单晶硅的培育工艺中溶液的液面位置监视装置的制作方法

文档序号:8020133阅读:253来源:国知局
专利名称:单晶硅的培育工艺中溶液的液面位置监视装置的制作方法
技术领域
本发明涉及使用了直拉单晶生长法(Czochralski)的单晶硅的培育工 艺中的溶液的液面位置监视装置,更详细地说,涉及从结晶原料的溶融到 作业结束后溶液固化,对应溶液的液面位置的所有变化,能够将可假想到 的紧急事态、例如溶液和隔热板及水冷体的接触等防患于未然的溶液的液 面位置监视装置。背景'技术近年来,用于大规模集成电路(LSI)等电路元件形成用衬底的大部 分单晶硅通过直拉单晶生长法(下称"CZ法")拉起。在使用了 CZ法单晶硅的培育中,作为原料投入到坩锅内的多晶硅块 通过包围坩锅设置的加热器加热溶融。这样,当在坩锅内形成原料溶液时, 使坩锅以一定方向旋转,同时使保持在坩锅上的结晶种(下称"籽晶 (seed)")下降,浸渍到坩锅内的原料溶液中。通过使上述籽晶沿规定方 向旋转并同时上升,将圆柱状的单晶硅拉升到籽晶的下方进行培育。图1是表示使用了 CZ法的单晶硅的培育装置中在拉起区域的主要部 分构成的图。图1所示的培育装置具备坩锅6、包围坩锅6设置的加热器 7、抑制结晶的热辐射的隔热板4、将结晶冷却的水冷体5,将籽晶l浸渍 于由加热器加热的在坩锅6内下称的原料溶液3,使籽晶上升,拉起单晶 体2。在使用了 CZ法的单晶硅的培育中,其拉起速度据单晶硅的温度梯度 有密切的关系,通过增大温度梯度,可加速拉起速度。如图1所示,在籽 晶1下方拉起的单晶硅2在拉起区域受到加热器7及坩锅6等高温部的辐 射。为抑制结晶的辐射热,设置隔热板4,同时使用将其与使用了冷却结 晶的制冷剂的水冷体5组合的装置,由此可增大上述拉起速度的提高效率。
此时,必须避免容纳于坩锅6内的溶液3与隔热板4及水冷体5接触 的事态。例如在溶液3与水冷体5接触时,随之会产生水蒸气爆炸等重大 事故,因此,需要将溶液3和隔热板4及水冷体5的间隔控制在一定。为防止这样的事态,在特公平04-44215号公报中公开了如下单晶硅 的培育装置中的溶液面的高度测定方法,在覆盖单晶硅的拉起区域周围配 设的隔热部件的局部确定基准点,由产生对应光强度的信号的线性传感器 捕捉该基准点和相对于溶液表面的基准点的反射图像,基于该线性传感器 上的基准点和其反射图像的离开尺寸求出溶液的表面位置。这样,坩锅内的溶液和隔热部件的间隔的控制一直就在进行。但是, 目前的液面位置的监视及控制限于在籽晶的外周面及拉起中途的单晶硅 的外周面、和溶液表面的边界部形成溶融的工艺,即培育单晶硅的颈部、 颈部、躯体部及尾部的工艺。艮口,在现有的培育装置中,在如下工艺中不能进行溶液的液面位置监 视等,(1)使作为原料的单晶硅块溶融的工艺;(2)单晶硅的培育结束后 将坩锅内的溶液充分固化的工艺;(3)在确认了拉起中途的单晶硅有缺陷 等时,使上述单晶硅再次溶解的工艺;及(4)在投入一次原料进行两个 以上的单晶硅的培育时,在任意的单晶硅的培育结束后到下一个单晶硅的 培育开始的工艺。因此,在现有的控制方法及控制装置中,在进行上述(1) (4)的 工艺时,坩锅因误动作等而上升的情况、及在进行上述(3)的工艺时溶 液的液面因浸渍单晶硅而上升的情况下,要避免溶液和隔热板及水冷体的 接触是困难的。这样,现有的液面位置的监视及控制限于培育单晶硅的颈部、颈部、 躯体部及尾部的工艺。因此,关于单晶硅的培育工艺中的溶液的液面位置 的监视及控制,还有必须解决的问题。图2是表示使用了 CZ法的单晶硅的培育装置中的溶液液面位置、坩 锅位置及隔热部件的安装位置的关系的模式图,同图(a)是表示带籽晶 的状态的图,同图(b)是表示拉起单晶硅的状态的图,同图(c)是表示 柑锅向上方移动的状态的图。如图2 (a)所示,在溶液的液面位置8和隔 热板保持一定间隔的状态下,将籽晶1浸渍于溶液3中,带上籽晶,由此
