专利名称:氟化钙生成态单晶的制作方法
技术领域:
本发明是关于单晶拉制法生产氟化钙生成态单晶的。
背景技术:
氟化钙和氟化钡等金属氟化物单晶在宽波长范围内具有高透光率、其光散射很小,并具有优异的化学稳定性。因此,广泛需要它们来用做光学材料,例如使用紫外波长或真空紫外波长激光束的各种设备的透镜和光圈材料、摄影机和CVD装置等。具体言之,氟化钙单晶有望用于使用F2激光(157纳米)器的投影透镜,这种激光器已发展成为光刻法技术的第二代短波光源。直径大于15厘米的投影透镜通常用来提高平版印刷技术的产率,因此作为透镜材料需要直径大于17厘米的大尺寸氟化钙单晶。
迄今为止,这样大尺寸的氟化钙单晶通常用坩埚下降法(Bridgman法)制成。坩埚下降法是一种形成单晶的原料熔体在坩埚中随着坩埚的缓慢下降而冷却,从而在坩埚中生长出单晶的方法。
然而,因为单晶是在坩埚的封闭空间内生成,坩埚下降法制成的氟化钙单晶中会产生很大的内部应变,因此单晶制成后需要1个月以上的退火处理来减少应变。而且,当生成大于17厘米的大尺寸单晶时,晶体会部分多晶化,因此存在产率极低的缺点。
为了克服坩埚下降法的缺点,提出了用单晶拉制法(Czochralski法)制备氟化钙单晶。单晶拉制法是一种将由期望得到的单晶制成的籽晶与在坩埚中形成单晶原料的熔体接触,然后从坩埚加热区域中缓慢拉出、冷却从而在籽晶下面生长出单晶的方法。因为在单晶生长过程中单晶拉制法不局限于坩埚的空间,在晶体内部相对很少地产生应变。而且,晶体生长过程中,偏析现象能使杂质减少,因此,单晶拉制法通常用来生产硅和锗等半导体单晶。
然而,单晶拉制法的设备很复杂,另外,很难稳定生长单晶,因此用这种方法生产氟化钙单晶可以预见存在相当大的困难。对于单晶拉制法生产氟化钙单晶,目前所知,圆柱形部分直径不大于10厘米的小尺寸单晶的生产只限于实验室规模(参考Shinichiro Tozawa,Nobuo Fukuda和其它五人,“光学物质CaF2的改性”,Tohoku大学材料研究所的技术研究报告,2001,3,No.19和K.Nassau,Journal of Applied Physics,Vol.32,1821-1(1961)),实际上,生产圆柱形部分直径17厘米以上的大尺寸单晶也很少见。
日本专利公开21197/1999中描述了一种拉制法制备大直径氟化钙单晶。然而此专利制得的单晶,甚至在长时间的退火处理后,其双折射仍很不均匀。这表明上面专利所述方法制得的单晶在生成态阶段表现出高的双折射。尽管原因一直不清楚,但可以认为,在上面专利中描述的拉制设备中单晶拉制区的温度分布不均匀引起了晶体的内部应变。
发明目的在上述环境下,本发明人试图用单晶拉制法制造圆柱形部分直径大于17厘米的大尺寸氟化钙单晶。然而,用常见结构的单晶拉制设备生产的单晶在生成态阶段的内部应变不能充分减小。这样得到的单晶双折射超过5纳米/厘米,为了用于平版印刷技术,就必须将其进行长时间的退火处理。但这样得到的单晶仍不能令人满意。上述的现象在如前所述实验室规模生产小尺寸氟化钙单晶中根本不存在,这是大尺寸氟化钙单晶的工业化生产的严重阻碍。
因此,本发明的目的是用单晶拉制法生产圆柱形部分(straight barrel part)直径大于或等于17厘米的氟化钙生成态(as-grown)单晶,且其内部应变小、双折射足够小。
发明概要本发明人认真进行了研究以求解决上述问题。结果首先成功地用单晶拉制法生产出具有极小双折射的大尺寸氟化钙生成态单晶,完成了本发明。
