可直接应用的压变材料、其成分及使用该材料的器件的制作方法

文档序号:8175652阅读:590来源:国知局
专利名称:可直接应用的压变材料、其成分及使用该材料的器件的制作方法
优先权要求本申请要求2003年4月8日申请的、题为“直接应用的压变材料及使用该材料的器件”的美国专利申请10/410,393的利益,其全部内容被组合于此以供参考并被依赖。
相关申请交叉引用本申请关于下面的普通拥有的未决专利申请“用于静电放电保护的聚合复合材料”,序列号为09/232,387,律师档案号为0112690-020;“压变衬底材料”,序列号为09/976,964,律师档案号为0112690-098。
背景技术
本发明总体上涉及电路保护,特别是涉及压变材料。
电过载(“EOS”)瞬态产生高电场并通常产生高峰值功率,其使得电路或电路中的高度敏感的电学元件暂时或永久失去功能。EOS瞬态可包括能够中断电路工作或立刻摧毁电路的瞬态电压。EOS瞬态可起因于电磁脉冲、静电放电、闪电、静电荷的积聚,或由其它电子或电元件的工作引起。EOS瞬态可在次毫微秒到微秒的时间内达到其最大振幅并具有重复的振幅波峰。
用于保护免遭EOS瞬态的材料存在,其被设计来非常快速地响应(理想地,在瞬态波到达其峰值前)以将所传输的电压在EOS瞬态期间降低到非常低的值。EOS材料的特征在于其在低或正常工作电压下具有高电阻抗。响应于EOS瞬态,材料非常快速地切换到低电阻抗状态。当EOS消散时,这些材料回到其高阻抗状态。EOS材料在EOS瞬态消散的基础上还可非常快速地恢复到其最初的高阻抗值。
EOS材料能够在高和低阻抗状态之间反复切换。EOS材料可经受数千次ESD事件并在提供保护给每一单个ESD事件后恢复到想要的不工作状态。
使用EOS材料的电路可分流一部分由于EOS瞬态产生的过多的电压或电流到地,从而保护电路及其元件。威胁瞬态的另一部分反射回威胁源。反射的波或由威胁源衰减,辐射掉,或重新指引到过电压保护装置,其以同样的方式响应于每一返回脉冲,直到威胁能量被减弱到安全水平。使用EOS瞬态装置的典型电路如图1所示。
参考图1,其示出了典型的电路10。电路10中的电路负载12在正常的工作电压下工作。实质上大于2到3倍正常工作电压的具有足够持续时间的EOS瞬态可损坏负载12及其所包含的元件。通常,EOS威胁可超出正常工作电压的10倍、百倍甚至数千倍。
在电路10中,EOS瞬态电压14被示出,其沿线16进入电路10。在出现EOS瞬态电压14的情况下,EOS保护装置18从高阻抗状态切换到低阻抗状态,因而将EOS瞬态电压14箝位在安全的低值。EOS保护装置18将一部分瞬态威胁从电线16分流到系统的接地20。如上所述,EOS保护装置18将大部分威胁反射回威胁源。
EOS保护装置通常使用压变材料(“VVM”)。许多VVM已具有一致性和组成,即它们已要求某些类型的外壳或封装。也就是说,VVM材料在此以前已被提供在装置中,如表面安装装置,其安装到印刷电路板(“PCB”)。VVM装置通常已被分离于要求保护的电路的装置安装。这存在几个问题。
首先,VVM装置增加大量要求安装到PCB的元件。VVM装置消耗了有价值的电路板空间并增加潜在的缺陷。VVM装置通常要求另外的衬垫来固紧到PCB,且还要求另外的电路迹线,其从PCB装置或从接地层布线到VVM衬垫。但为了成本、空间/灵活性和可靠性的目的,总是希望减少一些安装到PCB的元件。
其次,增加元件到现有的PCB可能要求电路板重新设计或其它类型的结合到当前未决的设计中。如果应用已经在生产,则可能已花费相当多的时间优化电路板空间,其可能也可能没有留下空间来用于集成VVM装置。
第三,许多EOS瞬态出现在PCB的外部并通过线缆或电线传输到PCB。例如,网络化的计算机和电话系统遭受由周围的操作活动引起的各种瞬态。在这些情况下,希望在电压瞬态到达PCB之前将它们消除。

发明内容
本发明提供过电压电路保护。具体地,本发明提供压变材料(VVM,100),其包括配制来实质粘结到传导及非传导表面的绝缘粘合剂(50)。粘合剂及因而VVM是自固化的并可以墨水形式应用到应用中,其最终为干燥形式用于使用。粘合剂消除了需将VVM放置在单独装置中的需要及单独印刷电路板衬垫的需要,其中衬垫电连接VVM。粘合剂及VVM可被直接应用于许多不同类型的衬底,如刚性(FR-4)迭层板、聚酰亚胺、聚合物、玻璃及陶瓷。VVM还可直接应用到不同类型的衬底,这些衬底被放置在一电学设备(如连接器)内。
VVM的粘合剂包括聚合物,如聚酯,其被溶解在溶剂中。用于溶解聚合物的一种适当的溶剂为二甘醇--乙醚乙酸酯(diethyleneglycol monoethyl ether acetate),通常被称为“carbitolacetatate”。在一实施例中,增厚剂如煅制的二氧化硅被添加到绝缘粘合剂中,其增加了绝缘粘合剂的粘性。大量不同类型的粒子接着被混合在粘合剂中以产生所想要的箝位电压和响应时间。不同类型的粒子包括传导粒子、绝缘粒子、半导粒子、掺杂的半导粒子(包括核和壳掺杂的半导粒子)及其任何组合。
在一实施例中,传导粒子包括内核和外壳。核和壳具有不同的传导性和电阻率。或壳较核传导性大,或核较壳传导性大。核和壳中的每一个均可分别由上面列出的不同类型的粒子中的任一组成。在一优选实施例中,传导粒子包括铝核和氧化铝壳。在另一实施例中,传导粒子不包括壳或涂层。在此,传导粒子可实质上由一种材料组成。
在一优选实施例中,VVM包括传导粒子和掺杂的半导粒子。传导粒子实质上可以是纯镍粒子,而掺杂的半导粒子包括掺杂的硅。
具有本发明粘合剂的VVM可被应用到衬底以形成各种电路或应用。在第一应用中,多个电极或导体经任何已知的技术固紧到印刷电路板。电极在每一个均通过间隙而分开布置在印刷电路板上。VVM被施加并实质地粘结到电极及间隙中的衬底。在第二应用中,电极也被固紧到衬底,但VVM仅实质地粘结到电极。即,VVM不粘结到衬底但跨间隙布置。
在第三应用中,VVM实质地粘结到衬底,其中电极被放置在VVM上并实质地粘结到VVM。也就是说,VVM将电极固紧到衬底。在第四应用中,多个电极中的至少一个被固紧到衬底,其中VVM实质地粘结到固紧的电极。至少一其它电极位于VVM的上面。电极之间的间隙由VVM的厚度形成。在此,VVM可能也可不另外实质地固紧到衬底。位于VVM上面的电极也可具有固紧到衬底的部分。
当VVM被应用到电路时,如印刷电路板,自固化成最后形式的VVM不要求单独的防护层。通过制造、运输和使用,VVM可被留下成对周围环境是开放的。衬底可以是任何类型的衬底,如与印刷电路板一起使用的刚性的迭层板(如FR-4)、与软性印刷电路(如Kapton)一起使用的材料如聚酰亚胺、聚合物、陶瓷或玻璃、及它们的任何组合。
