等离子处理系统和等离子处理工艺的制作方法

文档序号:8033321阅读:402来源:国知局
专利名称:等离子处理系统和等离子处理工艺的制作方法
技术领域
本发明总体上涉及等离子处理,更具体地是涉及配置为处理基片的等离子处理系统。
背景技术
等离子处理通常用于改变基片的表面性质,所述基片用于涉及集成电路、电子仪器组件和印刷电路板的应用中。特别地,等离子处理用于例如电子仪器组件中,以增加表面活性和/或表面清洁度,来消除分层和导接线故障,提高导线连接强度、保证获得电路板上芯片的无孔底层填料、排除氧化物、增强模片(die)固定、以及提高用于模片封装的附着力。
典型地,等离子处理系统中放置了一个或多个基片,每个基片的表面暴露于产生的各种等离子体。通过由等离子体增进的物理喷镀、化学辅助喷镀和化学反应,除去了最外表面原子层。物理或化学作用可用于调节所述表面,以便使得例如附着力这样的性质得到改善,以选择性地除去无关的表面层或者从基片表面清除不希望有的污染物。
现有的常规批量等离子处理系统中,多数大面板材料的两侧都受到等离子处理。每块板布置在一对平面电极之间,用处理系统的处理室中存在的合适的大气来激励所述平面电极,以产生等离子体。在这种等离子处理系统中,影响蚀刻均匀程度的一个因素是邻近基片的等离子体密度的空间均匀性,其通过用于产生等离子体的电极的设计来控制。固体平面电极能产生均匀的等离子体,但是不能提供足够的气流,使得蚀刻速度可能低得无法接受。因此,分批处理室中的常规固体电极无法提供横贯大的平面基片两个相反侧的、足够的处理均匀性。在围绕每个基片两侧的所有空间位置上,等离子体的密度必须精准地受到控制,以使得两个表面上的蚀刻具有均匀性。
因此需要有一种等离子处理系统,其能够均匀地等离子处理其特征为具有大的表面面积的每个平面基片的两侧。

发明内容
本发明通过提供一种等离子处理系统解决这些和其它问题,该系统包括具有处理空间的真空室、用于抽空所述处理空间的真空孔、以及用于将工业气体(process gas)引入处理空间的气体孔。该系统还包括能够从处理空间中的工业气体产生等离子体的等离子体激励源、以及多个与所述等离子体激励源电连接的电极。在处理空间中布置所述电极来在它们之间界定相应的多个处理区域,以用等离子体处理所述基片。每个电极包括至少一块穿孔板,该板用作输送工业气体和等离子体通过所述电极。
本发明设想,所述等离子体处理系统可用于由大范围材料组成的等离子体处理基片,所述材料包括但不局限于陶瓷、金属和聚合物。等离子处理可包括蚀刻、清洗、表面活化、以及本领域普通技术人员易见的其它类型的表面改变。例如,等离子处理可作为标准的平版印刷术和蚀刻工艺的一部分用于蚀刻基片,从而在基片上形成各个功能部件。
在本发明的另一实施例中,一种等离子处理基片的方法包括将基片布置在位于处理室之内的一对电极之间,将工业气体引入所述处理室,激励所述这对电极以在处理室内从所述工业气体产生等离子体。所述方法还包括,将所述工业气体和等离子体流引导通过每个电极的多孔部分,将其从处理区域之外的位置导入处理区域之内的一对位置,所述每对位置界于所述电极之一和所述基片之间。
在本发明的又一实施例中提供一种方法,用于去除从聚合物基片伸出的相当薄的附着聚合物区,例如孔屑或毛边。所述方法包括将工业气体提供给支撑聚合物基片的处理室,其特征在于,气体混合物包括氧气和三氟化氮,所述三氟化氮的量小于或等于所述气体混合物体积的大约10%;将射频(RF)功率传给生产空气以产生等离子体;以及将聚合物基片暴露于所述等离子体一段时间,以有效去除薄附着聚合物区。在具体实施例中,传给工业气体的RF功率的范围大约在40kHz下4000w~8000w之间。在另一具体实施例中,聚合物基片加热达到的处理温度大约在30℃~90℃之间。优选地,所述气体混合物包含的三氟化氮的体积大约占其体积的5~10%,所述气体混合物中其余的气体是氧气。
通过附图及其说明,将更容易清楚本发明的这些以及其它目的和优点。


结合到本说明书中并构成其一部分的附图显示了本发明的多个实施例,所述附图加上以上给出的本发明的总体说明以及以下给出的详细说明,用于说明本发明的原理。
