专利名称:氮化铝接合体及其制造方法
技术领域:
本发明涉及适用于在半导体制造装置中,用于载置和处理半导体晶片的板状加热装置或静电吸盘的氮化铝接合体。具体地,涉及具有2片氮化铝烧结体板之间夹有金属层并接合在一起的接合结构,特别是可以均匀地对半导体晶片进行处理且耐久性良好的氮化铝接合体。
背景技术:
在对硅晶片等半导体晶片实施成膜或刻蚀处理等的半导体制造装置中,使用陶瓷的板状烧结体作为载置该半导体晶片的载置台,该陶瓷的板状烧结体的内部嵌入了作为加热装置或电极而发挥作用的金属层。例如,嵌入了作为加热装置的金属层的上述板状烧结体被用作板状加热装置,而嵌入了电极的上述板状烧结体被用作静电吸盘。另外,在静电吸盘上,也有与电极一起嵌入作为加热装置工作的金属层的情况。
近年来,具有良好的导热率的氮化铝烧结体被作为用于上述用途的陶瓷。
另一方面,近年的技术进步所带来的高集成化越来越要求高精度,同时,所处理的半导体晶片也在大型化,例如,在进行表面成膜处理时,要求在大面积的半导体晶片表面上高精度地制成均匀的薄膜,并且在刻蚀处理时,要求对形成于半导体晶片上的大面积的各种薄膜均匀地进行刻蚀。
在此情况下,在用作上述板状加热装置或静电吸盘的氮化铝的板状烧结体上,嵌入的金属层需要从载置在该烧结体上的半导体晶片开始算起,以均匀的厚度存在。
嵌入了金属层的氮化铝的板状烧结体的制造方法可以采用如下方法,即制作出嵌入了金属层的氮化铝制的生片(green sheet),并对该生片进行烧制的方法,但在上述方法中,会发生因烧结时的尺寸变化而造成的金属层的断线或变形的问题。因此,通常采用的方法是首先制成板状或薄片状的烧结体,并将2片烧结体板隔着金属层接合起来。即,通过该方法所获得的氮化铝的板状烧结体是2片氮化铝烧结体板之间夹有金属层而接合在一起的接合体,有效地避免了因烧结时的尺寸变化而造成上述问题。
但是,当利用接合法制造氮化铝接合体时,使用粘合剂来接合2片烧结体板。然而,现有所使用的板粘合剂的粘合温度高,会因粘合时的加热而产生烧结体板的变形,并随之发生金属层翘曲的问题。
因此,提出了使用降低了粘合温度的粘合剂来改善翘曲的方法(参见特开2000-252045号公报)。
上述方法虽然可以在一定程度上改善接合体内的金属层的翘曲,但仍然有进一步改善的余地。另外,虽然保证了氮化铝层与金属层之间的充分的接合强度,但仍然存在因热滞后(熱履歴)所造成的氮化铝烧结板之间直接相对的部分的接合强度随时间而下降的问题。
发明内容
因此,本发明的目的在于,获得一种2片氮化铝烧结体板之间夹有金属层并接合在一起的氮化铝接合体,该氮化铝接合体内部的金属层的翘曲被抑制在极低的水平,并且具有高接合强度。
为了解决上述问题,本发明人进行了深入的研究。结果,在特定压力下,通过特定的温度控制,对氮化铝烧结体板的接合进行2步的加热,成功获得了无需粘结剂的、具有高接合强度且显著抑制了内部金属层的翘曲的氮化铝接合体。另外,通过对由上述方法获得的接合体进行分析,发现由上述方法所产生的微小的空穴特征性地残留在氮化铝烧结体的接合界面上,从而完成了本发明。
即,本发明提供一种由不使用粘合剂而相互接合的2片氮化铝烧结体板和在其接合界面的一部分上形成的金属层所构成的氮化铝接合体(以下也称为AlN板状接合体),其特征在于,从穿过上述接合体的中心的侧剖面观察,在上述接合界面的上述烧结体板相互之间直接相对的直接接合区域中,存在沿接合界面的长度平均为0.5~4μm的多个空穴,且该空穴形成非接合部分,对上述侧剖面通过下式(1)所计算出的非接合率Q平均在0.1~0.5%的范围内。
非接合率Q=(X/Y)×100......(1)式中,X为以存在于直接接合区域的上述空穴的长度L的合计值表示的上述非接合部分的接合界面方向的长度;Y为存在上述空穴的直接接合区域的长度。