在另一实施例中,衬底可被涂覆或保护。例如,上述的任何应用均可被覆盖一涂层。涂层可以是多种不同材料的任一种,包括干膜可感光覆盖膜、喷射液体可感光覆盖膜、或“涂敷”型涂层。或者,上述的任何应用均可被嵌入在多层的印刷电路板(“PCB”)中。在另一实施例中,至少一另外的电极或导体固紧到上衬底的下侧,其中VVM存在于上和下衬底之间并实质地粘结到至少上和下电极并可能粘结到上和下衬底中的一个或多个。
电路可以也可不提供在装置中。例如,在一实施例中,装置为电信装置,如RJ-45或RJ-11连接器。在另一实施例中,装置为输入/输出连接器,如Deutsches Institut fur Normung eV(″DIN″)连接器或带缆连接器。在每一这些装置中,VVM保护一个或多个信号线路免于瞬态电压峰值,其通过将信号导体连接到接地导体或护罩而实现。
在一实施例中,RJ型的连接器包括多个信号导体。连接器还包括接地传导的护罩。护罩被切开或压印以产生至少一向下偏向导体的接头。在一实施例中,护罩确定每一导体的分开的接头。导体包括将接头压在导体上的外壳。VVM被应用在护罩接头和导体之间以向RJ连接器提供过电压保护。在一实施例中,VVM为上述实质地固紧的VVM,然而,现有的提供在装置中的VVM也可被使用。在另一实施例中,电容器被放置在VVM和导体及护罩接头之一之间以阻止高DC电压,如那些在高电位[HI-POT]测试期间强加的电压。
因此,本发明的优点在于提供实质地粘结的VVM。
本发明的另一优点是提供不需要被放置在单独的装置中的VVM。
本发明的另一优点是提供自固化的VVM。
本发明的另一优点是提供这样的VVM,其直接粘结到印刷电路板,不需要在安装VVM的衬底上提供单独的电衬垫。
本发明的另一优点是提供直接粘结到聚合物或塑料的VVM。
本发明的另一优点是将VVM直接应用到衬底,其中衬底被提供在电学设备中,如一种设备或连接器。
本发明的另一优点是提供具有过电压保护的RJ型的连接器。
此外,本发明的优点在于提供具有过电压保护的输入/输出连接器。
另外,本发明的另一优点是提供将VVM(或者及另外的一电容器)电连接到RJ型连接器中的多个不同信号线的装置。
此外,本发明的优点在于,通过消除对外壳的需要,而提供一种低成本、直接生产的电路保护材料,其由于寄生阻抗的减少而可得到改善的电学性能。
本发明的其它特征和优点从下面的对优选实施例和附图的详细描述将是很明显的。


图1为电过载瞬态的典型波形的示意图。
图2为用于本发明的压变材料(“VVM”)的某些可能组成的示意图。
图3A为与本发明的VVM一起使用的核及壳掺杂的半导粒子的截面示意图。
图3B为本发明的VVM的核和壳型传导粒子的截面示意图。
图4为刚性印刷电路板(“PCB”)衬底的立体图,其示出了用于本发明的实质粘结的VVM的一种电路布置。
图5为具有本发明的实质粘结的VVM的软性衬底的立体图。
图6为用于本发明的实质粘结的VVM的三个另外的电路布置的截面正视图。
图7为用于本发明的实质粘结的VVM的两个“Z”向型电路布置的截面正视图。
图8为用于本发明的实质粘结的VVM的另一电路布置的截面正视图。
图9为层压在多层PCB中的图4-7的电路布置的截面正视图。
图10为覆盖有防护涂层的图4-7的电路布置的截面正视图。
图11为具有直接应用本发明的VVM的DIN连接器的一实施例的立体图。
图12为具有直接应用本发明的VVM的带缆连接器的一实施例的立体图。
图13为具有直接应用本发明的VVM的数据/电信RJ型连接器的一实施例的剖面立体图。
图14为具有直接应用本发明的VVM的数据/电信RJ型连接器的一实施例的大量信号导体和护罩的剖面立体图。
图15为具有直接应用本发明的VVM的数据/电信RJ型连接器的一实施例的信号导体、护罩和电容器的侧视图。
图16和17为适于用以涂覆在此描述的压变材料粒子的本发明的不同流化床等离子反应器的示意图。
具体实施例方式
参考图2,本发明的压变材料(“VVM”)100包括绝缘粘合剂50。粘合剂50固紧一个或多个或所有某些不同类型的粒子,如绝缘粒子60、半导粒子70、掺杂的半导粒子80、传导粒子90及它们的各种组合。绝缘粘合剂50具有实质上胶粘的特性并自粘结到表面如传导的金属表面或非传导的绝缘表面。绝缘粘合剂50具有自固化的特性,使得VVM100可被应用到电路或应用及可在不需要加热的情况下使用但可固化VVM100和绝缘粘合剂50。然而,应该意识到的是,采用具有粘合剂50的VVM100的电路或应用可被加热或固化以加速固化过程。
在一实施例中,VVM100的绝缘粘合剂50包括聚合物或热塑性树脂,如聚酯,其被溶解在溶剂中。在一实施例中,聚酯树脂具有6-80℃的玻璃态转化温度,及15000-23000原子质量单位(“AMU”)的分子量。用于溶解聚合物的一种适当的溶剂为二甘醇--乙醚乙酸酯,通常被称为″carbitol acetatate″。在一实施例中,增厚剂被添加到绝缘粘合剂50,其增加了绝缘粘合剂50的粘性。例如,增厚剂可以是煅制的二氧化硅,如可通过商品名Cab-o-Sil TS-720找到。
在一实施例中,绝缘粘合剂50具有高介质击穿强度、高电阻率和高追踪阻抗。绝缘粘合剂50在VVM100的其它可能的组成之间提供并保持足够的粒间间距,如传导粒子90、绝缘粒子60、半导粒子70和掺杂的半导粒子80。粒间间距提供了高电阻。绝缘粘合剂50的电阻率和介质强度还影响高电阻状态。在一实施例中,绝缘粘合剂50具有至少109ohm-cm的容积电阻率。将不同的聚合物混合在粘合剂50中并交叉结合是可能的。
在一实施例中,绝缘粒子60被散布在VVM100的粘合剂50中。在一实施例中,绝缘粒子60具有约200到约1000埃范围内的平均粒子大小及小于10-6(ohm-cm)-1的体积电导率。在一实施例中,绝缘粒子60具有约50到约200埃范围内的平均粒子大小。
粘合剂50的煅制二氧化硅,如可通过商品名Cab-o-Sil TS-720获得,组成绝缘粒子60。然而,除了煅制二氧化硅以外,其它绝缘粒子可被使用。例如,玻璃球、碳酸钙、硫酸钙、硫酸钡、三水合铝、高岭土和高岭石、超高密度聚乙烯(UHDPE)、及金属氧化物如二氧化钛也可被用作本发明中的绝缘粒子60。例如,具有约300-400埃的平均粒子大小、由Nanophase Technologies制造的二氧化钛可提供适当的绝缘粒子60。
绝缘粒子60还可包括铁、铝、锌、钛、铜的氧化物及粘土如由Nanocor,Inc.生产的蒙脱石类型。除了煅制二氧化硅以外,如果采用在VVM100中,在一实施例中,绝缘粒子60占VVM100的重量百分比的约1-15%。
在一实施例中,半导粒子70被散布在VVM100的粘合剂50中。在一实施例中,半导粒子70包括平均粒子大小小于5微米、及体积电导率在10到10-6(ohm-cm)-1的范围内的粒子。为了使粒子组装密度最大并获得最适宜的箝位电压和开关特性,在一优选实施例中,半导粒子70的平均粒子大小在约3-5微米的范围内,甚至小于1微米。半导粒子大小下降到100纳米范围或更小同样适于用在本发明中。