本发明的氟化钙生成态单晶用单晶拉制法生产,其圆柱形部分直径大于17厘米,双折射不大于3纳米/厘米。本发明的氟化钙生成态单晶,其双折射的标准偏差较好地不超过2.0纳米/厘米。
而且,氟化钙生成态单晶的圆柱形部分长度大于5厘米。
附图简要描述
图1为生产本发明氟化钙生成态单晶的单晶拉制设备的示意图。
发明详细描述本发明的氟化钙单晶是用单晶拉制法生产的生成态单晶。所用的单晶拉制法是一种通常称为Czochralski法的单晶制备方法。生成态单晶是从单晶生产设备中拉出,只经过冷却到室温过程的单晶,是一种没有经过退火处理等后处理的单晶。
本发明的单晶是大尺寸单晶,其圆柱形部分直径大于17厘米,更好的为20-40厘米。单晶拉制法制备的晶块通常有个圆锥形肩部(其直径是从籽晶逐渐增大的)、还有个圆柱形部分(其直径几乎处处相同)和圆锥形尾部(其直径从圆柱形部分逐渐减小)。本发明的单晶直径指圆柱形部分最大部位的直径。
本发明最显著的特点是单晶拉制法生产的大直径生成态单晶的内部应变大大地减小了。氟化钙单晶的内部应变引起了双折射,因此,内部应变程度可用双折射程度表示。本发明的氟化钙生成态单晶的双折射不大于3纳米/厘米,最好为0.1-2.0纳米/厘米。
本发明的氟化钙生成态单晶,其双折射标准偏差不大于2.0纳米/厘米,不大于1.5纳米/厘米比较适合,不大于1.3纳米/厘米特别适合,而且,在本发明中单晶的双折射很均匀。
用普通单晶拉制方法生产大直径氟化钙单晶,很难得到具有小而均匀双折射的生成态单晶,例如前面所述本发明的单晶。然而,本发明实现了大尺寸生成态单晶的双折射小而均匀,因此用在平版印刷技术中,此大直径光学材料甚至在没有经过长时间的退火处理情况下也可以切割。因为晶体内部应变极小,在单晶的切割和抛光等加工过程中几乎不出现裂痕,因此提高了加工效率。
本发明中,生成态单晶的双折射按下述方法测量。切割掉生成态单晶的肩部和尾部,得到圆柱形部分,将其上、下表面进行镜面抛光,得到测试样品。在测试样品的上、下表面上距离外周边1厘米的圆中,标出一个正方形作为测试部分,在正方形中画出许多1毫米间隔垂直线和1毫米间隔水平线的格子,格子中垂直线和水平线的交点选作测试点。测得在各测试点的双折射值,算出平均值作为生成态单晶的双折射值。
每个测试点的双折射值按已知的方法测试。一个较好测试方法为让测试光垂直透过测试样品的上、下表面,测量两种正交偏振光的相差来确定双折射。测试光的波长为氦-氖激光束的波长(632.8纳米)。
用所有测试值的标准偏差评估双折射的不均匀性。
本发明的单晶中,圆柱形部分的长度大于5厘米比较适合。当圆柱形部分的长度大于5厘米时,孔径数值,例如单晶制成的平版印刷透镜的孔径数值就较大,因此,可以得到极好的投影图形。
尽管生产具有上述性质本发明单晶的过程并无特别限制,但最好按下述程序生产本发明单晶。
也就是说,使用有一个单晶拉伸室的单晶拉制设备,在单晶拉伸室中,坩埚上方有个被绝热壁环绕形成单晶拉制区,此绝热壁的顶部开口被块顶板封闭,顶板上至少有一个孔可以插入单晶拉伸棒,顶板在厚度方向上的热传导系数为1000-50000W/m2·K。在单晶生长过程中,晶体拉制速度较好不超过4毫米/小时,最好为0.5-3.5毫米/小时。
图1为具有上述结构的单晶拉制设备示意图。
单晶拉制设备10包括构成晶体生长炉的室12,室12包括穿过室12底壁14的可旋转支撑轴16。
支撑轴16下端穿过室12的底壁14,并且延伸出去与冷却器接触,与驱动装置连接,可以旋转并垂直移动坩埚20,驱动装置在图中没有展示。