幵始单晶硅2的培育。随着单晶硅2的培育进行,溶液的液面位置比带籽晶时的液面位置8 低。如图2 (b)所示,在溶液的液面位置下降的状态下,为抑制从加热器 (未图示)及柑锅6等高温部对结晶的辐射热而设置隔热板4的效果减少。 因此,如图2 (c)所示,进行如下控制,使坩锅从带籽晶时的坩锅位置9 向上方移动,将溶液的液面位置8和隔热板4保持一定间隔。这样,在连续地进行单晶硅的拉起时,液面的移动量可以预测,因此, 管理溶液的液面位置较容易,但在使用了上述图2所示的培育装置的操作 中,假设有时单晶硅的培育因结晶缺陷的产生而也不能圆滑地进行。下面, 参照图3 图5对单晶硅的培育不能圆滑地进行的情况进行说明。图3是表示在使用了 CZ法的单晶硅的颈部的培育阶段确认了结晶缺 陷时的模式图,同图(a)是表示确认了结晶缺陷的状态的图,同图(b) 是表示单晶硅从溶液的液面离开的状态的图,同图(c〉是表示为再次溶 解单晶硅而将其浸渍于溶液中的状态的图。在实际的操作中,在培育颈部10时确认了结晶缺陷的情况下,如图3 (b)所示,为使培育中的单晶硅从溶液3的液面离开(下称"离液"), 进而使拉起的单晶硅再次溶解,将其浸渍于溶解3中(下称"着液")。该 情况下,如图3 (c)所示,在将拉起的单晶硅着液时,液面上升相当于浸 渍的颈部的体积的量。图4是表示在使用了 CZ法的单晶硅的肩部的培育阶段确认了结晶缺 陷时的模式图,同图U)是表示确认了结晶缺陷的状态的图,同图(b) 是表示单晶硅从溶液的液面离开的状态的图,同图(c)是表示为再次溶 解单晶硅而将其浸渍于溶液中的状态的图。在培育肩部11时确认了结晶缺陷的情况下,如图4 (b)所示,为使 培育中的单晶硅离液,进而使拉起的单晶硅再次溶解,而使其着液。该情 况下,如图4(c)所示,在将拉起的单晶硅着液时,溶液3的液面上升相 当于浸渍的肩部的体积的量。图5是表示在使用了 CZ法的单晶硅的躯体部的培育阶段确认了结晶 缺陷时的模式图,同图(a)是表示确认了结晶缺陷的状态的图,同图(b) 是表示单晶硅从溶液的液面离开的状态的图,同图(c)是表示为再次溶
解单晶硅而将其浸渍于溶液中的状态的图。在培育躯体部12时确认了结晶缺陷的情况下,与培育颈部及肩部的 情况相同,为使培育中的单晶硅离液,进而使拉起的单晶硅再次溶解,而 使其着液。如图5 (c)所示,在将拉起的单晶硅着液时,溶液3的液面上升相当于浸渍的躯体部的体积的量。这样,在培育阶段确认了结晶缺陷的情况下,不根据培育的进行状况 即可进行相同的操作。但是,为使拉起的单晶硅再次溶解而使其着液时, 溶液3的液面上升量因颈部10、肩部11及躯体部12而不同(图3 (c)、 图4 (c)及图5 (c))。另外,在通过一次原料投入进行两个以上的单晶硅的培育时,在单晶 硅的培育中途利用监视装置判断是确认了结晶缺陷时的拉起动作、或是单 晶硅的培育完成后的拉起动作是极其困难的。如上所述,在单晶硅的培育阶段再次溶融时,溶液的液面位置的监视 是极其复杂的,因此,难以统一地进行控制。这在现有的控制装置中成为 不能在上述(1) (4)的工艺中进行溶液液面位置的监视等的主要原因。发明内容本发明是鉴于上述问题而构成的,其目的在于,提供一种溶液的液面 位置监视装置,可根据单晶硅的培育工艺中溶液液面位置的所有变化将溶 液和隔热板及水冷体的接触等防患于未然。本发明者对在使用了CZ法的单晶硅的培育时从原料的溶融到单晶硅 的培育结束后溶液固化的全部工艺中可将溶液和隔热板及水冷体的接触 等防患于未然的溶液的液面位置监视装置进行探讨,得到下述(a) (e) 的见解。(a) 通过将存储拉起中途的单晶硅的形状的装置装配于监视装置中, 可计算处于离液状态的单晶硅的体积,同时可高精度地计算为使单晶硅再 次溶解而着液时的溶液的液面上升量。(b) 对单晶硅的每个培育阶段分配工艺,选择适用于各工艺的溶液 的假想液面位置的计算式,由此可高精度地计算以带籽晶时的溶液的液面 位置为基准的溶液的假想液面位置。