在一实施例中,半导粒子70的材料包括碳化硅。半导粒子材料还可包括铋、铜、锌、钙、钒、铁、镁、钙及钛的氧化物;硅、铝、铬、钛、钼、铍、硼、钨及钒的碳化物;镉、锌、铅、钼及银的硫化物;氮化物如氮化硼、氮化硅、及氮化铝;钛酸钡及钛酸铁;钼及铬的硫化物;及铬、钼、铌、钨的硼化物。
在一实施例中,半导粒子70包括碳化硅,如由Agsco制造的,其可以是#1200的粒度并具有约3微米的平均粒子大小。或者碳化硅可由Norton制造,#10,000的粒度,并具有约0.3微米的平均粒子大小。在另一实施例中,半导粒子70包括碳化硅和/或至少一其它材料,包括钛酸钡、氮化硼、磷化硼、磷化镉、硫化镉、氮化镓、磷化镓、锗、磷化铟、氧化镁、硅、氧化锌、及硫化锌。
在一实施例中,掺杂的半导粒子80被散布在VVM100的粘合剂50中。某些杂质(掺杂物)的添加影响半导体的电传导率。用于掺杂半导体材料的杂质或材料可以是给电子体也可是电子接受体。在另一情况下,杂质占用了纯半导体的能带间隙内的能级。通过增加或减小掺杂的半导体中的杂质浓度,材料的电传导率被改变。纯半导体的电传导率可通过增加传导电子浓度而向上延伸(到半金属或金属的范围内),或可通过减小传导电子浓度而向下延伸(到绝缘体的范围内)。
在一实施例中,半导粒子70和掺杂的半导粒子80通过标准混合技术混合在VVM100的绝缘粘合剂50中。在另一实施例中,已被掺杂到不同电传导率的各种不同掺杂的半导粒子80散布在VVM100的绝缘粘合剂50中。这些实施例的任一个均可还包括绝缘粒子60。
在一实施例中,VVM100使用掺杂以材料致使其电传导的半导粒子。掺杂的半导粒子80可包括任何传统的半导体材料,包括氮化硼、磷化硼、磷化镉、硫化镉、氮化镓、磷化镓、锗、磷化铟、硅、碳化硅、氧化锌、硫化锌及电传导的聚合物,如聚吡咯(polypyrole)或聚苯胺(polyaniline)。这些材料均被掺杂以适当的给电子体,如磷、砷或锑,或电子接受体如铁、铝、硼或镓,以获得想要的电传导率等级。
在一实施例中,掺杂的半导粒子80包括掺有铝(大约占掺杂的半导粒子80的重量百分比0.5%)的硅粉,以致使其电传导。该材料被Atlantic Equipment Engineers在Si-100-F的商品名下销售。在另一实施例中,掺杂的半导粒子包括掺锑的氧化锡,其在Zelec3010-XC的商品名下销售。
在一实施例中,VVM100的掺杂的半导粒子80具有小于10微米的平均粒子大小。然而,为了使粒子组装密度最大并获得最适宜的箝位电压和开关特性,半导粒子的平均粒子大小可在约1-5微米的范围内,甚至小于1微米。
一优选的VVM成分图3A示出了一优选的掺杂的半导粒子80。半导粒子80包括内核82,其被掺杂有至少一掺杂剂84。内核由外壳或涂层86包围。
在一实施例中,内核材料82包括粒子或粉末状硅。硅82被掺杂到低电阻率值(如在1ohm-cm以下)且其后接地到粉末。粒子82的平均大小是任何适当的大小,在一实施例中,内核粒子的每一个在5到100微米之间。在一实施例中,壳或涂层的平均厚度为大约100到10000埃。
内核材料82或硅被掺杂以适当的掺杂剂,如锑、砷、磷、硼或任何其它在此列出的掺杂剂。内核材料82可以是任何适当的半导材料,如碳化硅、锗、砷化镓及类似的。在一实施例中,只使用了一种类型的掺杂剂。然而,应该意识到的是,在同一粒子中可使用不同类型的掺杂剂。
掺杂的半导粒子80的壳或涂层86可由多种不同的材料制成。例如,涂层可以是下述材料之一二氧化硅、外延硅及玻璃。这些材料的每一种是惰性的,使得它们不与本发明的VVM的其它成分反应。
涂层或壳86的类型规定了用于形成涂层或壳的过程。例如,如果涂层或壳86是氧化物,如二氧化硅,在一实施例中,该层经在一个或多个温度下加热指定或可变的时间而得以生长。已发现适当的氧化硅层可通过使掺杂有硅粒子82的内核经受热及温度而形成。特别地,粒子可在约500℃到约1500℃的温度下加热,氧化时间为约15分钟到约3小时。加热可执行多个加热和冷却间隔。在一实施例中,在使粒子经受约10到100毫托的真空的同时执行冷却。真空冷却是有利的,因为其能防止VVM暴露给湿气。在一实施例中,粒子被加热约30分钟并接着被真空冷却一整夜。该过程接着被重复。
现在参考图16和17,本发明设想的用于在内核粒子82上形成涂层86的另一方法和装置被示出为流化床等离子反应器250(图16)和反应器300(图17)。流化床反应器250被示意性地示出,以易于图示。反应器250包括外壳252和基座254。外壳252和基座254由电绝缘的或电介质材料制成,在一实施例中,如玻璃或塑料。
外壳252连接到或确定入口压力端口256和出口真空端口258,如图所示。入口压力端口256延伸到压力室260。压力室260确定或包括压力通风系统262。压力通风系统262使来自端口256的反应物气体能够进入并在通风系统262内的压力下稳定。通过通风系统262进入外壳252内的反应物气体在来自由外壳252确定或连接到外壳252的端口258的负压下被除去。
压力室260还确定或包括床264,用于保持内核粒子82,如掺杂的内核粒子。床264的底壁266同时为通过系统的上壁。壁266确定穿孔或熔结的开口268,其使加压的反应物气体能够通过壁266以相对一致、稳定且连续的方式逃离。如果在通风系统262内的压力足够,通过粒子82的气流将导致粒子被吸入气体中。其后粒子被保持在液态状的状态,其中粒子悬浮液的顶部由于重力而相当扁平,如液体被注入床264的情况。加有电压的导体274与接地导体260结合产生等离子薄片区276和278,及位于等离子薄片区276和278之间的辉光放电区280。悬浮在气流中的粒子82从而被确保与等离子辉光放电280适当地混合。
进入端口256的反应物气体经运载气体携带,如氮、氩、氦、二氧化碳、氧、其它气体及其组合。反应物气体可以是本领域技术人员所知的任何适当的等离子气体,如三乙基铝(TEAL)、四氯化碳、硅烷、乙硼烷及其任何组合。
反应器250还被连接到高频电源270,其通过匹配网络272工作以提供功率给一对电极274和260。匹配网络272匹配电源及反应器室的阻抗以提供到室的最佳能量传输。应注意的是,压力室260及特别地板266,还另外用作与电极274结合的第二电极。加压室260因此由传导材料制成。
电源270是高频电源且在一实施例中为电感耦合的射频(RF)电源。来自电源270的高频能量激励通过通风系统壁266进入外壳252的反应物气体分子,使得分子被离子化。流化床连续将上述的粒子与离子化的气体混合,使得内核粒子的反应是始终如一的。