图1是按照本发明实施例的等离子处理系统的透视图;图2是图1的等离子处理系统的剖视图;图2A是大体上沿图2中的线2A-2A获得的剖视图;图3是等离子处理系统的一部分的示意性端视图,显示本发明的各个电极和一批基片之间的关系;图4是按照本发明的电极的可选实施例的侧视图;
图5是按照本发明可选实施例的、用于和图1的等离子处理系统一起使用的基片保持架的透视图;图6是图5的保持架的基片固定器的端视图;图7是图5的保持架的侧视图,图中可看到一个基片固定器;以及图8A-D是图5所示的多个基片固定器之一的端视图,显示将基片装到图5的保持架中的过程。
具体实施例方式
参看图1和图2,等离子处理系统10包括处理室12,该处理室12具有可选择性地位于打开位置和关闭位置之间的室门14,所述打开位置提供入口以便进入由处理室12的周围壁面所封闭的可抽空的处理空间16,在所述关闭位置中处理空间16与周围环境形成紧密的流体密封。室门14可装有插销,当室门14处于关闭位置时,所述插销与处理室12的另一部分配合,确保室门处于密封配合状态。密封件(未示出)所围绕的要么是室门14的周边,要么是处理室12的围绕着室门14处于打开位置时界定的通往处理空间16的入口开口的那部分的周边。处理室12由适用于高真空应用的导电材料构成,例如铝合金或者不锈钢,所述处理室12以导电方式接地。
处理室12由真空泵18通过真空孔19抽空,所述真空泵18可由真空技术领域的普通技术人员明白的一个或多个真空泵组成。工业气体容许以例如大约2~4标准公升/分钟(slm)的预定流速,从工业气体源20通过入口气体孔21进入处理空间16,所述气体孔21延伸穿过处理室12的一个壁面。典型地由质量流量控制器(未示出)测量工业气体流。调节由质量流量控制器提供的气体流速以及真空泵18的抽气速率,以提供适于产生等离子体的处理压力,以便可以维持随后的等离子处理。
在引入工业气体的同时,处理空间16被抽空,以便在处理室16内进行连续的新鲜气体交换。等离子处理过程期间,将通过真空泵18从处理空间16排出从平面基片26喷镀的各种污染物、用过的工业气体、以及部分流动的工业气体气流。等离子处理期间,处理室12内的操作压力典型的大约为150~300mTorr。
在此所述的平面基片26可以具有从其上伸出或模压在其中的功能部件,所述平面基片不局限于不包含功能部件的平板。此外,平面基片26的形状不局限于矩形,而是可具有其它的几何形状。
继续参看图1和图2,如同射频(RF)发生器22这样的等离子体激励源电连接多个电极24并向它们传输电力,用于电离和离解封闭在处理空间16内的工业气体,以开始产生等离子体并维持所述等离子体。处理室12用作无电的接地电极。RF发生器22包括阻抗匹配设备和RF电源,其工作的频率在大约40kHz~13.56MHz之间(优选地是40kHz,但也可使用其它频率),其工作的功率在40kHz下大约为4000~8000瓦特,或者在13.56MHz下大约为300~2500瓦特。然而,不同的处理室设计允许不同的偏压功率,或者可允许使用直流(DC)电源。一个控制器(未示出)连接到等离子处理系统10的各种部件上,以促进蚀刻过程的控制。
RF发生器22的RF电源可能是双输出电源,使得电极24每隔一个接在一起,并向剩余电极24提供相位差为180°的电力,所述剩余电极也接在一起。这种布置改进了某些常规的设计,在这些常规设计中每隔一个电极被供电,但是剩余电极接地,这会在邻近有电的电极的平面基片一侧上产生较高的蚀刻速度。按照本发明,由于两个电极24都有电,位于一对电极24之间的一个或多个平面基片26的相反侧上具有相似的蚀刻速度。
继续参看图1和图2,设有支架28,用于在等离子处理期间支撑处理室12内的平面基片26。支架28具有定位杆30,所述定位杆30可沿每个单独基片固定器33的相对垂直边缘、在多个凹口29、31中沿垂直方向调节,以便界定槽23,以适应不同垂直尺寸的平面基片26。每个平面基片26都可插入支架28中各个槽23中的一个槽里。为易于移动,当支架28处于处理室12之外时,由有轮推车32运送。