(C)在将籽晶、培育中途的单晶硅及培育完成后的单晶硅离液时, 基于存储的单晶硅的形状选择假想液面位置的计算式,考虑到处于离液状 态的单晶硅的体积,通过导入计算将籽晶或单晶硅再次着液时的假想液面 位置的工艺(下称"转移工艺"),可对应溶液液面位置的所有变化。(d) 通过将溶液的假想液面位置从控制计算机送到次序电路,控制 坩锅的上升,从而可确保溶液的液面和隔热板及水冷体的间隔。(e) 在开始单晶硅的培育时,设定溶液液面的上限前位置及上限位 置,在单晶硅的培育中途,溶液的假想液面位置超过上限前位置时产生警 报,进而在溶液的假想液面位置超过上限位置是强制停止坩锅的上升,由 于具有上述那样的装置,从而能够可靠地防止溶液和隔热板及水冷体的接 角虫。本发明是基于上述见解完成的,其以下记(1) (5)的单晶硅的培 育工艺中溶液的液面位置监视装置为主旨。(1) 提供一种单晶硅的培育工艺中溶液的液面位置监视装置,以带 籽晶时的溶液的液面位置为基准位置监视使用了 CZ法的单晶硅的培育工艺中坩锅内的溶液的液面位置,其特征在于,具备观测溶液的液面位置 的装置;观测坩锅位置的装置;存储从溶液的液面拉起的单晶硅的形状的 装置;从所述观测到的溶液的液面位置及坩锅位置以及所述存储的单晶硅 的形状计算溶液的假想液面位置的装置;在每个控制周期将所述溶液的假 想液面位置送向次序电路,由此控制坩锅的上升及下降的装置,在所述溶 液的假想液面位置超过上限位置时,停止坩锅的上升。(2) 如上述(1)所述的单晶硅的培育工艺中溶液的液面位置监视装 置,其特征在于,在所述溶液的假想液面位置超过上限前位置时,产生警 报。(3) 如上述(1)或(2)所述的单晶硅的培育工艺中溶液的液面位 置监视装置,其特征在于,计算所述溶液的假想液面位置的装置使用由下 记式(1)得到的相对液面位置hi作为真空吸引工艺、原料溶融工艺及带籽晶工艺中的溶液的假想液面位置。 h产DM…(1)其中,h1:带籽晶后的距所述基准位置的相对液面位置(mm)DM:带籽晶后的坩锅的移动量(mm)(4) 如上述(1)或(2)所述的单晶硅的培育工艺中溶液的液面位 置监视装置,其特征在于,计算所述溶液的假想液面位置的装置在颈部培 育工艺、肩部培育工艺、躯体部培育工艺及尾部培育工艺、以及单晶硅的 培育结束后,使用由下记式(2)得到的相对液面位置h2作为单晶硅从溶 液离开的状态下的溶液的假想液面位置。h2=hR+CM…(2)其中,h2:单晶硅从溶液离开的状态下的距所述基准位置的相对液面 位置(mm)hR:单晶硅从溶液离开时的距所述基准位置的相对液面位置(mm) CM:单晶硅从溶液离开后的坩锅的移动量(mm)(5) 如上述(1)或(2)所述的单晶硅的培育工艺中溶液的液面位置监视装置,其特征在于,计算所述溶液的假想液面位置的装置在颈部培育工艺、肩部培育工艺、躯体部培育工艺及尾部培育工艺中,使用由下记式(3)得到的相对液面位置h3作为为使培育中途被拉起的单晶硅再次溶解而将其浸渍于溶液中时的溶液的假想液面位置。' , GSxSD2xSM ,G£xCD2xCM 1 ,,、3 2 乙丄xCD2—OSxSD2G丄xCD2—GSxSD2J其中,h3:将单晶硅浸渍于溶液中时的距所述基准位置的相对液面位 置(mm)h2:单晶硅从溶液离开的状态下的距所述基准位置的相对液面位置 (mm)GS:硅的固体比重(2.33X10-3)GL:硅的液体比重(2.53X10-3)SM:单晶硅从溶液离开后的籽晶的移动量(mm)CM:单晶硅从溶液离开后的坩锅的移动量(mm)SD:从溶液的液面拉起起的单晶硅的直径(mm)CD:溶液表面的直径(mm)
