专利名称:具有激光蚀刻阻当功能的高密度结构及其设计方法
技术领域:
本发明涉及多层电路的封装,它具有在内部的电路化平面之间用于电连接目的的激光钻孔暗连孔。
在多层电路板和卡的制作中,需要形成从构造的某一层至较深层的诸如连孔和过孔的通道。这种通道可以用机械的、化学的或以各种波长的激光蒸发或燃去电路板材料的方法形成。暗连孔是不完全贯穿一个板或卡的通道。在暗孔形成之后,可将例如金属材料沉积在该孔的表面,以提供与该孔相接的两层之间的电的、电源的或地连接。换句话说,这种暗孔的形成可用于连接金属性涂层来提供在多层结构内部的电气互连性。
通常是以激光来钻这种通过多层构造的绝缘聚合非导电材料而达到金属表面的暗孔,以形成平面之间的互连。这种多层结构一般包括由同种聚合材料以彼此各表面叠层而成多层,这种孔可以在任何一个表面上形成。在打这种暗孔的过程中,激光束与所要实现的内部金属层之间的相吻合的多层结构的可操作性是极其重要的。不相吻合的出现会导致与该金属层邻近的绝缘材料的剥离,而对于内部金属平面的连续会引起对于随后涂层的短路。
实现上述这种暗孔和多层构造的完好形成是这种事实,即作为内芯的非导电层和连接层的非导电层常常是以同种非导电材料形成。虽然采用同种非导电材料提供了一些确定的处理的优点,例如可以采用相同的造孔技术于各层(例如激态基发激光钻孔),但若有不对准出现时会引起问题。如果在达到底层的暗孔打钻过程中出现对不准的情况,就会引起不希望的对于内部的、芯层非导电材料的受损。如果有严重的对不准的出现,则该激光钻的暗孔将不会停止在该封装内的临界层,而是会使该激光继续钻通该结构而达到底部的金属层。这种对不准对于这种封装的完整性是一种决定性的破坏,因为它会导致在金属连接与在随后平面上的电平面之间的短路。
本发明提供一种结合了用于构造高密度结构的材料及方法的设计,在不损失本结构的机械及其电的完整性的条件下消除对不准的出现,从而克服在已有技术中的问题。
因此,本发明提供一种多层电子线路封装,它包括至少一个导电层,一个对于蚀化激光波长有第一光吸收性的第一有机聚合非导电材料,和对于蚀化激光波长有第二光吸收性的第二有机聚合非导电材料,该第一和第二光吸收性彼此不同。这种有机聚合材料之一的第一层覆在导电层至少一个表面上,而具有与第一层材料不同光吸收性的一个不同有机聚合材料的第二层覆在该第一层上。
图1a是用于构成高速、高密度封装典型已有技术的多层卡组件的截面图。
图1b表示在图1a中包括附加非导电材料的的多层组件的截面图,这些附加非导电材料叠置在具有良好对准且已执行了孔形成和随后的涂层处理的结构上。
图2a表示的是图1a中具有不良对准且执行了孔形成和随后的涂层处理的多层结构的断面图。
图2b表示结合了本发明若干方面的多层卡组件的截面图,其中以不良的对准执行了孔形成和随后的涂层处理。
图3a是本发明一实施例的简化截面图。
图3b表示本发明一个实施例的简化截面图,其中有层7和层8被顺序地叠置在金属层的两表面。
图4a和4b表示两种不同的光图形材料,它们可在经历孔形成处理之后用于本发明实施例。
图5a和5b及5c是这些材料的截面扫描电子微图形,可在经历孔形成处理后用于本发明实施例。
典型多层高密度结构如图1a所示,包括一个金属层1,由所加的非导电材料层所环绕,例如叠置在该金属层的两个表面。该金属层可将此卡与能附接于其上的各种部件电连接。非导电材料同来使这些所附部件之间绝缘。非导电材料还使各个传导层之间绝缘。当在层2中形成了孔之后,另一金属层3可被涂覆在该非导电材料的整个孔中。
图1b示出了在图1a的原有结构的两侧附加有叠置的非导电材料层的结构。在该图中,示出了在层4中的所钻暗孔和事先形成在层2中的孔的可接受的对准状况。