有轮推车32包括轨道34,支架28可沿着所述轨道34水平移动,所述轨道34的垂直高度与处理室12内相应的轨道36的垂直高度大致相等。在一组或者一批平面基片26装到支架28中以后,打开室门14,并且支架28布置为使得轨道34和36对齐。支架28从有轮推车32的轨道34上输送到处理室12内的轨道36上,关闭室门14以提供密封环境,为真空泵18抽真空做好准备。
参看图1~3,电极24被相应的突起部25以及支撑件27从处理室12的顶部垂直悬挂下来。每个电极24电连接RF发生器22,以用于接受足以产生等离子体的电力。电极24水平隔开,使得处理区域38界定在每对相邻的电极24之间。由于每个侧面电极24和基片26的一侧之间存在等离子体,每个区域38接受平面基片26来等离子处理所述基片26的两个相反侧。多个平面基片26中的一个布置在每对相邻电极24之间的区域38中,所述基片26的方向大体平行于每个侧面电极24的平面。平面基片26以导电方式相对于电极24和处理室12浮动。
每个电极24包括至少一块穿孔板42,例如填充另外空隙40的金属网孔。每块穿孔板42的特征在于孔隙率,孔隙率由穿孔板42中的通道或者小孔43的总横截面面积和穿孔板42的总面积的比率来代表。在本发明的一个具体实施例中,每个电极24包括具有多个垂直的横向构件46的环形外围框架44,所述横向构件46从框架44的一个水平侧延伸到框架44相对的水平侧。一个穿孔板42布置在每对横向构件46界定的空间中,并布置在所述这套横向构件46末端(即最前和最后部分)的横向构件46和相应的所述框架44的相对垂直侧44a、44b之间的空间中。
每块穿孔板42形成了工业气体和各种等离子体进入到相邻电极24之间的区域38中、并处于所述区域38之间的流动路径。典型地,每块穿孔板42中各小孔43的总横截面面积与每块穿孔板42的总面积之比(即开孔面积率)约小于20%。优选地,开孔面积率通过改变板的网孔尺寸进行调整,使得电极24类似于固体电极,该电极24能足以模仿固体电极,并在不过度限制气体速度的情况下提供足够的蚀刻速度。各图中示意绘出了穿孔板42的网孔尺寸,为达到说明的目的,可放大(即不按比例)所述网孔尺寸。
根据其在电极24内的位置,可以变化单独穿孔板42的网孔尺寸。例如,与邻近电极24的44a、44b侧的板42相比,电极24的中心附近的板42的网孔尺寸可以更大些。这就允许在电极24的宽度上调节气体对于相邻电极24之间的区域38的不同部分的电导,并且可用于平衡在侧面基片26的宽度上的蚀刻速度。
穿孔板42与框架44和横向构件46热连接且电连接,以有效地传递热量和电流。优选地,穿孔板42具有的厚度与框架44以及横向构件的厚度相同,使得电极24在其面积上具有均匀厚度,如图2A所示。在某些实施例中,穿孔板42可比框架44和横向构件46更薄,在这种情况下,板42布置为与框架44和横向构件46的中平面共面。
电极24具有限定为并排隔离关系的侧面位置关系,其中相邻电极24大体平行。本发明设想,在本发明的各种可选实施例中,电极24可以布置在垂直方向、水平方向或者布置在垂直和水平方向之间的任意角度上。
继续参看图1、图2、图2A和图3,电极24的数目与平面基片26的数目以及处理室12的尺寸相适应。如果要处理的基片26的数目用数目(n)代表,由于每个基片26的侧面与一对电极24相接,则电极24的数目等于(n+1)。相邻电极24之间的间隔在大约6cm~1cm之间变化,并根据基片26的厚度位于其它变量之间。
通过蒸馏水或者其它合适的换热液体的循环来控制电极24的温度,所述换热液体流经绕于管式框架44和横向构件46内的蛇形通道48。为此,换热液体从处理室12外部的源头45供应到每个电极24的蛇管通道48的入口端口47,并到达冷却液排出装置50的出口端口49。根据需要的效果,通过调节换热液体的流速和温度,所述液体能用于加热或者冷却所述电极24。等离子处理期间,由于热量从电极24传递到基片26上,电极24的温度调节也可有助于调节基片26的温度。在本发明的某些实施例中,换热液体的循环可从电极24移去过多的热量。