而且,底座18固定在支撑轴16上,坩埚20安置在底座18的上表面上。生产单晶原料的熔融液22充满坩埚20。
熔化加热器24竖立在室12的底壁14上,环绕着坩埚20。绝热壁26竖立在室12的底板14上,环绕着熔化加热器24和坩埚20。
另一方面,借助驱动装置可垂直移动并旋转的单晶拉制棒32穿过室12的顶壁28上的孔30垂挂着,图中没有展示驱动装置。一个籽晶34通过夹持装置33附在单晶拉制棒32的末端,籽晶34安置在坩埚20中心轴上。
在具有这样结构的单晶拉制设备10中,单晶拉制棒32向着坩埚20中因熔化加热器24的加热作用生成的单晶生产原料熔体下降。然后,单晶拉制棒32末端上籽晶34的下平面逐渐与坩埚20中的熔体22接触,从这时起拉起单晶拉制棒32,使得单晶36在籽晶34下面生长。
在图1所示的单晶拉制设备中,绝热壁26比生产硅单晶的单晶拉制设备的绝热壁向上延伸得长些。另外,绝热壁26环绕(环形围绕)坩埚20的上端和下端形成整个圆筒状,此外,还环绕单晶拉制区38的周围部分。
单晶拉制区38是指在室12中坩埚20的上面,从坩埚20上端到氟化钙单晶36生长的上端(籽晶的下平面)所能到达的拉制末端之间这一段高度范围。
单晶拉制区38最高部分根据所拉制单晶36的长度而异,通常位于比坩埚20的上端坩埚20高上坩埚最大内直径的50%-300%,较好100%-200%的距离的位置。
绝热壁26上端的高度要使得单晶拉制区38的尺寸能够位于单晶拉制室内。如果绝热壁26上端比单晶拉制区38最上端部分高的很多,保温效果过好,以致得不到单晶。因此,绝热壁上端高度的选择范围应该与单晶拉制区38最上端部分的范围相同。
绝热壁可由任何一种已知的绝热材料制成,没有什么限制。为了减小单晶36的内部应变,其在厚度方向上的热传导系数应不大于50W/m2·K,1-20W/m2·K比较适合,3-15W/m2·K特别适合。
在厚度方向上的热传导系数为1500℃下,物体厚度方向上的平均热传导率(W/m·K)除以厚度(米)得到的数值。
具有这种热传导系数的绝热壁26材料,在1500℃的热传导率为0.2-1.0W/m·K比较适合,0.3-0.8W/m·K更适合。这种材料可以是沥青型石墨模制的绝热材料(例如,商品名“DONACARBO”)、纤维型石墨模制的绝热材料、碳毡型绝热材料、多孔碳型绝热材料等。
沥青型石墨模制的绝热材料特别适合,因为它有所需的热传导系数,耐剧烈拉制环境的性能优良,机械强度也优良。
如果绝热壁26总体上绝热性能优良,绝热壁除了由一种材料组成外,还可以是由至少一种绝热板组成的多层墙壁,而且这些板型壁之间夹有空气相。绝热壁26的厚度没有什么限制,通常为3-10厘米。
上面所述的室12中,坩埚20外面的绝热壁26的位置没有什么限制。熔化加热器24通常环绕着坩埚20。因此,绝热壁26通常在熔化加热器24的外面。如果其与坩埚外面的距离过大,单晶拉制区38的保温效果受到影响。因此,该距离为坩埚20最大内直径的20-100%适合,30-60%特别适合。
绝热壁26环形封套上端的敞开部分40被顶板44盖住,顶板上有单晶拉制棒32的插入孔。单晶拉制区38容纳在绝热壁26和顶板44形成的单晶拉制室46中,因此大大增强了保温性能。
具有上述结构的单晶拉制设备的最大特点,是顶板44在厚度方向上的热传导系数为1000-50000W/m2·K。因此,单晶拉制室46中顶板44的热辐射也适当地增强了。单晶拉制室在辐射方向和高度方向上受到缓慢冷却作用。因此,显著消除了温度分布的不均匀性。