本发明提供一种氮化铝接合体的制造方法,其特征在于,包括以下步骤准备2片氮化铝烧结体板的步骤;在一片上述氮化铝烧结体板的表面的一部分上形成厚度小于等于20μm的金属层的步骤;将另一片上述氮化铝烧结体板重叠在上述一片氮化铝烧结体板上使上述金属层位于其间并形成层积体的步骤;以5~100kg/cm2的压力对上述层积体施加压力,并在1650~1700℃的温度下加热0.5~4小时的步骤;然后,继续以上述压力进行加压,并以大于1700℃、小于等于1800℃的温度对上述层积体加热2~8小时的步骤。
由于具有根据上述特定的接合方法而形成的特征性的接合界面结构,本发明的AlN板状接合体将金属层的翘曲抑制在很小的程度,所以当对该金属层施加电压并在电介质中形成电场时,能够形成在金属层上的任何地方都一致的电场。
另外,由于是未使用粘合剂而接合的,所以具有对热滞后的耐久性,并且,有望具有更高的工作可靠性。
本发明的AlN板状接合体可以非常有效地用作半导体制造装置上所使用的静电吸盘以及板状加热装置。
图1为示出本发明的AlN板状接合体的典型方式的部分剖切的剖视图。
图2为穿过图1的AlN板状接合体的中心O的侧剖面之主要部分的示意图。
图3为说明AlN板状接合体中产生的金属层的翘曲的示意图。
具体实施例方式
下面,根据附图对本发明进行详细说明,但本发明并不限于附图所示的形态。
(AlN板状接合体)图1和图2中的本发明的AlN板状接合体具有不使用粘合剂而将2片氮化铝烧结体板1-a、1-b接合起来的结构,其接合界面P(见图2)的一部分中存在金属层2。另外,虽然未图示,但烧结体板1-a或1-b中形成有通孔,在上述通孔的内部填充有导体糊剂等、构成与金属层2导通的结构。另外,该AlN板状接合体的平面形状通常为圆形或如正方形等矩形,且金属层2在使用于加热板或静电吸盘时形成电极、加热装置等电路图案,既可以以图1所示的简单铺满(ベタ)的图案存在,也可以是以线状的图案存在。
金属层2可以由钨、钼、铂、钛、铜等构成,但并不限于此,其厚度小于等于20μm,优选在5~15μm的范围内。另外,金属层2所占的比例通常为烧结体板1-a、1-b的接合面的50~90%,尤其为60~80%左右。
另一方面,分别适当地确定接合前的氮化铝烧结体板1-a、1-b的厚度,以便在接合后获得具有期望厚度的AlN板状接合体。例如,烧结体板1-a、1-b的厚度可以相同,也可以不同。通常,优选载置半导体晶片一侧的烧结体板的厚度比另一侧薄,优选确定烧结体板1-a、1-b的厚度,使从一个烧结体板的表面(载置半导体晶片的一侧的表面)开始算起的金属层2的深度为板状接合体整体厚度的0.1~50%。上述AlN板状接合体的整体厚度因用途的不同而多少会有差异,但通常为1~100mm。
本发明的AlN板状接合体是不使用粘合剂而通过下述的2步加热,将上述氮化铝烧结体1-a、1-b隔着金属层2接合起来的,由于是通过上述方法制造的,所以具有以下的特性。
即,本发明的AlN板状接合体的接合强度可以通过剪切力测试仪(die-shear tester)所测量的抗剪强度进行评价,在烧结体板之间为9.5~11.0kg/mm2,尤其为10.0~11.0kg/mm2,在烧结体板-金属层之间为2.5~4.0kg/mm2,尤其为3.0~4.0kg/mm2。
由于在本发明中,以上述的高接合强度构成接合体,所以与使用粘合剂制成的接合体相比,与不同材料的界面较少(不存在粘合剂层),因此具有因反复的热滞后而造成的接合强度的下降极小的特性。同时,在反复进行了100次的从25℃至350℃的升降温的热滞后之后,本发明的AlN板状接合体显示了金属层2与氮化铝烧结体的接合面的抗剪强度可达上述热滞后之前的抗剪强度的90%以上的极其良好的耐热滞后特性。