在一实施例中,反应器250用于在上述的掺杂的内核硅82粒子上提供氧化层。掺杂的内核粒子在室中所花的时间、提供给电极274和260的功率的量及频率、及所选择的气体控制氧化物生长速率及量。然而,应该意识到的是,反应器250可用于产生其它用于粒子80的涂层或壳,而不是氧化物壳。例如,系统可用于使用等离子增强的化学汽相沉积(PEVD)而施加不同类型的涂层。
应该意识到的是,在反应器250用在一优选实施例中以施加氧化层或其它涂层给掺杂的半导粒子82的同时,装置和方法可用于施加涂层给其它类型的内核材料,如没有掺杂剂的半导内核材料、绝缘材料和传导材料。事实上,反应器50可用于产生下面结合图3B描述的核壳传导粒子90。
图17示出了另一反应器300。另一反应器300在此包括许多同样的构件,如上述的用于反应器250的同样的功能。这些构件被标以同样的元件编号。反应器300包括关于外壳252缠绕的感应线圈302。来自电源270的能量通过线圈302感应地耦合到反应器。黑的或薄片区276和278沿反应器300的边出现,及辉光放电区280位于等离子薄片区276和278之间。再次地,吸入粒子的气流确保粒子与等离子辉光放电280适当的混合。
绝缘粒子60、半导粒子70和掺杂的半导粒子80中的每一个均被可选地散布在VVM100的粘合剂50中。粘合剂50的煅制的二氧化硅或Cab-o-Sil组成绝缘粒子60。在优选实施例中,VVM100包括传导粒子90。在一实施例中,传导粒子90具有大于10(ohm-cm)-1的体积传导率,特别地,大于100(ohm-cm)-1。然而,通过使用掺杂的半导粒子,VVM100不包括传导粒子90是可能的。
在一实施例中,传导粒子90具有小于60微米的最大平均粒子大小。在一实施例中,95%的传导粒子90具有不大于20微米的直径。在另一实施例中,100%的传导粒子90的直径小于10微米。在另一实施例中,使用了平均粒子大小在亚微细粒范围的传导粒子90,亚微细粒范围如一微米向下到纳米。
适于VVM100的传导粒子90的材料包括铝、黄铜、碳黑、铜、石墨、金、铁、镍、银、不锈钢、锡、锌、及它们的合金和其它金属合金。此外,实质传导的聚合物粉末如聚吡咯或聚苯胺也可被使用,只要它们展现稳定的电学特性。
在一实施例中,传导粒子90包括由Atlantic EquipmentEngineering制造的、并在Ni-120的商品名下销售的镍,其具有10-30微米范围内的平均粒子大小。在另一实施例中,传导粒子90包括铝,并具有1-30微米范围内的平均粒子大小。
在一实施例中,传导粒子90未被涂覆且实质上由单一材料组成。参考图3B,在另一实施例中,传导粒子包括由外壳94包围的内核92。粒子90的核92和壳94具有不同的电传导率。在一实施例中,核和壳粒子90实质上是球形并在约25到约50微米的范围内。
在一实施例中,传导粒子90的内核92包括电绝缘材料,其中外壳94包括下述材料之一(i)导体;(ii)掺杂的半导体;或(iii)半导体。在另一实施例中,传导粒子90的内核92包括半导材料,其中外壳94包括下述材料之一(i)导体;(ii)掺杂的半导体;或(iii)不同于内核的半导材料的半导材料。在另一实施例中,内核92包括传导材料,其中外壳94可由下述材料之一组成(i)绝缘材料;(ii)半导体;(iii)掺杂的半导体;或(iv)不同于内核的传导材料的传导材料。
适于用于传导核-壳粒子90的传导材料包括下述金属及其合金铝、铜、金、镍、钯、铂、银、钛及锌。碳黑也可用作VVM100中的传导材料。上述的绝缘材料60、半导粒子70和掺杂的半导粒子80可与传导核-壳粒子90一起混合在本发明的VVM100的粘合剂50中。
在一优选实施例中,核-壳粒子90包括铝核92和氧化铝壳94。具有铝核92和氧化铝壳94的粒子90接着可被提供在实质胶粘的粘合剂中,其具有成形的二氧化硅,但没有另外的绝缘粒子60、半导粒子70或掺杂的半导粒子80。
在另一实施例中,核-壳粒子90包括二氧化钛(绝缘体)核92和掺锑的氧化锡(掺杂的半导体)壳94。这些后者的粒子在Zelec1410-T的商品名下销售。另一适当的核-壳粒子90在Zelec 1610-S的商品名下销售,并包括中空的二氧化硅(绝缘体)核92和掺锑的氧化锡(掺杂的半导体)壳94。
具有飞灰(绝缘体)核92和镍(导体)壳94的粒子及具有镍(导体)核92和银(导体)壳94的粒子由Novamet销售,且也适于用在本发明中。另一适当的选择由宾夕法尼亚州Allentown的CompositeParticles,Inc.在Vistamer Ti-9115的商品名下销售。这些传导的核-壳粒子具有超高密度聚乙烯(UHDPE)的绝缘壳92和碳化钛(TiC)的传导核94材料。同样,由Martek Corporation在Eeonyx F-40-10DG的商品名下销售的、具有碳黑(导体)核92和聚苯胺(掺杂的半导体)壳94的粒子90也可用在本发明的VVM100中。
在VVM100的一实施例中,实质胶粘的绝缘粘合剂50占全部合成物的重量的约20-60%,特别地,占约25-50%。在一实施例中,传导粒子90占全部合成物的重量的约5-80%,特别地,占约50-70%。无论VVM100是否还包括另外的绝缘粒子60、半导粒子70和/或掺杂的半导粒子80,均应用这些范围。如果存在,半导粒子70占全部合成物的重量的约2-60%,特别地,占约2-10%。
在VVM100的另一实施例中,实质胶粘的绝缘粘合剂50占全部合成物的体积的约30-65%,特别地,占约35-50%。掺杂的半导粒子80占全部合成物的体积的约10-60%,特别地,占约15-50%。半导粒子70占全部合成物的体积的约5-45%,特别地,占约10-40%。绝缘粒子60占全部合成物的体积的约1-15%,特别地,占约2-10%。
VVM100的开关特性由绝缘、半导、掺杂的半导及传导粒子的特性、粒子大小和粒子分布、及粒间间隔确定。粒间间隔取决于绝缘、半导、掺杂的半导及传导粒子的百分比及它们的大小和大小分布。在本发明的合成物中,粒间间隔将通常大于1000埃。
通过采用实质胶粘的绝缘粘合剂50和上述其它粒子的VVM100的使用,本发明的合成物通常可被设计来提供从约30伏特到大于2000伏特的箝位电压范围。用于电路板级保护的本发明的某些实施例展现了在100到200伏特范围内的箝位电压,特别地,小于100伏特,更特别地,小于50伏特,且特别展现了在约25-50伏特范围内的箝位电压。
具有实质胶粘的绝缘粘合剂50的VVM100可以自固化或自固紧到传导和绝缘材料。绝缘粘合剂50粘结并固化到任何类型的电导线、线圈、电极、引线、迹线等。绝缘粘合剂50粘结并固化到任何类型的绝缘材料、迭层板或衬底。例如,绝缘粘合剂50粘结并固化到任何类型的印刷电路板材料、柔性电路材料、聚合物、玻璃及陶瓷。