因此,单晶36在单晶拉制区38中缓慢而均匀地冷却,晶体能更稳定地生长。得到的氟化钙单晶的应变最大程度地减小。
为了有这种效果,顶板44在厚度方向上的热传导系数为1000-50000W/m2·K特别适合,2000-20000W/m2·K最适合。
如果顶板44在厚度方向上的热传导系数小于1000W/m2·K,那么顶板44的热辐射不充分,单晶拉制区38高度方向上的温度梯度不充分,单晶就不会生长。同样如果单晶生长过程中单晶拉制区38温度分布不均匀,内部应变和双折射就会增大。另一方面,如果顶板44在厚度方向上的热传导系数大于50000W/m2·K,那么在高度方向上的温度梯度太大,很难稳定生长单晶,其双折射增大。
具有这样热传导系数的顶板44的材料,热传导率15-200W/m·K比较适合,30-150W/m·K更适合。这种材料有石墨、钨等。
石墨特别适合,因为它能达到所需的热传导系数,耐剧烈拉制环境的性能优良,机械强度也优良。
如果顶板44总体上满足热传导系数的数值,那么与绝热壁26情况相同,由一种材料组成的板壁还可以是至少一种热辐射板组成的多层壁,而且这些板壁之间夹有空气相。
而且,顶板44可以不只是平板型,也可以是能盖住绝热壁26环形封套上端敞开部分的任何形状,但对孔不盖住,此孔将在下面描述。顶板44可以是例如切去顶端的圆锥、倒置的切去顶端的圆锥、罩子、倒置的罩子、圆屋顶形、倒置圆屋顶形等等。
如果顶板44是平板形,顶板44的高度与绝热壁26上端的高度相等。如果顶板44是从上述的绝热壁26的上端向上凸的形状,其最高部分的高度为顶板的高度。
如果顶板44是从上述的绝热壁26的上端向下凹的形状,其最低部分的高度为顶板的高度。和平板形顶板的高度一样,非平板形顶板的高度也设定为绝热壁26上端的高度,也就是,此顶板同样地放在比坩埚20上端高出坩埚20最大内直径的50%-500%的位置。
顶板44的厚度没有什么限制,通常为0.3-3厘米,最好为0.5-1.5厘米。
除了单晶拉制棒32用的插入孔外,顶板44还开有个观察孔,用来从室顶部的视窗48进行观察,还有个操作孔,能插入刮走熔融物溶液22等表面上漂浮固体杂质的装置。
也可以通过调节顶板44上各个孔的总敞开面积,来控制单晶拉制室46的热辐射能力。单晶拉制区38温度向上减小的梯度可以控制至适合拉制氟化钙单晶。然而,如果只通过调节各个孔的总敞开面积来控制温度梯度,而顶板44的热辐射性能没有控制至一定程度,就不能有效阻止应变的产生,而这是不好的。
孔的总敞开面积最好为绝热壁26环形封套上端敞开面积的5-60%,8-40%特别适合。
如果将上述特征结构用于生产氟化钙的大尺寸单晶拉制设备上,产生的单晶内部应变会很大的话,坩埚直径大,相应的优点特别显著。
下面,描述单晶拉制设备中的其它结构。熔化加热器24没有什么限制,但使用的是电阻加热法、感应加热法等。推荐用电阻加热器。如果加热器为感应加热器,炉子中的温度分布就会太陡。因此,电阻加热器比较适合获得高质量的单晶。加热器24上端的高度差不多等于或略高于坩埚20上端的高度。
在熔化加热器24和坩埚20外壁之间的圆筒形隔板50可使加热器的热辐射均匀。隔板50的上端比熔化加热器24的上端略高比较适合,而且在上端与绝热壁26之间应配有盖板52,用来盖住隔板50与绝热壁26之间的间隙,防止熔化加热器24的热量向上传递。