本发明的AlN板状接合体的最大特征在于金属层2的翘曲的显著减少。如图3所示,测量与金属层2成直角的横切面上,连接金属层2的端点的线Z(单点划线)与金属层2的最大距离(R;μm),利用端点间的长度(T;mm)并通过下式(2)进行求解,所求得的值为翘曲(W)。
W(μm/10mm)=(R/T)×10......(2)本发明的AlN板状接合体示出了上述翘曲为5~25μm/10mm、尤其是10~20μm/10mm的优良特性。
上述优良的低翘曲特性是使用粘合剂的现有AlN板状接合体所无法达到的,是不使用粘合剂而通过下述的2步加热的特殊接合技术所初次实现的值。
由于本发明的接合体通过下述的特殊接合技术实现了翘曲的减少,所以如图2所示,由穿过接合体中心O的侧剖面观察,在接合界面P的上述烧结体板之间直接相对的直接接合区域具有特有的接合结构,在该接合结构中存在着沿接合界面的长度平均为0.5~4μm的多个空穴。即,上述空穴分布在整个的直接接合区域中,上述长度小于5μm,并且该空穴具有近似于球形的形状,其沿接合界面方向的长度L与垂直于接合界面的长度Lp之比(L/Lp)平均为0.8~2,尤其为1.0~1.5。由于在本发明的AlN板状接合体中存在上述空穴,所以烧结体板1-a与1-b的一部分是非接合的,对上述侧剖面的任意多个部位的非接合率Q通过下式(1)计算,其值平均为0.1~0.5%,尤其为0.2~0.4%。
非接合率Q=(X/Y)×100......(1)式中,X为以存在于直接接合区域的上述空穴的长度L的合计值表示的上述非接合部分的接合界面方向的长度;Y为存在上述空穴的直接接合区域的长度。
另外,可以通过将上述板状接合体切断以暴露出上述侧剖面,并用电子显微镜观察该切断面的方式来测量上述空穴的尺寸以及非接合率等。
(AlN板状接合体的制造方法)下面说明具有上述结构的本发明的AlN板状接合体的制造方法。
该制造方法是,预先准备AlN烧结板,不使用粘合剂将夹着金属层的2片AlN烧结板加热接合的方法,简单地说,其显著特征是,通过2步加热进行上述加热接合。即,在上述烧结体的热膨胀比较小的低温区域进行第1步加热接合,此时,烧结板相互之间发生局部的共烧结,将2片烧结板临时固定在一起。接着进行的第2步加热接合是在温度高于第1步加热接合的高温区域进行的,在保持由第1步加热接合而固定的状态下,进行进一步的共烧结而形成牢固的接合部分。
由于通过上述的2步进行加热接合,逐渐地进行局部的共烧结并形成最终的接合部分(图2所示的直接接合区域),所以在生长的共烧结部分间残留有微小的近似于球状的空穴。该空穴以上述的尺寸在整个接合部分大致均匀地分布,且该空穴形成非接合部分,接合界面的以上述式(1)表示的非接合率Q处在规定的范围内。据此,由于具有不使用粘合剂进行接合的上述接合结构,本发明的AlN板状接合体具有高接合强度和耐热滞后性,并且有效地抑制了金属层的翘曲。此外,由于不使用粘合剂,所以不会发生明显的晶界迁移,从而不易发生翘曲。
例如,在氮化铝烧结体的烧结温度附近实施1步加热接合时,由于接合的进行而残留了非接合部分,但由于在接合时的接合界面具有自由度,该自由度发生在冷却步骤中以较高的温度对接合界面的固定,所以在冷却后接合体易发生变形,从而发生翘曲。另外,由于在接合时的接合界面具有自由度,所以易于发生空穴的移动或变形,造成较大的空穴发生偏离,或出现很多在平面方向上被挤压的形状(在接合方向上的长度L较大)的空穴,上述的非接合率Q的值变得相当大,造成接合强度或耐热滞后特性的下降。