在一实施例中,VVM100的绝缘粘合剂50粘结并固化到现有的FR-4迭层板。FR-4迭层板通常包括机织的或非机织的织物,其是有孔的或穿孔的。VVM100的粘合剂50还可粘结到多层PCB的FR-4层。在另一实施例中,VVM100的绝缘粘合剂50粘结并固化到聚酰亚胺材料。绝缘粘合剂50实质固紧到其的一种聚酰亚胺材料由DupontCorporation制造并称作“Kapton”。有Kapton材料的三种变体。一种Kapton材料包括丙烯酸基的粘合剂但不是阻燃剂。另一Kapton材料包括丙烯酸基的粘合剂且是阻燃剂。第三种Kapton材料为无粘性的。VVM100的绝缘粘合剂50可粘结并固化到每一变体。
VVM100的绝缘粘合剂50还可粘结到刚性-柔性材料。如其名称暗含的,刚性-柔性材料是两种不同材料的合成物,一种是柔性的(如Pyralux),另一种为刚性的(FR-4)。这种类型的材料对任何要求连接到移动的或弯曲的部分并还要求组成的稳定平台的应用均特别有用。
一优选的VVM
图3A中所示的掺杂的半导核壳粒子80可与许多不同类型的组合一起使用,以产生适于抗衡EOS瞬态的压变材料。在一实施例中,图3A的粒子80与任何在此描述的传导粒子90被混合在绝缘粘合剂中,如上述的粘合剂50。在一实施例中,传导粒子90包括实质上纯的材料,如纯镍,其实质上不被氧化。然而,应该意识到的是,图3A的粒子可与下面结合图3B描述的核壳型的传导粒子一起使用。另外,结合图3A所示的粒子80可被提供在任何具有未掺杂半导粒子70、传导粒子90及绝缘粒子60的组合中。在一实施例中,还添加了纳米钨粉。
在一优选实施例中,VVM100通过使用结合图3A所述的粒子80与镍结合而形成,其中掺杂的半导粒子被提供,其浓度为约40-80%体积比,而镍粒子的浓度为5-25%的体积比。这些浓度为VVM100已经上述的多次加热和冷却而被适当固化时的浓度。即,应用在一应用中的VVM100的浓度。这些粒子被混合在绝缘粘合剂50中,其为经carbital acetate溶解的聚合物,以具有在此描述的直接应用特性。所得的VVM100具有约1400ohm-cm到约14×106ohm-cm的电阻率。
VVM的直接应用参考图4,其示出了实质胶粘的VVM100的一种可能的布置115。在该例子中,布置115出现在衬底110上,其为刚性的PCB。大量其它电学器件113也被示出,其示出当PCB衬底110处于最后的形式时,VVM100是开放且暴露的。电学器件113包括任何类型的、通常连接到PCB的器件,包括穿孔及表面安装的器件。电学器件113包括任何电学元件,如电阻或电容器。电学器件113还包括任何类型的集成电路、连接器、滤波器等。
布置115邻近于PCB衬底110上的其它电学元件113。布置115被示出具有两个电极117和119,每一电极经本领域技术人员公知的任何方法固紧到PCB衬底110。尽管两个电极117和119被示出,但布置115可具有任何数量的电极。在布置115中,大量VVM100实质粘结到电极117和119及衬底110。在电极117和119之间存在间隙,其在该立体图中以部分剖视的形式示出,因为其被大量VVM100覆盖。在一实施例中,间隙宽度为约2mil,然而,可使用更大的或更窄的间隙宽度。电极117和119正常情况下相互不电通信。在EOS瞬态事件时,VVM100从高阻抗状态转换到低阻抗状态,其中,在此,瞬态峰值从电极117通过VVM100分流到电极119,其连接到如图所示的护罩接地或大地接地。
为了方便,如图所示,电极117以分裂的端部终止。应该意识到的是,电极117可被引到任何电学器件。在一实施例中,电极117为PCB上的迹线,其携载如来自电信传输的信号。在这种情况下,电极117可引到接收电信输入线路的连接器或某些类型的收发机。
参考图5,“Z”向布置被示出在衬底110上,在一实施例中,其为多层的柔性带或电路。柔性衬底110包括多个柔性层111和112。如上所述,柔性衬底110可包括由聚酰亚胺制成的层111和112。例如,层111和112可以是Kapton。在另一实施例中,层111和112中的一个或两个均是聚酯薄膜层。衬底110的层112的部分被切掉以示出多个信号导体116及接地导体118。由于导体116和接地导体118被暴露,具有自固化粘合剂50的自粘VVM100可跨每一导体116施加。
如图所示,每一导体116和接地导体118由间隙隔开,使得导体在正常情况下相互不电通信。在一实施例中,接地导体(为了方便,仅示出部分)118位于VVM100的上面。因此,间隙即被说成是“Z”向,其中在导体116之间的间隙位于X-Y平面。VVM层的厚度小于信号导体116之间的间隔。因此,EOS瞬态将从导体116之一跳到接地导体118,而不是到另一导体116。在另一实施例中,分开的接地迹线118可邻近于每一信号迹线放置,使得瞬态将从信号迹线116跳到接地迹线118。无论哪一种方式,VVM100层使得任何经受过电压的信号导体116能够将过电压分流到接地导体118。
如图4的刚性PCB应用,导体或电极116(及118)固紧到衬底的表面。在此,导体116经本领域技术人员所公知的任何方法固紧到柔性层111的内表面114。在“Z”向实施例中,接地导体粘住VVM100层的上面。导体116和接地导体118还可被压缩并由多层111和112保持在适当的位置。然而,VVM100暴露在柔性层111和112之一的外部是可能的。如图所示,VVM100覆盖每一导体并还实质地粘结到层111的内表面114。VVM100层自固紧到多个导体116和层111的内表面114,并不需要另外的固化或加热步骤。然而,在另一实施例中,VVM100层可通过加热柔性电路预定量的时间而更快地固化。
如上所述,粘合剂50以这样一种方式固化,其中VVM100不会破裂或分裂,即使柔性衬底弯曲或移动也不会。即使这样,在优选实施例中,为了电绝缘,内表面114的暴露区域及接地面118均被覆盖。在一实施例中,VVM100和导体116及接地导体118均被银墨水涂层覆盖。在一实施例中,VVM可覆盖迹线116和接地迹线118的整个表面,以增强VVM100的耗散能力。在另一实施例中,一中间绝缘涂层,如干膜可感光覆盖膜、喷射液体可感光覆盖膜、或“涂敷”型涂层,可被布置在信号迹线116和外绝缘层111(如塑料)的内表面114之间。
参考图6,其示出了VVM100的三个另外的应用120、125和130。应用120、125和130中的每一个均以简单的形式图示,其仅具有两个导体。然而,应该意识到的是,在此公开的任何应用可电连接并保护多个导体,如图5中所示的。还应当假设,尽管没有示出,导体之一为接地或护罩导体,或具有到地的低阻抗路径的另一类型的导体,同时至少一其它导体为信号或线路导体,其中VVM100将过电压瞬态从线路或信号导体分流到接地或护罩导体。此外,应用120、125和130均被图示成最后的形式,其中VVM100对周围环境是开放和暴露的。