隔板50能使熔化加热器24的热辐射对坩埚20均匀加热。盖板52能防止熔化加热器24的热量向上传递。为了进一步减小单晶的内部应变,熔体液面周围的温度应该均匀,并应使得在熔体液面上逐渐冷却地生长单晶。上述结构能有效实现这些优点。
盖板52放置在高于坩埚20的上端,其高过的距离是坩埚20上端与顶板44之间距离的2-50%比较适合,3-20%更适合。
隔板50与坩埚20外壁之间的距离为1-10厘米比较适合,3-6厘米更适合。
隔板50和盖板52的材料推荐使用石墨。
在单晶拉制设备中,单晶拉制棒32、支撑轴16、视窗48等用O形密封圈、磁性流体等密封。如果在熔化氟化钙过程或晶体生长过程中,这些部分发生泄漏,则会显著影响单晶质量,例如单晶会有颜色或透明度会降低。
放置在坩埚20中的氟化钙材料,应在熔化前真空加热除去吸收的潮气。可以使用众所周知的真空泵在设备中抽真空,推荐结合使用旋转泵和油扩散泵,或结合使用旋转泵和分子泵。
如图1所示,一块底部绝热板54靠着室12的底板14上的绝热壁26的内边放置。而且,有块绝热支撑轴密封板56放置在支撑轴16的周围和底部绝热板54之间。另外,有块绝热密封底板58放置在绝热壁26的下端、底部绝热板54的周围和熔化加热器24之间。
因此,可以防止热从室12的底部散失、并防止室12中的气体泄漏到外面。
底部绝热板54、支撑轴密封板56和底部密封板58的材料没有什么限制,可以使用任何一种在厚度方向上的热传导系数与绝热壁26一样的由已知的材料制成。
用来生产本发明单晶的最适合的单晶拉制设备,其绝热壁26在厚度方向上的热传导系数在3-15W/m2·K范围内,顶板44在厚度方向上的热传导系数在2000-20000W/m2·K范围内,顶板上孔的总敞开面积在环形封套绝热壁26的上端敞开面积的8-40%范围内,顶板44的位置高出坩埚20上端的距离为坩埚最大内直径的100-200%,配有隔板50和盖板52,盖板52的位置高出坩埚20上端的距离为坩埚20上端与顶板44之间距离的3-20%,绝热板26与坩埚20周围之间的距离在坩埚20最大内直径的30-60%范围内。
为了使用上述结构的单晶拉制设备生产本发明的单晶,以上述晶体拉制速度生长单晶很重要。如果晶体拉制速度太快,很难充分减小单晶的双折射。
关于其它已知的拉制方法的操作,可以没有限制地使用普通单晶拉制设备。投入坩埚中的原料氟化钙,最好是充分纯化处理过的,特别要经过去潮气处理。原料氟化物的熔化和单晶的生长可以在惰性气体气氛下或真空下进行。
拉制单晶过程中最好要监测用于熔化原料氟化钙的坩埚的底部温度。拉制时坩埚底部温度最好为1380-1480℃。达到此温度的加热速度最好为50-500℃/小时。
为了去除残留水分的影响,拉制过程最好在清除剂存在下进行。氟化钙原料加入的固体清除剂可以是氟化锌、氟化铅或聚四氟乙烯,作为气体引入室中的气体清除剂可以是四氟化碳等。其中,较好使用固体清除剂,加入量较好为每100重量份原料氟化钙中加入0.005-5重量份清除剂。
在拉制法中使用的籽晶是氟化钙单晶。尽管籽晶的生长面可随意选择,推荐采用晶面(111)。如果采用晶面(111)以外的生长面,得到单晶的双折射有时很大。在单晶生长过程中,最好绕拉伸轴旋转籽晶,旋转速度最好在2-20rpm范围内。随着籽晶旋转,坩埚也可按相同速度向着籽晶旋转方向的相反方向旋转。单晶拉制完成后,将温度以0.1-3℃/分的速度降至常温。
将上述方法拉制的氟化钙生成态单晶切割、抛光制成所需形状的光学元件。单晶的双折射如上所述极小,但如果希望单晶的双折射进一步降低,单晶还要进行退火处理。具体言之,退火处理较好在900-1300℃下进行1-48小时。