在本发明的一个方面,电极24的矩形尺寸或面积大于受到等离子处理的基片26的矩形尺寸或面积。在本发明的某些实施例中,每个电极24的矩形框架44的长度和宽度(即外部尺寸)比基片26的所述尺寸大约至少大1英寸(1″)。调节电极24和基片26的相对面积,有助于保证基片周边附近的等离子处理与基片中心附近的等离子处理相似。所有电极24都具有相等的面对侧面基片26的相对的矩形表面面积。
电极24由具有较高导电性和导热性的金属制成,例如铝。可通过例如阳极氧化或者化学汽相淀积这样的工艺,为面对基片26的电极24的侧表面涂上可选的非金属层51。相信可选非金属层51可提高边缘-中心的等离子体的均匀性。覆盖电极24的导电核心的非金属层51可具有的厚度大约在10微米(μm)~300微米之间。示范性的涂料包括但不局限于例如氧化铝和硅这样的耐火材料。在某些实施例中,非金属层51仅仅应用到框架44上,这是因为电极24的边缘被认为会引起等离子体密度的局部变化,由于非金属层51的存在,这种局部变化会显著减小或消除。在本发明的某些实施例中,非金属层51可作为层压板应用到电极24上。增加非金属层51,可允许电极24具有面对基片26的、基本上与所述基片的面积相等的面积,同时提高边缘-中心的处理的均匀性和等离子体的均匀性。
此处使用关于例如“垂直”、“水平”等术语,是为了示例中建立参考框架,而不是为了限制。可以理解,在不背离本发明的精神和范围的情况下,可采用各种其它的参考框架。尽管所提及的电极24是垂直定位的,但是在不背离本发明的精神和范围的情况下,本发明设想电极可水平地定位。
使用中,参看图1、图2、图2A和图3,平面基片26装到支架28上并输送到处理室12中,通过关闭室门14密封所述处理室12。通过真空泵18抽空处理空间16,使其室压低于系统操作压力。引入工业气体18流来将室压提高到合适的操作压力(典型地大约在150~300mTorr之间),同时用真空泵18有效地抽空处理空间16。激励RF发生器22,用以向电极24供应电力,所述电极24在处理空间16、特别是在每对相邻电极24之间的区域38里产生等离子体,一个平面基片26布置在所述区域38里。冷却液开始流过每个电极24的管式框架44和横向构件46内的通道48,以调节电极温度。
工业气体和各种等离子体通过穿孔板42流入并扩散在界定在相邻电极24之间的区域38里,并位于所述区域38之间。生产气流和等离子体同样能通过面对的电极24的外围边缘附近界定的间隙流入区域38。穿孔板42的存在会促进工业气体和各种等离子体在区域38之间输送,并从处理空间输送到与末端电极24相关联的区域38。基片26持续暴露于等离子体的时间足以用于处理(亦即蚀刻、清洗、制作布线图案、修改和活化等)平面基片26的暴露的相对表面。处理完成之后,打开室门14,从处理室12中移出支架28,卸下基片26。
参看图4,其中相同的参考数字代表图1~3中相同的元件,根据本发明的可选实施例,电极24a包括布置在多个开口的每个开口中的多孔杆或板50,所述开口界定于横向构件46和框架44之间。板50可焊接到框架44和横向构件46的某些部分上,以形成一个整体结构。每块穿孔板50用通道或小孔51穿孔,使得工业气体能产生横向流动,以提高等离子体的均匀性。每块板50的开孔面积大约小于20%,并且例如可能小于1%。优选地,每块穿孔板50具有与框架44和横向构件46相同的厚度,使得电极24a更象一个固体电极。各块板50的开孔面积可根据侧边44a、44b之间电极24a内的位置而变化。例如,与邻近电极24a的侧边44a、44b的板50相比,电极24a中心附近的板50的开孔面积较大。这就允许在电极24a的宽度上调节气体对于相邻电极24之间的区域38的不同部分的电导,并且可用于平衡在侧面基片26的宽度上的蚀刻速度。
参看图5~7和图8A,用于等离子处理系统10中的支架28a包括多个基片固定器52,每个保持器52配置为固定一个或多个基片26。当支架28处于处理室12之外时,由有轮推车32运送,所述支架28a与支架28(图1)一样插入处理室12中,以处理固定的基片26。与支架28相比,支架28a包括有效的水冷却和基片夹紧装置,用以在等离子处理期间,提供有效的换热路径来从基片26移去热量。当基片固定器52通过沿轨道34移动而插入处理室12中时,每个基片固定器52布置在一对电极24之间。基片固定器52布置为相互平行,并且每个基片固定器52由支撑结构55支撑在公用基座53上。