在本发明中,"单晶硅的培育工艺"是指,包括真空吸引工艺、原料 溶融工艺、带籽晶工艺、颈部培育工艺、肩部培育工艺、躯体部培育工艺 及尾部培育工艺的从原料的溶融到作业结束后溶液固化的全部工艺。另外,利用本发明的溶液的液面位置监视装置计算的溶液的假想液面 位置是以带籽晶使的溶液的液面位置为基准(下称"基准位置")。因此, "相对液面位置"是指距基准位置的相对液面位置。另一方面,"移动量"是指测定时间内的籽晶或坩锅自身的移动量。 例如,"单晶硅从溶液离开后的坩锅的移动量"是指,单晶硅从溶液离开 后到测定坩锅位置之前的坩锅自身的移动量。该情况下,以单晶硅从溶液 离开时的坩锅位置为基准,将向上方的移动设为(+ ),将向下方的移动 设为(一)。"上限前位置"是指,是在从基准位置到隔热板线下端之间设定的值, 是可确保安全作业的区域的限界位置。另外,"上限位置"是指,是在从隔热板的下端到水冷体的下端之间 设定的值,是必须停止坩锅上升的区域的限界位置。根据本发明的溶液的液面位置监视装置,在使用了 cz法的单晶硅的培育工艺中,可计算对应所有状况的溶液的假想液面位置,因此,可高精 度地控制溶液和隔热板或水冷体的间隔。另外,溶液的假想液面位置在超过设定的上限而接近隔热板时产生警 报,进而在与隔热板接触或接近水冷体时根据需要产生警报,同时强制地 停止坩锅的移动,由此,可将溶液和水冷体的接触造成的水蒸气爆炸等重 大事故防患于未然。


图1是表示使用了 cz法的单晶硅的培育装置中在拉起区域的主要部分构成的图;图2A C是表示使用了 CZ法的单晶硅的培育装置中的溶液液面位 置、坩锅位置及隔热部件的安装位置的关系的模式图,同图(a)是表示 带籽晶的状态的图,同图(b)是表示拉起单晶硅的状态的图,同图(c) 是表示坩锅向上方移动的状态的图;图3A C是表示在使用了 CZ法的单晶硅的颈部的培育阶段确认了结晶缺陷时的模式图,同图(a)是表示确认了结晶缺陷的状态的图,同图 (b)是表示单晶硅从溶液的液面离开的状态的图,同图(C)是表示为再 次溶解单晶硅而将其浸渍于溶液中的状态的图;图4A C是表示在使用了 CZ法的单晶硅的肩部的培育阶段确认了结 晶缺陷时的模式图,同图(a)是表示确认了结晶缺陷的状态的图,同图 (b)是表示单晶硅从溶液的液面离开的状态的图,同图(c)是表示为再 次溶解单晶硅而将其浸渍于溶液中的状态的图;图5A C是表示在使用了 CZ法的单晶硅的躯体部的培育阶段确认了 结晶缺陷时的模式图,同图(a)是表示确认了结晶缺陷的状态的图,同 图(b)是表示单晶硅从溶液的液面离开的状态的图,同图(c)是表示为 再次溶解单晶硅而将其浸溃于溶液中的状态的图;图6是表示本发明的单晶硅的培育工序中溶液的液面位置监视装置中 的溶液液面位置及隔热部件的安装位置、和上限前位置及上限位置的位置 关系的模式图;图7A B是表示真空吸引工艺、原料溶融工艺及带籽晶工艺中的溶 液的液面位置的模式图,同图(a)是表示带籽晶的状态的图,同图(b) 是表示带籽晶后的坩锅向上方移动的状态的图;图8A B是表示躯体部培育工艺的离液状态的模式图,同图(a)是 表示单晶硅离液时的状态的图,同图(b)是表示单晶硅的离液状态的图;图9是表示本发明的单晶硅的培育工艺中溶液的液面位置监视装置的 动作的流程图,式(1)溶液的假想液面位置=带籽晶后的坩锅的相对移动量; 式(2)溶液的假想液面位置二离液时的相对的液面位置+离液后的 坩锅的相对移动量;式(3)溶液的假想液面位置二式(2) + ; 式(4)溶液的假想液面位置=式(1) + +^^+^^q 。l QL x CDZ—GS x SD2OL x CD,一GS x SD2 j具体实施方式