AlN烧结体板1-a、1-b的制造在本发明中,应加热接合的AlN烧结体板其自身可以通过公知的方法制成,例如,将由AlN粉末构成的烧结用粉末与有机粘合剂混合来调制成造粒粉末或糊剂等成形材料,将该成形材料成形为薄片状,将所得的生片进行脱粘合剂处理,并通过烧制来制造。
在上述烧结用粉末中,还可以视需要添加Mg、Ca、Sr等碱土金属的氧化物或Y等稀土元素的氧化物等作为助烧结剂。上述助烧结剂的添加量通常小于等于1重量%,优选小于等于0.5重量%。
另外,作为有机粘合剂,通常使用聚乙烯醇缩丁醛、聚甲基丙稀酸甲酯、羧甲基纤维素、聚乙烯吡咯烷酮、聚乙二醇、聚环氧乙烷(polyethylene oxide)、聚乙烯、聚丙烯、乙烯-醋酸乙烯酯共聚物、聚苯乙烯、聚丙烯酸等。虽然根据种类的不同而不同,但该有机粘合剂的通常使用量为每100份上述烧结用粉末重量使用0.1~30份重量的有机粘合剂。
另外,在调制成形用材料时,可以视需要适量使用长链烃醚等分散剂、甲苯、乙醇等溶剂、和邻苯二甲酸等可塑剂。
使用上述成形用材料的成形用薄片(生片)的制造是通过挤压成形法、刮粉刀(doctor blade)法、压制成型法等公知的成形法来进行。脱粘合剂处理通常是通过将生片在空气中加热至300~900℃左右;烧制是在脱粘合剂处理后将生片在惰性气体气氛(例如氮气气氛)中加热至1700~1900℃的温度来进行的。烧制时间通常是当采用阿基米德法得到的相对密度达到大于等于98%时的时间。
优选对上述所获得的AlN烧结体板进行研磨加工,使其表面粗糙度Ra(JIS B 0601)为0.1~0.8μm,优选为0.2~0.6μm,以提高金属层2与该烧结体板之间的附着性,并且通过不使用粘合剂而进行的加热接合获得充分的接合强度。
金属层2的形成在上述制成的AlN烧结体板1-a、1-b中的一者上形成金属层2。
上述金属层2可通过隔着规定的掩模的离子电镀等方法将例如上述的金属材料形成为规定厚度(小于等于20μm,优选为5~15μm)来形成。另外,也可以通过将在适当的有机粘合剂或有机溶剂中分散了金属材料的导体糊剂以规定的图形形状涂敷在烧结体板表面上,并进行制烧来形成金属层2。
加热接合在本发明中,将上述制成的2片AlN烧结体板(其中一者上形成有金属层2)重叠起来使其间具有金属层2,并以5~100kg/mm2,优选为10~30kg/mm2的压力进行压接,同时进行2步的加热接合。另外,该加热接合可以在大气中或惰性气体气氛(氮气气氛中)中的任何气氛下进行,但为了防止金属材料的氧化,优选在惰性气体气氛中进行。
第1步的加热接合是在1650~1700℃,优选1650~1680℃的温度下,加热0.5~4小时,优选1~2小时。如上所述,该阶段的加热接合是在AlN烧结体的热膨胀较小的低温区域进行的,烧结体板相互之间发生局部的共烧结,2片烧结体板被临时固定。这样,在该阶段的加热接合停止后,2片烧结体板之间相接合区域的抗剪强度通常为相当低的1.0~4.0kg/mm2左右。
在上述第1步加热接合后,保持上述压力,进行第2步加热,以获得想要的AlN板状接合体。此时的加热温度为大于1700℃、小于等于1800℃,优选在1750~1790℃范围;加热时间为2~8小时,优选4~6小时。即,在该第2步加热中,在保持第1步加热接合的固定状态下,进一步进行共烧结而形成接合部分。因此,在2片烧结体板直接接合的区域中,分布有空穴,由该空穴产生非接合部分。但是,上述空穴大致为球形,而且全部为相当一致的微小形状,上述非接合率Q处于很小的范围内,从而保证了较高的接合强度,并有效地抑制了金属层2的翘曲。
在上述2步的加热接合中,当第1步的加热温度高于上述范围时,在所得到的板状接合体的金属层2中发生较大的翘曲,且该接合体自身也会发生大的翘曲。另外,与本发明相比,由上述条件所得到的接合体的空穴长度的比(L/Lp)很大,会产生很多的接合界面方向的长度较大、呈细长形状的空穴,使非接合率Q变得很大,导致接合强度大幅度降低。