每个单独的基片固定器52包括一对中空的框架54、56,所述每个框架54、56分别具有在其外围附近延伸的流体通道58和60,例如蒸馏水这样的换热液体可通过所述流体通道58、60进行循环。在等离子处理期间,所述循环换热液体冷却基片固定架52,并且通过传导从基片26上移去热量,以降低基片26的温度。框架54、56界定了一个中心的矩形窗,基片26在所述矩形窗上暴露于处理室12内的等离子体之下。框架54、56可由任何具有良好导热性的材料制成,例如由铝制成。
换热液体通过框架54中的流体通道58、在液体入口62和液体出口64之间传送。框架54的液体出口64通过导管65与框架56中的流体通道60的液体入口66相连。流体通道60包括液体出口68,用于从基片固定器52排出冷却液体。结果,框架54和56共用了循环换热液体。换热液体通过从冷却液集合管72延伸的供液管道70供应给框架54的液体入口62,并通过排液管道74返回排出装置76。其他基片固定器52中的每一个都配置有相同的冷却布置类型,并共用冷却液集合管72和排出装置76。液体入口66、供液管道70和排液管道74可以例如是几段可弯曲的聚四氟乙烯(Teflon)管道。
通过测量基片26的温度,可控制流到基片固定器52所冷却液流量。如果基片温度超过目标温度,可以建立冷却液的流动以便冷却基片26。
中空框架54、56与基片26的外部周边具有夹紧关系,所述周边提供有效的传热路径。中空框架54、56的上端由铰链78连接在一起,所述铰链78优选地具有三点设计,使得中空框架54、56能相对于彼此横向和垂直地移动。由开启杆82(图7)启动的凸轮作用开启装置80连接中空框架54、56的下端。开启杆82使得开启装置80从大体上为L形的第一状态移动到第二状态,在第一状态中框架54和56之间不留空隙,在第二状态中框架54和56分开并且在垂直方向上相互隔开。当操作开启杆82来启动开启装置80时,可移动支撑止块83来接触开启装置80,所述止块83维持框架54和56的稳定,并使其处于打开位置,以在框架54和56之间插入基片26。支撑止块83在枢轴上与支撑结构55相连。
每个基片固定架52的框架54包括多个定位器84,该定位器84配合以便定位由中空框架54和56固定的基片26。两个定位器84(图7)接触基片26的底边,两个定位器84接触基片26的一个侧边,但是本发明并不局限于此。框架54包括两个向处理室12的前面延伸的臂86,还包括两个向处理室12的后部延伸的臂88。每个臂86、88装有校准杆90,该校准杆90在与另一校准杆92相反的方向上向外伸出。臂86、88上的校准杆90与垂直电极24相接触,该电极24的一个侧面与基片固定器52的一个侧面在四个点上相接,臂86、88上的校准杆92与垂直电极24相接触,该电极24的一个侧面与基片固定器52的相反侧面在四个点上相接。进行所述接触是保证基片26和一对侧面相接的电极24之间的平行性。更具体地,校准杆90、92配合以便将基片26布置在侧面相接的电极24之间的中平面位置上,并使其处于与由这些侧面相接的电极24中每个电极所界定的垂直平面成垂直关系的平面中。为此目的,每个校准杆90、92从基片固定器52伸出相等的距离。
使用中,参看图8A~D,其中相同的参考数字代表图5~7中相同的元件,将说明将基片26装入支架28a的过程。首先,支架28a处于处理室12的外面并支撑在有轮推车32上,其中每个基片固定架52处于关闭位置,如图8A所示。在该装入位置中,用开启杆82启动凸轮作用开启装置80,该装置80使得框架56相对于框架54横向和垂直移动(如图8B所示),并提供打开位置。支撑止块83转动到一个位置中,使得框架54、56处于打开位置,以便提供间隙来接受基片26,如图8C所示。