如上所述,本发明的单晶硅的培育工艺中溶液的液面位置监视装置具 备观测溶液的液面位置的装置;观测坩锅位置的装置;存储从溶液的液 面提起的单晶硅的形状的装置;从观测到的溶液的液面位置及埘锅位置以
及存储的单晶硅形状算出溶液的假想液面位置的装置;通过在每个控制周期将溶液的假想液面位置向次序电路发送来控制坩锅的上升及下降的装 置,在溶液的假想液面位置超过上限位置时,根据需要产生警报,并停止 坩锅的上升。另外,期望在溶液的假想液面位置超过上限前位置时,就产 生警报。下面对本发明的单晶硅培育工艺中溶液的液面位置监视装置做具体 说明。溶液的液面位置使用设于单晶硅培育装置上的二维CCD照相机观测, 将得到的数据存储于控制计算机中。另外,坩锅位置也与溶液的液面位置 相同,使用二维CCD照相机观测,可将得到的数据存储于控制计算机中。另外,无论在培育的中途还是在培育完成之后,从溶液的液面拉起的 单晶硅的形状都使用二维CCD照相机照摄,将图像处理了的形状数据存 储于控制计算机中。就从存储的形状算出的单晶硅的体积而言,由于在运 送工艺中使单晶硅再次溶融,故在着液时其成为溶液的假想液面位置的计 算根据。作为基于溶液的假想液面位置控制坩锅的上升及下降的次序电路,例 如可应用PCL (Programmable Logic Controler)。 PCL是内装有中央运算处 理装置和存储元件的控制装置,是从输入电路取入输入信号,根据设定好 的条件对输出电路进行ON/OFF,由此可自由控制电磁阀及电动机这样的 各种输出设备的装置。在本发明的溶液液面位置监视装置中,在溶液的假想液面位置超过上 限位置时,必须停止坩锅的上升,进而优选在溶液的假想液面位置超过上 限前位置时就产生警报,由于为上述实施方式,从而在安全方面是完全的 对策。上限前位置及上限位置在带籽晶工艺之前,手动顺序设定。图6是表示本发明的单晶硅的培育工序中溶液的液面位置监视装置中 的溶液液面位置及隔热部件的安装位置、和上限前位置及上限位置的位置 关系的模式图。如图6所示,上限前位置表示浸渍籽晶1时的溶液3的液面位置,即 在基准位置到隔热板4的下端之间设定的可进行安全作业的液面位置的移 动范围的上限。另外,上限位置表示在隔热板4的下端到水冷体5的下端
之间设定的需要停止坩锅上升的区域的上限,在超过上限位置时,将坩锅 6的移动强制停止。如上所述,在本发明的单晶硅的培育工艺中溶液的液面位置监视装置 中,将工艺分配给每个培育阶段,选择溶液的假想液面位置的计算式。1. 真空吸引工艺、原料溶融工艺及带籽晶工艺图7是表示真空吸引工艺、原料溶融工艺及带籽晶工艺中的溶液的液 面位置的模式图,同图(a)是表示带籽晶的状态的图,同图(b)是表示 带籽晶后的坩锅向上方移动的状态的图。图7(a)所示的基准位置ho(mm) 是带籽晶时的溶液的液面高度,为相对液面位置的基准(=0)。当设带籽晶后的距基准位置的相对液面位置为h, (mm),设带籽晶后 的距液面的基准位置的运动量为Ahi (mm)时,如图7所示,得到下记 式(4):Ah产h广h。-h!…(4)另外,在将籽晶l浸渍到溶液3中之后,坩锅6移动向上方时,若将 带籽晶后的坩锅的运动量设为DM (mm),则在真空吸引工艺、原料溶融 工艺及带籽晶工艺中,可无视坩锅6内的溶液3的增减,因此侧导下记式 (5):△ h产DM…(5)因此,通过上记式(4)及式(5)得到下记式(1): h产DM…(1)上记式(1)在使用hi作为溶液的假想液面位置时,意味着可只由带籽晶后的坩锅的运动量管理溶液的假想液面位置。