另外,当第1步的加热温度低于上述范围,或加热时间短于上述范围时,临时固定不充分,依然产生很多教大的空穴,使非接合率Q变大,从而使接合强度降低或发生翘曲。
另外,当第1步的加热时间超过上述范围时,形成金属层2的金属扩散到烧结体板中,使接合板内的金属层2的分布不一致,不适合用于半导体制造装置中所使用的静电吸盘或加热装置。
当第2步的加热温度高于上述范围时,形成金属层2的金属扩散到烧结体板中,使金属层2的分布不一致。
当第2步的加热温度低于上述范围时,共烧结部分的生长不充分,无法获得充分的接合强度。即,在该情况下,上述的非接合率Q当然为极大的值。
当第2步的加热时间短于上述范围时,共烧结部分的生长不充分而发生接合强度下降,当加热时间超过上述范围时,会发生很大的翘曲。
由于通过上述的2步接合所得到的本发明的AlN板状接合体没有翘曲,金属层在接合板中一致分布,且接合强度高、耐热滞后性优良,所以适用于半导体制造装置中所使用的静电吸盘或加热装置。
实施例下面通过列举实施例和比较例来详细说明本发明的效果。本发明当然并不限于下面说明的实施例。通过下面的方法进行实施例和比较例的各种测量。
(1)非接合率Q从AlN接合体的中心O朝向外测、以90°角度的间隔截取4处的剖面,用扫描电子显微镜(SEM)以600倍的倍率对该剖面的烧结板之间的界面进行连续拍摄照相。根据该照相,分别求出存在于烧结板之间直接接合的接合界面上的各空穴沿接合界面方向的长度Ln(n=1~N,N为存在于界面上的空穴的总数),用下式分别求出各剖面的非接合率Q,并示出其平均值。
非接合率Q(%)=Σn=1NLnY×100]]>(其中,Y为进行SEM观测的直接接合区域的总长)(2)空穴的长度比(L/Lp)测量在上述各个剖面上沿上述空穴的接合界面方向的长度(L)和垂直于该接合界面的长度(Lp),求出其比值(L/Lp),并示出了其平均值。
(3)金属层翘曲(W)的测量如图3所示,测量将AlN板状接合体分割为2部分的各剖面上、距离连接金属层的端点的线Z(单点划线)最远的金属层的距离(R;μm),利用端点间的长度(T,mm)并根据下式(2)进行求解,将其最大值作为金属层的翘曲。
W(μm/10mm)=(R/T)×10......(2)(4)耐热滞后特性将AlN板状接合体放入热冲击室(thermal shock chamber;Especk公司产品,型号为TSC-103(W)),以30分钟从25℃升温至350℃后,再以30分钟冷却至25℃,如此的升降温反复进行100次,测量上述热滞后前后接合体的接合界面的抗剪强度,并通过下式计算出耐热滞后特性。
耐热滞后特性(%)=热滞后之后的抗剪强度×100/热滞后前的抗剪强度实施例1在直径40mm、厚6mm的AlN烧结板(Tokuyama公司产品,SH-50,Y2O30.02重量%,表面粗糙度Ra0.4μm)的一个面上,将从外周缘起5mm宽的部分用铝制的掩模覆盖,通过离子电镀法,按厚度为0.2μm的Ti、厚度为1μm的W的顺序成膜,形成金属层(厚度为1.2μm)。
然后,将未形成金属层的AlN烧结板(SH-50)重叠在形成有上述金属层的烧结板上,使金属层处于烧结板的内侧后用碳制的样品夹具将其固定,并放入热压炉中。然后,施加300kgf的负荷(压力为23.9kg/cm2),在氮气气流中、在1650℃下保持2小时之后,以10℃/分的升温速率升温至1750℃,并保持4小时。当冷却至室温后,从炉中取出,得到AlN板状接合体。