在基片26布置在框架54、56之间以后,支撑止块83转回其初始位置,这就容许框架54、56在基片26上关闭,使得基片26的周边夹紧在框架54、56之间,其保持的接触程度足以界定良好的传热通道。框架54、56的重量使其维持在关闭位置。基片26装入每个基片固定器52中,支架28a布置在处理室12内的处理位置,用以等离子处理基片26。校准杆90、92与相邻电极24接触,使得每个基片26所处的平面平行于包含每个相邻电极24的平面。处理室12中产生的等离子体处理基片26的表面,如上所述。
在本发明的一个具体实施例中,等离子处理包括除去例如毛边或孔屑这样的薄聚合物区或翼片的过程。这些薄附着聚合物区可通过例如过去的制造步骤产生,所述区域附着在平面基片上。薄附着聚合物区远薄于平面基片26。典型地,附着的薄聚合物区的厚度大约小于5微米。因此,等离子处理能有效而又高效地除去薄附着聚合物区,并对基片26的厚度具有极小的影响。为此目的,维持等离子体的处理时间或持续时间,使其足以通过各向异性的蚀刻工艺除去薄附着聚合物区,这是因为等离子体中的离子或原子团侵蚀掉薄附着聚合物区,而对基片26的整体厚度只具有微小的影响,并且不会改变等离子处理表面上现存的任何功能部件(例如槽和通道或者金属轨道)。
按照本发明的实施例,提供一种处理方法来蚀刻附着在聚合物平面基片上的薄聚合物区。大约8~30分钟的处理时间足以去除所述这种具有典型厚度(例如5微米)的薄聚合物区,而不会按有害的方式影响影响基片。然而,精确的处理时间将取决于多个不同的变量,包括但不局限于正进行等离子处理的平面电极数目以及薄附着聚合物区的精确厚度。
供应给电极24的RF功率在40kHz下会大约在4000瓦特~8000瓦特之间。平面聚合物基片通过来自相邻电极的热传递,使得基片维持在大体上高于环境室温的处理温度上,例如大约在30℃~90℃之间。通常,随着处理温度的升高,蚀刻速度加快,但是当处理温度高于大约90℃时,均匀性会受到影响。对于某些聚合物,形成基片的材料可能是热敏材料,会限制合适的处理温度。
生产空气以2~4slm的流动速度引入到处理室中,以提供大约150~300mTorr的操作压力。工业气体包括三氟化氮(NF3)和氧气(O2)的混合物,其中三氟化氮的容积小于或等于气体混合物体积的10%。优选地,工业气体是由体积上占大约5~10%的三氟化氮(NF3)以及为氧气(O2)的其余气体(体积上占90~95%)组成的混合物,其中两种组分总计达到工业气体混合物体积的100%。然而,只要保持NF2和O2的相对体积不变,就可以选择性地将例如氩(Ar)这样的惰性气体加入到工业气体混合物中。通过形成随着用过的工业气体从处理室排出的各种挥发性的气体,所产生的等离子体中存在的氟和氧的原子团和离子从基片表面去除材料,特别是去除附着在基片表面并从其上伸出的薄聚合物区。
尽管上述处理方法通常可用于从由许多聚合物组成的平面基片上去除薄附着聚合物区,但是所述处理方法特别可用于由ABF聚合物组成的平面基片上去除薄附着聚合物区。三氟化氮的使用改进了常规的依靠四氟化碳或其它氟-烃的聚合物干蚀刻方法,这是因为四氟化氮比较不稳定并且更容易离解,这会显著地增加等离子体中原子团的量。所述处理方法的具体特征在于用于蚀刻的气体混合物源中不含碳。在不采取湿化学蚀刻技术的情况下,也可去除薄附着聚合物区。本发明的处理方法特别可用于从例如双侧印刷电路板这样的模压板的表面上去除不需要的、薄附着聚合物区,这是因为在随后的例如在模压区域中施加金属喷镀这样的处理步骤中,关键是从无缺陷的表面开始。
在去除薄附着聚合物区的蚀刻过程之后,在聚合物基片表面上可能存在残渣。所述处理方法的第二步中,在不破坏真空、优选地在不消除等离子体的情况下,可提供适于去除残渣的工业气体的大气来产生等离子体。工业气体的原子团和离子与碎片反应,形成可从等离子体室排出的挥发性产物。工业气体包括三氟化氮和氧气的混合物,其中三氟化氮的体积大约占气体混合物的90%或者90%以上。例如,在残渣是硅的情况下,上述用于蚀刻的气体混合物可变为NF3大约占体积的90~95%,而其余是O2(在体积上大约占5~10%)。然而,只要保持NF2和O2的相对体积不变,就可以选择性地将例如Ar这样的惰性气体加入到工业气体混合物中。