进而在真空吸引工艺、原料溶融工艺及带籽晶工艺中,由于可无视坩 锅内的溶液的增减,故上述式(1)不仅适在单晶硅的培育圆滑地进行的 情况下适用,而且还在移动工艺的离液及着液时适用。2. 颈部培育工艺、肩部培育工艺、躯体部培育工艺、尾部培育工艺、 以及单晶硅培育完成后的离液状态图8是表示躯体部培育工艺的离液状态的模式图,同图(a)是表示 单晶硅离液时的状态的图,同图(b)是表示单晶硅的离液状态的图。 若将单晶硅从溶融脱离的状态的相对液面位置设为h2 (mm),将单晶
硅从溶液脱离时的相对液面位置设为hR (mm),将单晶硅从溶液脱离后的 液面的移动量设为Ah2 (mm),则得到下记式(6): △h2=h2—hR…(6)其中,h2及hK是距未图示的基准位置h。的相对液面位置。另外,如图8 (a)及(b)所示,若将单晶硅从溶液脱离后的坩锅的 移动量设为CM (mm),则在离液状态下,坩锅内的溶液3不会减少,因 此得到下记式(7):△h2=CM…(7)因此,通过上记式(6)及式(7)得到下记式(2): h2=hR+CM…(2)上记式(2)中,在单晶硅的培育阶段,不仅可在确认了结晶缺陷时 的离液状态下适用,还可以在单晶硅的培育结束时的离液状态下适用。3.颈部培育工艺、肩部培育工艺、躯体部培育工艺及尾部培育工艺的 着液状态若将硅的固体比重设为GS=2.33X1(T3,将硅的液体比重设为GL= 2.53X1(T3,将单晶硅从溶液脱离后的籽晶的移动量设为SM (mm),将单 晶硅从溶液脱离后的坩锅的移动量设为CM (mm),将从溶液液面提起的 单晶硅的直径设为SD (mm),将溶液的表面直径设为CD (mm),则单晶 硅的培育或浸渍产生的液面移动量Ah3由下记式(8)表示。另外,上记式(2)表示单晶硅从溶液脱离的状态的距基准位置的相对液面位置,因此,由于培育中途提起的单晶硅再次溶解,故浸渍于溶液内时的距基准位置的相对液面位置h3 (mm)由上述式(2)及(8)、以及下记式(3)表示<formula>formula see original document page 14</formula>" (3〕3 乙l G丄xCD2—GSxSD2 G丄xCD2—GSxSD2J在从运送工艺再次溶解单晶硅时,适用上记式(3)作为溶液的假想 液面位置,从而不在提起的单晶硅的培育阶段就可以高精度地计算溶液的 假想液面位置。
本发明的单晶硅的培育工艺中溶液的液面位置监视装置是以现有的 控制方法及控制装置中难以进行监视及控制的工艺为对象的,因此,提出 上记式(3)。但是,在单晶硅的培育中途阶段不能确认结晶缺陷,而圆滑地进行单晶硅的培育时,可使用将前记式(1)及(8)组合后的下记式(9)计算溶液的假想液面位置h3'。<formula>formula see original document page 15</formula>如上所述,在本发明的单晶硅的培育工艺中溶液的液面位置监视装置 中,通过对每个工艺选择溶液的假想液面位置的计算式,可进行对应于所 有状况的溶液的假想液面位置的计算。由此,可高精度地控制溶液和隔热 板或水冷体之间的间隔。使用本发明的单晶硅的培育工艺中溶液的液面位置监视装置,基于流程图说明实施使用了 cz法的单晶硅的培育时的液面位置监视装置的动作。图9是表示本发明的单晶硅的培育工艺中溶液的液面位置监视装置的 动作的流程图。图9中,各工艺中的分路中,将作业圆滑地完成的情况表 示为YES,将位错等结晶缺陷产生的情况表示为NO。在以下的说明中,"END工艺"是指,将用于硅的溶融的加热器的电 源设为OFF后,监视两小时的液面位置,结束液面位置监视动作的工艺。 "REDY工艺"是指,与上述的运送工艺相同,是在无论单晶硅的培育阶 段还是培育完成后,都将籽晶或单晶硅离液时,基于己存储的单晶硅的形 状选择假想液面位置的计算式,考虑处于离液状态的单晶硅的体积计算将 籽晶或单晶硅再次着液时的假想液面位置的工艺。另外,"VAC工艺"是指真空吸引工艺,"MELT工艺"是指原料溶融 工艺,"DIP工艺"是指带籽晶工艺。并且,"NECK TAIL工艺"是指肩 部培育工艺、肩部培育工艺、躯体部培育工艺及尾部培育工艺。当单晶硅的培育工艺开始时,VAC工艺、MELT工艺、及DIP工艺的 顺序进行作业(stepl)。此时,溶液的假想液面位置使用式(1)计算。在DIP工艺中确认了缺陷时,转移到REDY工艺,将籽晶从溶液的液 面切去(step5)。进行转移及再次带籽晶时的溶液的假想液面位置使用式(1)计算。在该阶段,由于单晶硅的拉起还未开始,故坩锅位置不从溶融结束的时刻变化,从而式(1)的值通常为o。因此,在坩锅因误动作等 而移动时,由次序电路进行控制,使得式(1)为o。当DIP工艺结束时,作业继续前进到NECK TAIL工艺(step2)。在 NECK TAIL工艺(step2)中,单晶硅的培育圆滑地进行时,溶液的假想 液面位置使用式(4)计算。在单晶硅的培育结束后,结束作业时,前进 到END工艺(step3)。 ENG工艺在切断加热器电源后再经过两小时结束。在END工艺中,溶液的假想液面位置使用式(2)计算。END工艺 是监视坩锅内的溶液的固化的工艺,由于坩锅位置基本上未从离液时的液 面位置变化,故式(2)的值通常与离液时的液面位置相等。因此,式(2) 与离液时的液面位置不相等是坩锅因误动作等而上升的情况。该情况下, 通过次序电路控制坩锅的上升下降,使得式(2)的值为0。另外,在NECK TAIL工艺中,单晶硅的培育圆滑地进行,在单晶 硅的培育完成后继续进行作业时,前进到REDY工艺(step4)。 REDY工 艺即单晶硅离液后新的DIP工艺开始后,溶液的假想液面位置使用式(2) 计算。另一方面,在NECK TAIL工艺中确认了培育中的单晶硅有缺陷时, 前进到REDY工艺(step6)。在从NECK TAIL工艺转移来的REDY工 艺中,在离液时,溶液的假想液面位置使用式(2)计算(step8),另外, 在着液时,溶液的假想液面位置使用式(3)计算(step7)。此时,监视装置进行如下设定,计算以转移前的最终籽晶位置为基准 的籽晶的移动量和以转移前的最终坩锅位置为基准的坩锅的移动量的差, 在该差为正时判断为离液状态,相反在为负时判断为着液状态。进而在离 液状态下,存储培育中拉起的单晶硅的形状,且计算其体积,成为使用了 式(3)的溶液的假想液面位置的计算根据。将培育中提起的单晶硅着液,完成再次的溶解后,前进到DIP工艺 (stepl)。如上所述,通过溶液的液面位置监视位置进行的可靠的位置管理,可 安全地实施单晶硅的培育工艺。如以上所说明,根据本发明的溶液的液面位置监视装置,在使用了CZ法的单晶硅的培育工艺中,由于可进行对应所有状况的溶液的进行液 面位置的计算,故可高精度地控制溶液和隔热板或水冷体的间隔。另外,溶液的假想液面位置在超过设定的上限而接近隔热板时,产生 警报,进而在与隔热板接触或接近水冷体时,根据需要产生警报,同时强 制停止坩锅的移动,由此,可将溶液和水冷体的接触造成的水蒸气爆炸等 重大事故防患于未然。由此,能够作为可进行使用了 cz法的单晶硅的培育装置的安全的操作的溶液的液面位置监视装置广泛地应用。
权利要求