上述AlN板状接合体的制造条件和各种特性示于表1和表2中。另外,该AlN板状接合体的金属层的翘曲W为12μm/10mm,接合界面的抗剪强度在包括金属层的界面上为3.8kgf/mm2,而在不包括金属层的界面(烧结板之间直接接合的界面)上为10kgf/mm2,并且耐热滞后特性为100%。另外,非接合率Q为0.2%,沿接合界面方向的空穴长度平均为1.8μm,空穴的长度比L/Lp平均为1.1。
实施例2在直径326mm、厚10mm的AlN烧结板(成分与实施例1相同)的一个面的整个面上形成与实施例1相同的由Ti和W构成的金属层(厚1.2μm)。然后,将从金属层中心开始半径为146mm的范围掩蔽起来,用5%体积的氟酸/5%体积的硝酸的1∶1混合溶液将从外缘起17mm宽的金属层(Ti/W膜)除去。
然后,将未形成金属层的AlN烧结板重叠在上述AlN烧结板上使金属层处于内侧,并用碳制的样品夹具将其固定,然后放入热压炉中。然后,施加20tf(压强为24.0kg/cm2)的负荷,在氮气气流中、在1690℃下保持2小时之后,以3℃/分的升温速率升温至1790℃,并保持4小时。当冷却至室温后,从炉中取出,得到AlN板状接合体。
上述AlN板状接合体的制造条件和各种特性示于表1和表2中。另外,该AlN板状接合体的金属层的翘曲W为17μm/10mm,接合界面的抗剪强度在包括金属层的界面上为3.5kgf/mm2,在不包括金属层的界面(烧结板之间直接接合的界面)上为10kgf/mm2,而耐热滞后特性为100%。
另外,非接合率Q为0.2%,沿接合界面方向的空穴长度平均为2.4μm,空穴的长度比L/Lp平均为1.2。
实施例3~5使用具有与实施例1相同的直径和厚度的AlN烧结板,通过除了改变加热接合条件(保持温度、保持时间、负荷)之外,其余与实施例1相同的方法,获得了AlN板状接合体。
上述AlN板状接合体的制造条件和各种特性示于表1和表2中。
实施例6在与实施例1相同的AlN烧结板的一个面上以与实施例1同样形成由Ti(0.2μm)和W(9μm)构成的金属层,并以与实施例1相同的条件进行加热接合,获得了AlN板状接合体。
上述AlN板状接合体的制造条件和各种特性示于表1和表2中。另外,该AlN板状接合体的金属层的翘曲W为19μm/10mm,接合界面的抗剪强度在包括金属层的界面上为3.1kgf/mm2,在不包括金属层的界面(烧结板之间直接接合的界面)上为10kgf/mm2,而耐热滞后特性为99%。另外,非接合率Q为0.2%,沿接合界面方向的空穴长度平均为3.8μm,空穴的长度比L/Lp平均为1.2。
比较例1与实施例1完全相同地,制成了在一个面上形成了金属层(Ti/W)的AlN烧结板。
然后,在未形成金属层的AlN上,涂敷AlN-Y2O3浆(AlN100份重量;Y2O35份重量;丙烯酸粘合剂4份重量;长链烃醚系分散剂0.5份重量)作为粘合剂,将其重叠在上述形成了金属层的AlN烧结板上使金属层处于内侧,并用碳制的样品夹具固定,然后放入热压炉中。
然后,施加300kgf(压强为23.9kg/cm2)的负荷,并在氮气气流中、在1650℃下保持2小时之后,以10℃/分的升温速率升温至1750℃,并保持4小时。当冷却至室温后,从炉中取出,得到用粘合剂层接合的AlN板状接合体。
即使用目测,也会发现上述AlN板状接合体呈碗状翘曲。另外,在将该AlN板状接合体表面研磨使其平坦化后,所测量的金属层的翘曲W为297μm/10mm。另外,测量接合界面的抗剪强度,在包括金属层的界面上为2.0kgf/mm2,在不包括金属层的界面(烧结板之间直接接合的界面)上为6kgf/mm2,而耐热滞后特性为68%。然后,求出非接合率Q,其值为21.1%,沿接合界面方向的空穴长度平均为6.5μm,空穴的长度比L/Lp平均为4.8。