布置120示出了具有导体122和124的电路,两导体由间隙间隔开。每一导体122和124经本领域技术人员所公知的任何方法固紧到衬底110。衬底110可以是上述的任何衬底,如刚性的PCB衬底或柔性电路型的衬底。应用或电路120不同于电路115,因为VVM100不粘结到衬底110。为形成该电路,支撑VVM100在间隙的上面直到VVM100固化和干燥在适当的位置是必要的。在另一实施例中,上层或涂层还可粘结到VVM100,其中涂层使在自固化状态的VVM100能够放置于导体122和124的上面。重要地,VVM100在间隙区域不须粘结到衬底110,以使VVM100的功能正常。在VVM100的分流能力方面,电路120以与图4中所示的电路115一样的方式准确地起作用。
电路或布置125示出了VVM可实质固紧到衬底110并从而形成缓冲或垫,导体127和129被放置于其上。电极127和129由间隙分开。当VVM已固化到其不会由于导体的重量或由于应用处理而变形的点时,电极可稍微沉入VVM100,如图所示,或者电极127和129可被放置在VVM之上。电路或布置125与电路115和120一样工作。
电路或布置130示出了一实施例,其中导体之一即导体132固紧到衬底110,而第二导体134悬在VVM100层的上面,类似于布置125的电极127和129。电路130中的间隙为垂直安排的间隙。布置115、120和125中的间隙为水平安排。应该意识到的是,VVM100均一样的工作,无论间隙是“XY”向型的间隙,如布置115、120和125所具有的,还是“Z”向型的间隙,如布置130中所示的。
图6的每一布置在某些电学结构中是令人想要的并具有某些电学器件。具有本发明的绝缘粘合剂50的VVM100提供了以不同方式关于衬底110布置电极的灵活性,其中VVM100不要求额外的装置或外壳来在机械上保持VVM或将其电连接到导体。例如,许多VVM装置要求将VVM保持在适当位置的外壳或壳。许多VVM还包括布置在外壳或壳上的一对端子,其必需被焊接到形成于衬底表面上的一对衬垫上。要求另外的迹线或接合线自衬垫延伸以连接信号线或接地线。
参考图7,其示出了另外的电路或布置135和145。布置135类似于布置130,因为在上电极137和下电极139之间有“Z”向间隙,其中下电极139固紧到衬底110。然而,在布置135中,上电极137从下电极139横向地或水平地延伸并向下转变方向以粘结到衬底110。水平的偏移产生了第二间隙。当过电压发生时,瞬态峰值可通过VVM或“Z”向或“XY”向传导,取决于哪一路径具有更低的阻抗。除此之外,布置135与其它布置一样工作。
布置145类似于图5的柔性电路实施例,除了导体146和149被布置在刚性衬底110上之外。在一实施例中,不固定的导体147为接地导体,使得布置为纯粹地“Z”向应用。在另一实施例中,导体146和149均为接地导体,其使得应用为“Z”向及“XY”向应用,其中电压从导体146或149之一释放到不固定导体147,并向下到其它导体,其为接地导体。
参考图8,其示出了另一布置或电路140。电路140包括两个衬底110,其可以是刚性衬底如FR-4电路板,或柔性衬底,如聚酰亚胺或Kapton。第一电极142被固紧到上衬底110,而第二电极143固紧到下衬底110。电极142和143在“Z”向由VVM100间隔开。布置140在柔性电路中是有用的,其中衬底110为Kapton或聚酯薄膜外层,且其中上导体142为信号导体,下导体143为接地导体(例如)。在此,多个信号导体可被应用到上或下衬底110,其中瞬态峰值垂直或水平行进,取决于具有瞬态峰值的信号迹线位于相对于接地导体的什么地方。
参考图9,先前的布置或电路115、120、125、130、135和145被示出为嵌入在多层PCB之内。即,衬底110组成一层PCB。第二衬底144(不按比例)组成多层PCB的另一层。层144形成在各个电路周围,以产生适于用于安装电学元件113和电路板迹线的光滑外表面。图9的结构特别有用,因为无论怎样,衬底110和144的外表面不被电路保护抑制。图9中所示的实施例可包括两层以上的层,因而该实施例可包括具有布置115、120、125、130、135和145中的一个或多个的、多个不同的衬底。
参考图10,其示出了具有电路115、120、125、130、135和145的类似布置,其中代替为多层PCB的一部分的,该布置被防护涂层148覆盖。即使VVM100自固紧到在某些地方的各个电极和衬底110,但因为多种原因,还是希望应用防护涂层148。例如,如图5中所示的柔性电路,导体可能在某些点被暴露并要求电绝缘。防护涂层148可以是本领域技术人员所公知的任何类型的涂层。在一实施例中,涂层包括上述用于图5中的柔性电路的任何涂层,如银墨水、干膜可感光覆盖膜、喷射液体可感光覆盖膜、或“涂敷”型涂层。
使用直接应用的VVM的器件参考图11,本发明的VVM100可被采用在器件中。在图11中示出的一种类型的器件包括符合Deutsches Institut fur Normung eV(″DIN″)标准的各种连接器。圆形的DIN连接器150被示出。应该意识到的是,本发明适于微型DIN连接器、双行拉伸的DIN连接器、防护的DIN连接器等。本发明可被实施在插头或插座中。连接到线缆的垂直的、水平的及直列式连接器也可被采用。除此之外,DIN连接器可以是面板安装的。
连接器150包括由任何适当材料构成的连接器体152。在插头和插座实施例中,连接器体固紧一圆形壁154或多个直壁(未示出),其至少部分包围多个信号导体156。导体156从衬底158以实质上与壁154平行的方向延伸。壁154和导体156按公知的方式插入配对的内孔DIN连接器中。
在图示的实施例中,连接器体152为插头,导体156为插脚。在另一实施例中(未示出),连接器体为插座,且信号导体为从配对的连接器接收插脚的插孔。连接器150可被配置使得连接器体152固紧任何数量的输入/输出导体156。一个或多个外部的信号导体156可以是接地导体。然而,正常地,提供单独的(在此中央的)接地或护罩接地导体160。为了使图示的实施例适当地分流瞬态电压峰值到接地导体160,在输入/输出导体156和接地导体160之间的间隔应小于输入/输出导体156之间的间隔。
在一实施例中,衬底158为PCB,如FR-4电路板。在另一实施例中,衬底158包括另一类型的绝缘材料,如聚酰亚胺或塑料。衬底158装配在连接器体152内,使得连接器150可被适当地放置在配对的连接器中。在一实施例中,衬底158定义孔,其使导体156能够从衬底158的背面延伸穿过到图示的正面。