1、一种单晶硅的培育工艺中溶液的液面位置监视装置,其以带籽晶时的溶液的液面位置为基准位置监视使用了直拉单晶生长法的单晶硅的培育工艺中坩锅内的溶液的液面位置,其特征在于,具备观测溶液的液面位置的装置;观测坩锅位置的装置;存储从溶液的液面拉起的单晶硅的形状的装置;从所述观测到的溶液的液面位置及坩锅位置以及所述存储的单晶硅的形状,计算溶液的假想液面位置的装置;在每个控制周期将所述溶液的假想液面位置发送向次序电路从而控制坩锅的上升及下降的装置,并且,在所述溶液的假想液面位置超过上限位置时,停止坩锅的上升。
2、 如权利要求1所述的单晶硅的培育工艺中溶液的液面位置监视装 置,其特征在于,在所述溶液的假想液面位置超过上限前位置时,发生警 报。
3、 如权利要求1或2所述的单晶硅的培育工艺中溶液的液面位置监 视装置,其特征在于,计算所述溶液的假想液面位置的装置使用由下记式(1)得到的相对液面位置h,作为真空吸引工艺、原料溶融工艺及带籽晶 工艺中的溶液的假想液面位置, h产DM…(1)其中,h1:带籽晶后的距所述基准位置的相对液面位置,单位为mm, DM:带籽晶后的柑锅的移动量,单位为mm。
4、 如权利要求1或2所述的单晶硅的培育工艺中溶液的液面位置监 视装置,其特征在于,计算所述溶液的假想液面位置的装置在颈部培育工 艺、肩部培育工艺、躯体部培育工艺及尾部培育工艺、以及单晶硅的培育结束后,使用由下记式(2)得到的相对液面位置h2作为单晶硅从溶液离开的状态下的溶液的假想液面位置, h2=hR+CM…(2)其中,h2:单晶硅从溶液离开的状态下的距所述基准位置的相对液面 位置,单位为mm,hR:单晶硅从溶液离开时的距所述基准位置的相对液面位置,单位为 mm,CM:单晶硅从溶液离开后的坩锅的移动量,单位为mm。
5、如权利要求1或2所述的单晶硅的培育工艺中溶液的液面位置监视装置,其特征在于,计算所述溶液的假想液面位置的装置在颈部培育工艺、肩部培育工艺、躯体部培育工艺及尾部培育工艺中,使用由下记式(3)得到的相对液面位置h3作为为使培育中途被拉起的单晶硅再次溶解而将其浸渍于溶液中时的溶液的假想液面位置,<formula>formula see original document page 3</formula> (3)<formula>formula see original document page 3</formula>其中,h3:将单晶硅浸渍于溶液中时的距所述基准位置的相对液面位 置,单位为mm,h2:单晶硅从溶液离开的状态下的距所述基准位置的相对液面位置, 单位为mm,GS:硅的固体比重(2.33X10-3), GL:硅的液体比重(2.53X10-3),SM:单晶硅从溶液离开后的籽晶的移动量,单位为mm, CM:单晶硅从溶液离开后的坩锅的移动量,单位为mm, SD:从溶液的液面拉起起的单晶硅的直径,单位为mm, CD:溶液表面的直径,单位为mm。
全文摘要
本发明提供一种单晶硅的培育工艺中溶液的液面位置监视装置,以带籽晶时的溶液的液面位置为基准位置监视使用了CZ法的单晶硅的培育工艺中坩埚内的溶液的液面位置,在单晶硅的培育工艺中,由于可计算对应于所有状况的溶液的假想液面位置,故可高精度地控制溶液和隔热板或水冷体的间隔。另外,在溶液的假想液面位置超过设定的上限而接近隔热板时产生警报,进而在与隔热板接触或接近水冷体时根据需要产生警报,同时强制地停止坩锅的移动,由此,可将溶液和水冷体的接触造成的水蒸气爆炸等重大事故防患于未然。由此,能够作为可进行使用了CZ法的单晶硅的培育装置的安全的操作的溶液的液面位置监视装置广泛地应用。
文档编号C30B29/06GK101126173SQ20071010643
公开日2008年2月20日 申请日期2007年5月29日 优先权日2006年5月30日
发明者前田德次, 早川裕 申请人:株式会社上睦可
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1