比较例2使用具有与实施例1相同的直径和厚度的AlN烧结板,通过除了改变加热接合条件(保持温度、保持时间、负荷)之外,其余均与实施例1相同的方法,获得了AlN板状接合体。
上述AlN板状接合体的制造条件和各种特性示于表1和表2中。
比较例3~9使用具有与实施例1相同的直径和厚度的AlN烧结板,通过除了改变加热接合条件(保持温度、保持时间、负荷)之外,其余均与实施例1相同的方法,获得了AlN板状接合体。
上述AlN板状接合体的制造条件和各种特性示于表1和表2中。
表1
※1AlN-Y2O3表2
权利要求
1.一种由不使用粘合剂而相互接合的2片氮化铝烧结体板和形成在其接合界面的一部分上的金属层所构成的氮化铝接合体,其特征在于从穿过所述接合体中心的侧剖面观察,在所述接合界面的所述烧结体板相互之间直接相对置的直接接合区域中,存在沿接合界面的长度L平均为0.5~4μm的多个空穴,且该空穴形成非接合部分,所述侧剖面的通过下式(1)所计算出的非接合率Q平均在0.1~0.5%的范围内,非接合率Q=(X/Y)×100……(1)式中,X为以存在于直接接合区域的所述空穴的长度L的合计值表示的所述非接合部分的接合界面方向的长度;Y为存在所述空穴的直接接合区域的长度。
2.权利要求1所述的氮化铝接合体,其特征在于在所述直接接合区域中,实质上不存在所述长度L大于等于5μm的空穴。
3.权利要求1或2所述的氮化铝接合体,其特征在于所述空穴沿接合界面方向的长度L与垂直于接合界面的长度Lp之比(L/Lp)平均为0.8~2。
4.权利要求1~3的任一项所述的氮化铝接合体,其特征在于所述金属层的翘曲小于等于25μm/10mm。
5.权利要求1~4的任一项所述的氮化铝接合体,其特征在于所述氮化铝接合体具有1~100mm的厚度。
6.权利要求1~5的任一项所述的氮化铝接合体,其特征在于在反复进行了100次25℃~350℃的升降温的热滞后以后,所述金属层与氮化铝烧结体板间的接合面的抗剪强度与所述热滞后之前的抗剪强度之比大于等于90%。
7.一种氮化铝接合体的制造方法,其特征在于,包括以下步骤准备2片氮化铝烧结体板的步骤;在一片所述氮化铝烧结体板表面的一部分上形成厚度小于等于20μm的金属层;将另一片所述氮化铝烧结体板重叠在所述一片氮化铝烧结体板上使所述金属层位于其间,从而形成层积体;以5~100kg/cm2的压力对所述层积体施加压力,并在1650~1700℃的温度下加热0.5~4小时;然后,继续以所述压力进行加压,并以大于1700℃而小于等于1800℃的温度对所述层积体加热2~8小时。
8.权利要求6所述的氮化铝接合体的制造方法,其特征在于所述氮化铝烧结体的平均表面粗糙度Ra(JIS B 0601)处于0.1~0.8μm的范围内。
全文摘要
本发明的氮化铝接合体由不使用粘合剂而相互接合的2片氮化铝烧结体板和形成在其接合界面的一部分上的金属层所构成,其特征在于,从穿过上述接合体的中心的侧剖面观察,在上述接合界面的上述烧结体板相互之间直接相对的直接接合区域中,存在沿接合界面的长度平均为0.5~4μm的多个空穴,且该空穴形成非接合部分,上述侧剖面的通过下式(1)所计算出的非接合率Q平均在0.1~0.5%的范围内非接合率Q=(X/Y)×100……(1),式中,X为以存在于直接接合区域的上述空穴的长度L的合计值表示的上述非接合部分的接合界面方向的长度;Y为存在上述空穴的直接接合区域的长度。该AlN接合体有效地抑制了内部金属层的翘曲,接合强度较高,且具有优良的耐久性,可以适用于半导体制造装置上、用于载置和处理半导体晶片的静电吸盘或板状加热装置。
文档编号H05B3/14GK1805911SQ20048001654
公开日2006年7月19日 申请日期2004年6月11日 优先权日2003年6月13日
发明者江崎龙夫 申请人:株式会社德山