在典型的如图1b中的多层高密度结构中,两个非导电层2和4通常是以同样材料构成。利用同样非导电材料形成相邻层确有某些优点,例如在结构及机械方面的优点,但当对于该组件实施相似孔形成技术时则会引出些问题。如果激光被用于形成这些孔时,这些问题尤其突出。在接近两个非导电层之间的边界时,如果没有十分精确、恒定的监视,就无法知道在哪一点上切断激光束。
由于这些层是以同一非导电材料构成的这样的事实,孔形成的过程能够导致材料从两个层都脱离的结果。换句话说,如果在端沿方向的非导电材料是均匀的,则它就可被作为单一材料的单一叠层来对待。如果出现对不准的情况,通常是在向底板方向打暗孔的过程中会出现对内部的、核心层非导电层的不希望的破坏。
如图2a所示,这种对不准能够导致层2的剥离。则使整个区域以另一金属层所涂覆,导致金属被沉积与金属衬底核心相接触,如图2a中由箭头所指区域6所示。随后的对于该暗孔的涂覆以及在这两个金属层间的接触会导致电短路。
本发明不是采用相同非导电聚合材料的两个层,而是结合使用不同光吸收性的成层非导电聚合物。依照本发明,其基本点仅在于两个层使用具有不同吸光性的聚合材料。实际上,这种聚合物可在其它物理性上基本上一致,只要它们可适于在本发明中用作电封装的非导电材料即可。
图3以很简单的方式示出了本发明包括的两个相邻非导电层7和8,对于层7,其吸收性是α(n1,λ),而对于层8是α(n2,λ),其中n是色场集中性,而λ是入射光辐射(例如激光)的波长。对于本发明的工作,α(n1,)α(n2,)可见于图3b中。层8可以直接与金属层的两边相邻接,层7在外侧与层8相邻接。激光器或其它用于在非导电性层中形成孔的方法作用于层7上,如图3b中的箭头所示。如图3b所示,UV激发物激光器被用来形成暗孔。由于该非导电材料对于光的预定波长的吸收性,一旦有激光的作用,该层7即被激光所蚀化或蒸发掉。按照本发明的结构,在非导电材料中所钻孔的深度可容易地及精确地控制。对于特定光波长有敏感性的层7将在该光波冲击到该层上的同时被移去。然而,一旦在由激光冲击的区域而移去了在区域的层7且曝露出层8之时,由于形成层8的材料对于该特定波长相对地不敏感,则使材料的移去停止。
表1包括了取自两种材料类型例子,当使用激发物激光器操作于308nm波长时,它们可用以构成根据本发明最佳要点的交替使用非导电层。此表只用于说明示范,依照本发明,任何数量的具有不同光吸收性的非导电材料都可被采用。如图3b所示,以类型A和类型B表示非导电材料A和B。
表I类型A类型B
利用具有不同非吸光特性的材料提供了不同的激光/材料的相互作用。例如,芯层非导电材料可从被列作表I中类型A的材料组中选取。这些材料是不吸收的材料的例子,因而不能被使用如308nm激发激光器波长所打孔。根据本发明,如果选择激发物激光器打孔来形成置于形成在类型A的材料层上的非导电材料中的孔,则列作表I类型A的材料适于用作非导电层的芯层或其它层。
可用于本发明的吸收粒子包括具有适当色场的聚合物,例如那些具有共轭键因而在紫外光吸收良好的物质。在308nm不吸收的玻璃粒子包括如Min—u—Sil(美国硅石)或等价物。
另外一种过程或方法,例如采用一种CO2激光器或机械冲压或打孔的方法可被用于在A型材料中形成孔。所列举的类型A和B的材料只是寓意说明而并非仅限为此,任何具有不同于置于其顶上所置材料吸收特性的材料都可采用。所要求的只是这两种材料具有不同的吸收特性。
如果图3所示的内层8是由表1中A类型材料所形成,外层7就可由表中B型材料所形成。这种材料以激发激光波长所蚀化。借助于此种结构,如果在激发激光打穿过层7的暗孔过程中发生低于可接受的标准的对准问题,也不会导致对于本结构的有害的电冲击。
图2b中可见使用这种具有不同吸收特性的材料的效果。不同于图2a,在图2b中以相类似材料形成的两个非导电层,层7的剥离并不使层8剥离。从而避免出现图2b中实施例中出现的电短路。