至少一定量的VVM100被直接粘结或固化到衬底158。如图所示,本发明的VVM100将信号导体156直接连接到接地导体160,不需要迹线或接合电线。在另一实施例中,一个或多个导体156或另外加上接地导体160可接触个别量的VVM100,其中,一个或多个迹线或接合电线将VVM100个别固紧到另一VVM量或另一导体。在一实施例中,迹线为蚀刻在PCB衬底158上的铜线,如现有技术所公知的。信号迹线可与单一信号导体156和/或接地导体160中之一或二者通信。
接地导体160可采用几种形式,在此图示为中央放置的引脚160。在每一结构中,胶粘的粘合剂50使VVM100能够直接粘结到金属导体。接地导体160可按需用作电路接地或护罩接地。
如图所示,至少一定量的VVM100保护一个或多个信号导体156免遭瞬态电压峰值。受保护的连接器150依次可保护其它自连接器150电学上游或下游的电学器件。
参考图12,具有整体胶粘的粘合剂50的VVM100与带缆连接器170一起使用。VVM100可与任何类型的带缆连接器一起使用,如阳的、阴的、直引线、直角、直引线/绕接和直角/绕接式的接插件、D-连接器、PCB连接器、卡片边缘连接器、倾角连接器、引脚连接器或终端跳接器。VVM100可被实施在带连接器170的插头或插座中。
带连接器170包括由任何适当材料构成的连接器体172。在插头和插座实施例中,连接器体172至少部分包围多个导体176。导体176实质上与连接器体172的壁平行。如果连接器体172为插头,则导体176为插脚。如果连接器体172为插座,则导体176为接收插脚的插孔。带连接器170可固紧任何数量的输入/输出信号导体176。一个或多个导体176可以是接地导体。正常地,提供单独的接地或护罩接地186并提供适当的间隔使得电压瞬态从信号导体176之一消散到接地带187,而不是到另一信号导体176。
在连接器体172和第二配对的体178之间有带缆180。带缆180可以是任何适当的线缆,包括灰色的扁平缆、彩色编码的扁平缆、双绞扁平缆及圆护套/护罩扁平缆。在图示的实施例中,第二体178为装配在插座体172上的插头。位于插头体178内的引脚182刺穿线缆180的绝缘层并产生与线缆内的导体的电接触。
在图示的实施例中,至少一及可能大量VVM100通过粘合剂50的实质胶粘的特性而直接固紧到插座体172和导体176。插座体172包括衬底184,其可以是聚合物、PCB材料如FR-4或聚酰亚胺。VVM100可被施加到衬底184的顶面或底面。在另一实施例中,迹线被通过任何适当的方法应用到衬底184。迹线将信号导体176电连接到VVM100,将VVM100连接到接地导体186。
如图所示,至少一定量的VVM100保护带缆连接器170的一个或多个信号导体176免遭瞬态峰值。即,信号导体176可将过电压分流到接地引脚186。带连接器170依次保护自连接器170电学上游或下游的电学器件。
参考图13,具有整体胶粘的粘合剂50的VVM100与数据或电信连接器190一起使用。VVM100可与任何类型的数据/电信连接器一起使用。在一实施例中,连接器190为8导体RJ-45连接器,通常用在数据网络中,如局域网(LAN)、广域网(WAN)及类似的网络。在另一实施例中,连接器190为6导体RJ-11连接器,通常用在居民及某些商业电话系统中。
连接器190包括体192,在图13中,其大部分已被切掉以示出由VVM100提供的电路保护。体192由任何适当的材料构成,在一实施例中,其为塑料。体固紧大量信号导体194。信号导体194被适当地弯曲以与配对的插头的信号导体(未示出)接合。插头以箭头196的方向插入数据/电信体192中。当插头插入体192时,信号导体194的弹簧部分198弯曲使得弹力被施加到配对的导体之间的电连接。
在图示的实施例中,导体194的相对端202与一批或多批VVM100直接电通信,VVM100经实质胶粘的粘合剂50直接施加到衬底204。VVM100将信号导体194直接电耦合到接地导体206。如上所述,接地导体206被适当地放置,其与每一信号导体194之间的间隔小于信号导体194之间的间隔。在另一实施例中,导体194的端202与VVM100粘结到其的迹线电连接。在另一实施例中,VVM100经接合电线电连接到信号导体194的端202。
类似地,在一实施例中,VVM100直接粘结到接地导体206。在另一实施例中,接地导体206经固紧到衬底204的一个或多个迹线与VVM100电通信。在另一实施例中,VVM100经接合电线与接地导体206电通信。
在上述的方式中,一个或多个或所有信号导体194均可被保护而免受瞬态电压。由于LAN或WAN通常包围接地点之间的很大的距离,接地点之间的ESD和EOS是严重的问题。装置如空调、加热器、电梯、复印机及激光打印机等将在具有LAN的建筑中导致高电平的峰值和瞬态。受保护的数据/电信连接器190保护通过连接器190连接到网络的装置免遭在网络数据线上出现的瞬态电压。类似的,连接器190保护数据线免遭源自连接到网络的装置的过电压事件。
参考图14和15,其示出了应用到电信连接器的VVM100的其它实施例。图14和15中所示的结构代表任何类型的数据/电信连接器。在图14中,只示出了连接器210的有关部分。连接器210包括多个具有弯曲端214的信号导体212,其中弯曲端214与如上所述的导体或数据/电信插头(未示出)配对。插头沿箭头196的方向行进,其插入在连接器210中。
体216,其为了图示的目的被切掉,位于护罩218内,其由任何适当的传导材料构成。图14的视图通常来自图13所示的连接器的下面。因此,护罩218装配在导体212的上面及背面。
护罩确定一个或多个切口弹簧接头220。即,薄的金属护罩218被沿每一接头220的三侧压印或切开,其中接头220沿边缘222向内弯曲。接头220可向内弯曲任意的角度,但小于90°。当护罩218放置在导体212的上面时,接头220接触导体212并向0°弯回。因此,接头220被偏压以保持与导体212的电接触。
一批具有自固化实质胶粘的粘合剂50的VVM100被直接施加到接头220及接头220和导体212之间。VVM100在其高阻抗状态用作断路,使得几乎没有电流在正常情况下能从导体212流到地218。当ESD瞬态出现时,VVM100转换到其低阻抗状态,使得瞬态峰值分流到护罩接地218。
在一实施例中,模板被用于将多批VVM100应用到多个接头220。在另一实施例中,模板被用于将多批VVM100应用到一个接头220,其为弹簧载荷并导致与多个导体212接触。在另一实施例中,一层VVM100材料首先自粘结到护罩218的大部区域,其中多个接头220接着被压印使得每一个均具有各自的VVM100。在另一实施例中,一层VVM100首先自粘结到护罩218的大部区域,其中一个或多个接头220被压印,每一接头与多个导体212接触。
参考图15,其为图14的侧视图,图14的连接器210的一个变化被示作新连接器230。如前所述,体216被部分切掉以显示护罩218的一部分。护罩218已被压印使得接头220沿护罩218和导体212之间的边缘222向内弯曲。接头包括一批具有本发明的自胶粘的粘合剂50的VVM100。