虽然本发明已经通过各种实施例的说明进行了阐释,并且虽然已经相当详细地说明了这些实施例,但是申请人的意图不是将所附权利要求的范围限定或者以任何方式限制于这种细节。本领域技术人员将容易看到另外的优点和修改。因此,本发明在其更广的方面中不局限于这些具体的细节、代表性的装置和方法以及显示和说明的示例。相应地,在不背离申请人总体发明概念的精神和范围的情况下,可以脱离上述细节。本发明的范围本身只应由所附权利要求确定。
权利要求
1.一种用工业气体产生的等离子体来处理基片(26)的装置(10),所述装置(10)包括包含处理空间(16)的处理室(12)、用于抽空所述处理空间(16)的真空端口(19)、以及用于将工业气体引入所述处理空间(16)的气体端口(21);能够从所述处理空间(16)中的工业气体产生等离子体的等离子体激励源(22);以及多个与所述等离子体激励源(22)电连接的电极(24),在所述处理空间(16)中布置所述电极(24)以便在它们之间界定相应的多个处理区域(38),以用等离子体处理基片(26),并且每个所述电极(24)包括至少一块穿孔板(42,50),所述穿孔板(42,50)用于输送工业气体和等离子体通过每个所述电极(24)。
2.如权利要求1所述的装置,其中,所述穿孔板(42,50)界定的表面区域具有多个小孔(43,51),开孔面积小于所述表面区域的20%。
3.如权利要求1所述的装置,其中,所述电极(24)中的至少一个包括多个穿孔板(42,50),每个所述穿孔板(42,50)界定的表面区域具有多个小孔(43,51),并且开孔面积小于所述表面区域的20%。
4.如权利要求3所述的装置,其中,所述穿孔板(42,50)中的至少两块具有不同的开孔面积。
5.如权利要求1所述的装置,其中每个所述电极(24)包括装有所述穿孔板(42,50)的框架(44)、以及所述框架(44)中适于容纳冷却液体流的内部通道(48)。
6.如权利要求1所述的装置,还包括布置在所述处理室(12)之内的多个基片固定器(33,52),每个所述基片固定器(33,52)布置在一个所述处理区域(38)中,并且每个所述基片固定器(33,52)支撑基片(26)中的至少一个基片(26)。
7.如权利要求6所述的装置,其中,每个所述基片固定器(52)包括第一和第二框架(54,56),用于将夹紧力施加到基片(26)的外部周边上,所述第一和第二框架(54,56)在所述相邻的一对所述电极(24)之间通过所述基片固定器(52)界定了一个窗口,用于使得基片(26)暴露于等离子体之下。
8.如权利要求6所述的装置,其中每个所述基片固定器(33,52)包括多个第一校准杆(90)和多个第二校准杆(92),所述第一校准杆(90)向所述相邻的一对所述电极(24)中的一个电极伸出,所述第二校准杆(92)向所述相邻的一对所述电极(24)中的另一个电极伸出,所述校准杆(90,92)形成的尺寸适于使得所述基片(26)所处的平面基本上平行于由所述一对相邻电极(24)中的每个电极(24)所界定的平面。
9.如权利要求6所述的装置,其中,所述基片固定器(33,52)和基片(26)能够从所述处理室(12)之外的多个装载位置输送到所述处理室(12)之内的所述处理区域(38)。
10.如权利要求1所述的装置,其中,每个所述电极(24)包括导电核心和覆盖所述核心的非金属层(51)。
11.如权利要求1所述的装置,其中,每个所述电极(24)包括围绕所述穿孔板(42,50)的框架(44),所述框架(44)和所述穿孔板(42,50)在电极(24)的区域上具有均匀厚度。
12.如权利要求1所述的装置,其中每个所述电极(24)包括多块穿孔板(42,50),每块所述穿孔板(42,50)用于输送所述工业气体和所述等离子体通过每个所述电极(24)。
13.如权利要求1所述的装置,其中,所述电极(24)布置在基本平行的平面中,所述平面利用侧面位置关系来界定所述处理区域(38)。