实施例本发明氟化钙生成态单晶将结合下面一些实施例进一步描述,但本发明不局限于这些实施例。
实施例1在如图1所示的单晶拉制设备中制备氟化钙单晶。
室12中的坩埚20用高纯度石墨制成,内直径38厘米(外直径40厘米),高度30厘米。绝热壁26是沥青型石墨模制,其厚度方向上的热传导系数为9W/m2·K。顶板44由石墨制成,其厚度方向的热传导系数为5000W/m2·K。顶板上,除了图中所示有个单晶拉制棒32用的插入孔(直径14厘米)外,还有能保证视窗48视野的观察孔,总敞开面积是周围绝热壁26上端敞开面积的13%。
顶板44的位置高出坩埚20上端的距离为坩埚最大内直径的160%(61厘米),盖板52的位置高出坩埚20上端的距离为坩埚20上端与顶板44之间距离的10%(6厘米)。隔板50与坩埚20外壁的距离是4厘米,绝热板26与坩埚20外壁之间的距离为9厘米(坩埚20最大内直径的25%)。
向室12中的坩埚20投入50千克经过充分纯化处理和去潮气处理的高纯氟化钙块作为原料,投入0.1%高纯氟化锌作为清除剂,然后抽真空。熔化加热器中通入电流开始加热原料,温度以大约50℃/小时速度升至250℃,保持此温度2小时。然后,以大约100℃/小时的速度将温度继续升高。温度达到600℃后,停止抽真空,向室12中通入高纯氩气,保持内部压力为106.4KPa。
在1480℃,原料完全熔化,这个温度保持40分钟。然后,将加热器输出降低,在温度1440℃下保持120分钟。让拉制棒32垂直下降,使籽晶34的晶面(III)降低,与原料熔体22表面接触,这样,单晶就开始生长。单晶拉制以2毫米/小时的速度进行100小时,籽晶34的旋转速度为5rpm,坩埚20以1rpm速度朝着籽晶旋转方向相反的方向旋转。这样,单晶可以令人满意地生长。生长结束后,温度以0.9℃/分的速度降至常温。
通过上述过程,生产出圆柱形部分最大直径28厘米、重27千克的氟化钙生成态单晶。生成态单晶圆柱形部分长度为10厘米。
生成态单晶的双折射按下述方法测量。首先,用带锯切割掉生成态单晶的肩部和尾部,得到其圆柱形部分,将其上表面和下表面镜面抛光,得到测试样品。在测试样品的上表面上距离外边1厘米的圆中标出一个正方形作为测试部分,在正方形中画出许多1毫米间隔的垂直线和1毫米间隔的水平线的格子,格子中垂直线和水平线的交点作为测试点。用双折射测试设备(ELP-150ART,MizojiriKogaku Kogyosho制造,测试波长632.8纳米)测试双折射值,计算得到的测试点双折射的平均值作为生成态单晶的双折射值。结果,双折射值为1.375纳米/厘米。双折射测试值的标准偏差为1.21纳米/厘米。
实施例2氟化钙单晶的拉制如实施例1中所述方法进行,不同的是图1单晶拉制设备中顶板44用钨制成,厚度方向上热传导系数为20000W/m2·K。制出的氟化钙生成态单晶圆柱形部分最大直径为25厘米,重19.4千克。生成态单晶圆柱形部分长度为8厘米。
测出生成态单晶双折射的值为1.004纳米/厘米。双折射测试值的标准偏差为0.89纳米/厘米。
实施例3氟化钙单晶的拉制如实施例1中所述方法进行,不同的是图1单晶拉制设备中没有装上盖板52。制出的氟化钙生成态单晶圆柱形部分最大直径为23厘米,重17.4千克。生成态单晶圆柱形部分长度为9厘米。
测出生成态单晶双折射的值为2.652纳米/厘米。双折射测试值的标准偏差为2.1纳米/厘米。