信号导体212具有弯曲的弹簧部分214,其适于与插头(未示出)的导体配对。在一实施例中,耦合电容器232被布置在接头220上的VVM100和信号导体212之间。在优选实施方式中,接头220、VVM100、电容器232和信号导体212串联连接。电容器232具有适于处理2500伏特DC电压的电容和额定电压。即,耦合电容器232被设计来封闭高电平DC电压,如那些在高电位[HI-POT]测试期间强加的电压,LAN或以太网系统可能暴露给这样的电压。
VVM100还粘结到电容器232并与其电接触。电容器232还可被焊接或者电连接到导体212。接头220的弹簧载荷还使电容器232保持在合适的位置。电容器232和VVM100的顺序可被颠倒。还应意识到的是,在图14和15中,压印的接头200可另外与使用本领域技术人员所公知的任何VVM的VVM装置(未示出)一起使用。
图11-15示出了通过粘合剂50,VVM100可被直接施加到衬底,其中衬底被使用在一件电学设备中,如连接器。除了所示的各种连接器以外,应该意识到的是,衬底可被放置在其它类型的连接器中,如数字视频接口(DVI)连接器、模数转换器(ADC)连接器等,及其它类型的设备,如音频耳机、可携式摄像机、电视、收音机、个人邮件装置、计算机等。
应该理解的是,对本领域那些技术人员而言,对在此描述的优选实施例进行各种变化和修改是很显然的。这样的变化和修改可在不脱离本发明的实质和范围的情况下进行且不缩小其伴随的优点。
权利要求
1.一种用于提供保护以免受电过载的合成物,包括绝缘粘合剂;具有掺杂的内核及保持在内核上的涂层的半导粒子,半导粒子保持在粘合剂中;及保持在粘合剂中的传导粒子。
2.根据权利要求1所述的合成物,其中绝缘粘合剂包括聚合树脂。
3.根据权利要求1所述的合成物,其中掺杂的内核包括硅及掺杂剂材料。
4.根据权利要求3所述的合成物,其中掺杂剂材料包括选自下组的至少一成分锑、砷、磷及硼。
5.根据权利要求1所述的合成物,其中掺杂的内核具有约5微米到约100微米的平均大小。
6.根据权利要求1所述的合成物,其中涂层具有约100到10000埃的平均厚度。
7.根据权利要求1所述的合成物,其中涂层包括选自下组的至少一材料二氧化硅、外延硅及玻璃。
8.根据权利要求1所述的合成物,其中传导粒子实质上由单一材料组成。
9.根据权利要求1所述的合成物,其中传导粒子包括氧化涂层。
10.根据权利要求1所述的合成物,其中传导粒子包括选自下组的至少一材料铝、黄铜、碳黑、铜、石墨、金、铁、镍、银、不锈钢、锡、锌及其任何组合。
11.根据权利要求1所述的合成物,其中传导粒子具有约5微米到约50微米的平均大小。
12.根据权利要求1所述的合成物,其被配置和安排以直接应用,而不需封装在器件中。
13.根据权利要求1所述的合成物,其被配置和安排以提供在器件中。
14.根据权利要求1所述的合成物,其包括选自下组的至少一另外类型的粒子绝缘粒子、半导粒子及钨粉。
15.一种用于保护以免受电过载的合成物,包括绝缘粘合剂;保持在粘合剂中的掺杂的半导粒子;及保持在粘合剂中的传导粒子,传导粒子实质上由单一材料组成,且其中粘合剂、半导粒子及传导粒子被配置和安排以被层压在电极间隙内。
16.根据权利要求15所述的合成物,其中掺杂的半导粒子包括内核和外壳。
17.根据权利要求15所述的合成物,其中传导粒子包括选自下组的至少一材料铝、黄铜、碳黑、铜、石墨、金、铁、镍、银、不锈钢、锡、锌及其任何组合。
18.根据权利要求15所述的合成物,其被配置和安排以直接应用,而不需封装在器件中。
19.根据权利要求15所述的合成物,其被配置和安排以提供在器件中。
20.根据权利要求15所述的合成物,其包括选自下组的至少一另外类型的粒子绝缘粒子、半导粒子及钨粉。
21.一种用在电过载合成物中的粒子,包括掺杂的半导内核;及包围内核的惰性涂层。
22.根据权利要求21所述的粒子,其中掺杂的内核包括硅及掺杂剂材料。
23.根据权利要求22所述的粒子,其中掺杂剂材料包括选自下组的至少一成分锑、砷、磷及硼。
24.根据权利要求21所述的粒子,其中掺杂的内核具有约5微米到约100微米的平均大小。
25.根据权利要求21所述的粒子,其中涂层具有约100到10000埃的平均厚度。
26.根据权利要求21所述的粒子,其中涂层包括选自下组的至少一材料二氧化硅、外延硅及玻璃。
27.一种用在电过载合成物中的粒子,包括内面的硅部分;及外面部分,其包括选自下组的至少一材料二氧化硅、外延硅及玻璃。
28.根据权利要求27所述的粒子,其中外面部分经加热控制的环境而生长。
29.根据权利要求27所述的粒子,其中外面部分通过使用流化等离子反应器而得以施加。
30.一种制造电过载合成物的方法,包括步骤将硅掺杂到所需要的电阻率;使掺杂的硅经受一段时间的加热以在掺杂的硅上生长氧化层;及将所得的硅及氧化物材料与粘合剂混合。
31.根据权利要求30所述的方法,其包括通过将聚合物溶解在溶剂中而准备绝缘粘合剂的步骤。
32.根据权利要求30所述的方法,其包括将掺杂的硅研磨到适当的粒子大小的步骤。
33.根据权利要求30所述的方法,其包括使掺杂的硅经受约500℃到约1500℃的温度。
34.根据权利要求30所述的方法,其包括使掺杂的硅经受约15分钟到约3小时的加热。
35.根据权利要求30所述的方法,其包括使掺杂的硅经受多次加热和冷却间隔。
36.根据权利要求35所述的方法,其包括在真空条件下冷却掺杂的硅。
37.根据权利要求35所述的方法,其包括将所得的硅及氧化物材料连同选自下组的至少一材料混合在粘合剂中传导粒子、传导核/壳粒子、绝缘粒子、半导粒子及钨粉。
全文摘要
本发明提供压变材料(VVM),其包括配制来实质粘结到传导及非传导表面的绝缘粘合剂。粘合剂因而及VVM是自固化的并可应用成容易涂开的形式,其在使用前干燥。粘合剂消除了需将VVM放置在单独装置中的需要及单独印刷电路板衬垫的需要,其中衬垫电连接VVM。粘合剂及VVM可被直接应用于许多不同类型的衬底,如刚性(FR-4)迭层板、聚酰亚胺或聚合物。VVM还可直接应用到不同类型的、放置在装置内的衬底。在一实施例中,VVM包括具有核的掺杂的半导粒子,其可以是硅,及惰性涂层,其可以是氧化物。粒子与传导粒子一起混合在粘合剂中。
文档编号H05K1/02GK1637960SQ20041010248
公开日2005年7月13日 申请日期2004年12月23日 优先权日2003年12月23日
发明者埃得温·詹姆士·哈里斯, 图沙尔·维亚斯, 史蒂文·J·惠特尼 申请人:力特保险丝有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1