14.一种等离子处理基片(26)的方法,包括将基片(26)支撑于处理区域(38)中,所述处理区域(38)界于处理室(12)内的一对电极(24)之间;将工业气体引入所述处理室(12);激励所述这对电极(24)以在处理室(12)内从所述工业气体产生等离子体;以及将所述工业气体和等离子体流引导通过每个所述电极(24)的多孔部分(42,50),将其从处理区域(38)之外的位置导入处理区域(38)之内的一对位置,所述每对位置界于所述电极(24)中的一个电极(24)和所述基片(26)之间。
15.如权利要求14所述的方法,还包括用基片固定器(33,52)将基片(26)支撑于所述这对电极(24)之间;以及在暴露于所述等离子体之下的同时,冷却基片固定器(33,52)和基片(26)。
16.如权利要求14所述的方法,其中,每个电极(24)的多孔部分是处于处理区域(38)之外的位置和处理区域(38)之内的一个位置之间的穿孔板(42,50),并且将所述工业气体和等离子体流引导通过所述电极(24)还包括传输所述工业气体和等离子体流通过每个电极(24)中穿孔板(42,50)。
17.一种用于去除从聚合物基片(26)伸出的薄附着聚合物区的方法,包括将工业气体提供给含有聚合物基片(26)的处理室(12),所述工业气体包括了包含氧气和三氟化氮的气体混合物,所包含的三氟化氮的体积小于或等于所述气体混合物体积的大约10%;从所述工业气体产生等离子体;以及将聚合物基片(26)暴露于所述等离子体一段时间,以有效地去除薄附着聚合物区。
18.如权利要求17所述的方法,其中产生等离子体还包括将40KHz、4000瓦特~8000瓦特的功率传给所述工业气体。
19.如权利要求17所述的方法,还包括将聚合物基片(26)加热到高于环境温度的处理温度。
20.如权利要求19所述的方法,其中,将聚合物基片(26)加热还包括将聚合物基片(26)加热到大约30℃~90℃之间的处理温度。
21.如权利要求19所述的方法,其中,将聚合物基片(26)加热还包括以与基片固定器(52)热接触的方式支撑聚合物基片(26);以及用冷却液流冷却基片固定器(52),以去除从所述等离子体输送到聚合物基片(26)上的热量。
22.如权利要求17所述的方法,其中,产生等离子体的方法还包括将聚合物基片(26)布置到界于一对电极(24)之间的处理区域(38)里;以及将所述等离子体和所述工业气体输送通过每对电极(24)中的穿孔板(42,50)到处理区域(38)。
23.如权利要求22所述的方法,还包括用冷却液流冷却电极(24),以减少从电极(24)输送到聚合物基片(26)的热量。
24.如权利要求17所述的方法,其中,所述气体混合物的体积中,三氟化氮的体积大约占5~10%,其余为氧气。
25.如权利要求17所述的方法,其中,所述薄附着聚合物区在暴露于所述等离子体之后,在所述聚合物基片(26)上剩有残渣,并且还包括改变所述气体混合物,使得三氟化氮的体积占所述工业气体总体积的比例大于或等于90%;以及将聚合物基片(26)暴露于所述等离子体一段时间,以有效地去除所述残渣。
26.如权利要求25所述的方法,其中,在所述气体混合物的体积中,三氟化氮的体积大约占90~95%,其余为氧气。
27.如权利要求25所述的方法,其中,在不消除等离子体的情况下改变所述气体混合物。
全文摘要
一种用于采用等离子体来处理多个基片(26)的等离子处理系统(10)。等离子处理系统的处理室(12)包括至少一对典型地垂直方向定位的电极(24),基片(26)布置在所述电极之间用于等离子处理。每个电极(24)包括容许水平地流过工业气体和等离子体的穿孔板(42,50),该穿孔板提高了等离子体的均匀性。定义了一种处理方法,该方法能有效地用于去除附着在聚合物基片(26)上并从该基片上伸出的薄的聚合物区域,例如毛边或孔屑。
文档编号H05H1/24GK1875454SQ200480031931
公开日2006年12月6日 申请日期2004年10月6日 优先权日2003年10月28日
发明者詹姆斯·格蒂, 路易斯·费耶罗 申请人:诺信公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1