实施例4氟化钙单晶的拉制如实施例1中所述方法进行,不同的是拉制速度变为3毫米/小时。制出的氟化钙生成态单晶圆柱形部分最大直径为21厘米,重15.2千克。生成态单晶圆柱形部分长度为10厘米。
测出生成态单晶双折射的值为0.892纳米/厘米。双折射测试值的标准偏差为0.63纳米/厘米。
比较例1氟化钙单晶的拉制如实施例1中所述方法进行,不同的是图1单晶拉制设备中没有装上顶板44。制出的氟化钙生成态单晶圆柱形部分最大直径为21厘米,重10.7千克。生成态单晶圆柱形部分长度为6厘米。
测出生成态单晶双折射的值为3.870纳米/厘米。双折射测试值的标准偏差为3.15纳米/厘米。
比较例2氟化钙单晶的拉制如实施例1中所述方法进行,不同的是图1单晶拉制设备中顶板为沥青型模制的绝热板,其厚度方向上的热传导系数为15W/m2·K。顶板上,只有直径为30厘米的单晶拉制棒32用的插入孔(总敞开面积是周围绝热壁26上端敞开面积的30%)。制出的氟化钙生成态单晶圆柱形部分最大直径为22厘米,重10.0千克。生成态单晶圆柱形部分长度为6厘米。
测出生成态单晶双折射的值为4.628纳米/厘米。双折射测试值的标准偏差为4.05纳米/厘米。
比较例3将图1单晶拉制设备中坩埚内直径减小为9厘米,没有装上顶板44,其它部分的尺寸按比例减小。
氟化钙单晶的拉制如实施例1中所述方法进行,不同的是投入0.9千克氟化钙块作为原料。制出的氟化钙生成态单晶圆柱形部分最大直径为6厘米,重0.6千克。生成态单晶圆柱形部分长度为4厘米。
测出生成态单晶双折射的值为2.347纳米/厘米。双折射测试值的标准偏差为2.23纳米/厘米。
比较例4氟化钙单晶的拉制如实施例1中所述方法进行,不同的是单晶拉制速度为10毫米/小时。制出的氟化钙生成态单晶圆柱形部分最大直径为22厘米,重10.0千克。生成态单晶圆柱形部分长度为6厘米。
测出生成态单晶双折射的值为5.703纳米/厘米。双折射测试值的标准偏差为4.43纳米/厘米。
发明效果本发明的氟化钙单晶尽管是生成态,但直径大、内部应变小、双折射小、双折射不均匀性小。因此,这种单晶甚至在不受过长时间的退火处理,却可以切割制成具有高质量和高均匀性等优点的大尺寸光学元件。而且,因为晶体内的应变极小,在单晶的切割或抛光等加工过程中几乎不发生裂痕,因此,其加工的产率高。
因此,本发明的氟化钙单晶可用于透镜、棱镜、单向透视玻璃和光圈材料等光学元件,特别适合用于紫外和真空紫外的光学元件,非常适合用于第二代平版印刷技术中作为光源的F2激光器。
权利要求
1.用单晶拉制法生产的氟化钙生成态单晶,其圆柱形部分直径大于等于17厘米,双折射值不大于3纳米/厘米。
2.如权利要求1所述的氟化钙生成态单晶,其双折射值标准偏差不大于2.0纳米/厘米。
3.如权利要求1所述的氟化钙生成态单晶,其圆柱形部分长度不小于5厘米。
全文摘要
本发明的目的是提供一种大直径、小双折射值的氟化钙生成态单晶。本发明的氟化钙生成态单晶用单晶拉制法(Czochralski法)制造,其圆柱形部分直径大于17厘米,圆柱形部分长度较好大于50毫米,双折射值不大于3纳米/厘米,较好为0.1-2.0纳米/厘米。
文档编号C30B15/00GK1502727SQ20031011649
公开日2004年6月9日 申请日期2003年11月19日 优先权日2002年11月19日
发明者绳田辉彦, 仓元信行, 柳裕之, 福田承生, 生, 行 申请人:德山株式会社