样,如图2虚线所示,通过削减电感L3,就可实现增加电感L2的卷数,来调整共振频率。此时,如果使削减后的电感L3的导体宽度与共振频率设定用的电感L2的导体宽度相同,则电感L2和电感L3的阻抗特性不变。
如前所述,不平衡/平衡变换元件T由相互耦合的一对电路S1、S2构成的电感元件构成,这些电路S1、S2以薄膜状形成在氧化铝基板1上。这些电路S1、S2在氧化铝基板1上以规定的间隙相对地形成涡卷状,一个电路S1的两端与晶体管Tr1的集电极电极和连接电容C7的导电图样P连接,另一个电路S2的两端与一对RFout电极连接。此时,因为提高了薄膜状电路S1、S2的尺寸精度,所以能够使两电路S1、S2间的间隙变窄,并确保所期望的耦合度,就可以在氧化铝基板1上的有限空间内设置小型的不平衡/平衡变换元件T。如图10所示,也可将以规定间隙相对的一对电路S1、S2在氧化铝基板1上形成锯齿形。
二极管D1和晶体管Tr1是把半导体裸芯片装载在薄膜状形成于氧化铝基板1上的导电图样P的连接区上,再把该半导体裸芯片电缆结合到导电图样P上而成的。即,如图2所示,二极管D1的半导体裸芯片构成矩形,设计在其下面上的一个电极利用软钎焊或导电膏等导电性粘接剂固定到连接区上,设计在半导体裸芯片上面的另一电极被电缆结合到导电图样P的规定部位上。晶体管Tr1的半导体裸芯片也构成矩形,设计在其下面上的集电极电极利用导电性粘接剂固定到连接区上,基极电极和发射极电极被引线接合到导电图样P的规定部位上。与前述的端面电极3一样,在这些连接区上也依次重叠了Ni衬底镀层和Au镀层。这里,如图7A或图7B所示,因为相对于半导体裸芯片4的下表面面积,连接区5的面积要小一些,通过采用这样的构成,在半导体裸芯片4的下方确保了导电性粘接剂的溜存区,所以导电性粘接剂不会从半导体裸芯片4的外边流出,从而能够预先防止与周围导电图样P的短路事故。因为在连接区5的内部设计了开口5a,由此开口5a保留剩余导电性粘接剂,所以就能够更为可靠地防止导电性粘接剂的流出。
下面,主要用图8A至图8J来说明如上构成的电子电路组件的制造过程。
首先,如图8A所示,在氧化铝基板1的整个表面上喷溅TaSiO2后,把该基板蚀刻成所期望的形状后形成电阻膜6,构成了相当于电阻R1-R3的部分。然后,如图8B所示,从电阻膜6上方喷溅Cr或Cu等,把它蚀刻成期望的形状后形成下部电极7,然后,如图8C所示,从下部电极7的上方喷溅SiO2等,把它蚀刻成期望的形状,形成电介体膜8。接着,如图8D所示,从电介体膜8上喷溅Cr或Cu等后,把它蚀刻成期望形状,形成上部电极9。结果由下部电极7或上部电极9构成相当于导电图样P,电感元件L1-L3及电路S1、S2的部分,而由下部电极7,电介体膜8及上部电极9的叠层体构成相当于电容C1-C7的部分。然后,以电镀或薄膜技术在相当于电感元件L1-L3和电路S1、S2以及电容C1-C7的部分表面上形成Cu层后,如图8E所示,在除去导电图样P的部分上形成保护膜10。接着,如图8F所示,在氧化铝基板1的整个内表面上喷溅Cr或Cu后,把它蚀刻成期望的形状,形成背面电极11,从而构成了相当于内表面侧的导电图样P1的部分。
以上说明的图8A至图8F是在沿纵横刻设了分割槽的呈格状的大型氧化铝基板上进行的,而以下要说明的图8G至图8J的步骤是在沿一个方向的分割槽切割该大版基板而得到的长方形分割片上进行的。
即,把大版基板切断成长方形分割片后,如图8G所示,在该分割片的切断面上,即在氧化铝基板1的两端面上形成较厚的Ag层12,用Ag层12导通设计在氧化铝基板1的内外表面上的导电图样P、P1的接地用电极(GND)和输入用电极(Vcc,Vct1,RFin)以及输出用电极(RFout)。该Ag层12相当于前述的端面电极3的厚Ag膜层,是由不含玻璃成份的Ag膏构成的低温烧成材料。虽然所述的Ag层12的厚膜形成步骤可在1个长方形分割片上进行,但如果在将多个分割片相互以一定的间隙重叠放置的状态下,则能够同时对多块分割片形成厚膜Ag层12,这种方法适合于大批量生产。然后,在Ag层12和装载了半导体裸芯片的连接区的各表面上依次电镀Ni衬底层和Au层后,如图8H所示,用软钎焊或导电膏等的导电性粘接剂把二极管D1和晶体管Tr1的半导体裸芯片固定到各连接区上。此时,如前所述,因为连接区的面积比半导体裸芯片的下表面面积小,所以能够防止导电性粘接剂从半导体裸芯片处流出,就不会发生导电性粘接剂与半导体裸芯片周围的导电图样P造成不希望的短路。接着,如图8I所示,把各半导体裸芯片电缆结合到导电图样P的规定部位上后,如图8J所示,修整作为发射极电阻的电阻R3进行输出调整,而且,通过修整作为调整用导电图样,即电感元件L3来调整共振频率。此时,因为共振频率的调整是在对每个氧化铝基板1分割前的长方形分割片的状态下进行的,并在各氧化铝基板1的角上设接地用电极(GND),所以接地用电极(GND)必然位于相邻氧化铝基板1上的输入用电极(Vcc,Vct1,RFin)以及输出用电极(RFout)间,共振频率的调整不会对相邻氧化铝基板1的电路产生严重影响。
接着,密封盖2安装到长方形分割片的每个氧化铝基板1上,把该密封盖2的脚片2a软钎焊到端面电极3上,该端面电极3导电连接接地用电极(GND),之后,沿另外的分割槽把分割片进一步细分割成每个氧化铝基板1,从而得到如图1所示的电子电路组件。
根据这样构成的上述实施例涉及的电子电路组件,因为在氧化铝基板1上以薄膜形式形成电容C1-C7,电阻R1-R3,电感元件L1-L3,电路S1、S2等的电路元件和连接这些电路元件的导电图样P的同时,把二极管D1和晶体管Tr1的半导体裸芯片引线接合到该氧化铝基板1上,而且,在氧化铝基板1的侧面上设计导电图样的接地用电极和与输入输出用电极连接的端面电极3,所以能够利用薄膜技术和半导体元件的引线接合技术把需要的电路构成元件高密度地安装到氧化铝基板1上,可实现更为小型化的平面安装型电子电路组件。因为只要调整晶体管Tr1的基极偏压用分压电阻R1、R2和晶体管Tr1的发射极电阻R3中的发射极电阻R3,就可进行输出调整,从而省略了基极偏压用分压电阻R1、R2的调整,所以能够只在一个地方完成对输出调整所需要的电阻值的调整工作。
权利要求
1.一种电子电路组件,其具备电路元件,该电路元件包括以薄膜形式形成在氧化铝基板上的电容、电阻及电感元件和引线接合到上述氧化铝基板上的晶体管的半导体裸芯片,上述晶体管具有至少一个第1晶体管,只调整该第1晶体管的基极偏压用分压电阻和发射极电阻中的发射极电阻,就可设定上述第1晶体管的电流值。
2.根据权利要求1所述的电子电路组件,其特征在于上述晶体管具有与上述第1晶体管串联的第2晶体管,只调整这些第1及第2晶体管的基极偏压用分压电阻和发射极电阻中的第1晶体管的发射极电阻,而设定上述第1及第2晶体管的电流值。
3.一种电子电路组件,其具备电路元件,该电路元件包括以薄膜形式形成在氧化铝基板上的电容、电阻及电感元件,以及引线接合到上述氧化铝基板上的晶体管的半导体裸芯片,上述晶体管具有至少一个第1晶体管,把向该第1晶体管基极施加电压的基极偏压用分压电阻相互靠近地以薄膜形式形成在上述氧化铝基板上。
4.根据权利要求3所述的电子电路组件,其特征在于上述晶体管具有与第1晶体管串联连接的第2晶体管,在氧化铝基板上相互靠近地以薄膜形式形成第1及第2晶体管的基极偏压用分压电阻。
5.根据权利要求3所述的电子电路组件,其特征在于把上述基极偏压用分压电阻的至少一部分多排并列。
6.根据权利要求4所述的电子电路组件,其特征在于把上述基极偏压用分压电阻的至少一部分多排并列。
全文摘要
本发明提供一种适于小型化且输出调整更为简单的电子电路组件。本电子电路组件是在氧化铝基板上以薄膜形式形成电路元件和连接这些电路元件的导电图样P,其中电路元件包括电容C1-C7,电阻R1-R3以及电感元件L1-L3等,把二极管D1和晶体管Tr1的半导体裸芯片引线接合到导电图样P的连接区上,而且,只调整晶体管Tr1的基极偏压用分压电阻R1、R2和发射极电阻R3中的发射极电阻R3而调整输出。
文档编号H05K3/40GK1332601SQ0111814
公开日2002年1月23日 申请日期2001年5月18日 优先权日2000年5月30日
发明者善里彰之, 植田和彦, 五十岚康博, 井上明彦, 佐久间博 申请人:阿尔卑斯电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1