虽然说对于类似的光波长的吸收性是不相似的,但用于形成这两层的材料最好有相似的机械、热、化学、电和其它特性。例如,可以采用PTFE(层8)和聚酰亚氮掺杂晶体填充的PTFE(层7)以及聚酰亚氨掺杂的玻璃填充的PTFE(层7),其中的掺杂的聚酰亚氨的程度要足够低,不影响上述的那些特性。这种掺杂的程度是以聚酰亚氨重量的5%的数量级或者更少。除去减少了在钻孔外层非导电层过程中的对准问题的担忧之外,采用表I中类型A的材料作为芯层构成将有助于利用激发激光器消除金属,以在图1a所示的芯层表面修复短接的电路。
利用激发激光器操作在308nm、在非导电材料的表面上的12焦耳/cm2(J/cm2)的每单位面积、每脉冲(流畅性)而对于表I中的类型A和类型B的各类的不同钻孔率示于表II中。
表II
以硅石粒子填充的PTFE在利用激发激光器(308nm)以12/cm2的流畅性而经过100个脉冲试图钻空该材料的两个密耳(mil)之后的光图如图4a所示,其材料是表I中的非导电材料2a。如该图中所示,该材料仅被轻微蚀化,即很浅的孔。图4b示出的例子是采用表1中的材料2b,反映出以多种吸收玻璃粒子填充的PTFE仅由16个脉冲钻孔之后的情况。如该图中清晰可见,相当完整且干净的孔已经在贯空整个材料上形成。因此,图4a和图4b示出了这两种材料使用在发明的一个实施例中的情况。
各种光波长作用于各种材料上的不同效果的进一步的情况在图5a中示出,它表示在标准激发激光器处理条件下钻孔表I中材料2b的SEM显微图。图5b表示表I中材料3b取样的类似处理的照片。图5c示出由利用CO2激光器钻孔表I材料2A的SEM显微图。在图5中的这些照片进一步表示了本发明用途的进一步的情况。
本发明还包括构成多层电子电路封装的方法。最好是该多层电子线路封装的至少一层包括一个导电平面。在传导层的一个、两个或所有的表面上放置一个第一有机、聚合物非导电材料。例如该第一层可被从表I中类型A所列的材料中选择出来。该第一有机聚合材料最好对于激光束的蚀化波长有第一吸收性。
在非导电材料的第一层放置完成后,包括焊接区域的电路化部分可被置于第一层上。在该第一层上以及任何电路部分之上可放置一种第二有机物、聚合非导电材料的第二层。该第二有机聚合材料对于在同一激光蚀化波长最好有与第一非导电层的第一光吸收性不相同的第二光吸收性。利用激光器,通过对形成第二层的材料以激光蚀刻波长进行蚀刻可形成贯穿该第二非导层而达到该电路部分的一个孔。传导材料可被淀积在该孔的表面上。
可以任何次序将非导电材料淀积在传导层上,这要视用于形成该孔的过程或在各不同层中的其它通路而定。非激光装置也可被用来形成贯通该非导电层的通道,例如以机械冲压方法。而且其过程也不局限于激光束的任何特定波长。
权利要求
1.一种多层电子电路封装,包括有至少一个导电层;一个对于蚀化激光波长有第一光吸收性的第一有机聚合非导电材料;以及一个对于蚀化激光波长有第二光吸收性的第二有机聚合非导电材料,所述的第一吸收性以及第二光吸收性彼此不同;其中所述有机聚合材料之一的一个第一层覆在导电层的至少一个表面上,且具有与该第一层材料不同光吸收性的一个不同有机聚合材料的第二层覆在所述的第一层上。
2.根据权利要求1的多层电子电路封装,其特征在于,所述的第一有机聚合非导电材料是从包括聚四氟化乙稀和由石英粒子填充的聚四氟化乙稀的一组材料中选择的,并且所述的第二有机聚合材料是从包括以吸收掺杂物所填充的聚四氟化乙稀、以吸收粒子填充的聚四氟化乙烯和以玻璃粒子和聚酰亚氨所填充的聚四氟化乙稀的一组材料中选择的。
3.根据权利要求2的多层电子电路封装,其特征在于,其中所述的掺杂物是在聚四氟化乙烯中的聚酰亚氨、在异丁烯酸甲酯中的TINUVIN或在异丁烯酸甲脂中的芘。
4.根据权利要求2的多层电子电路封装,其特征在于,其中所述的吸收粒子是从包括具有恰当的色球团(例如共轭边界)的聚合物组中选出的。
5.根据权利要求2的多层电子电路封装,其特征在于,其中所述的玻璃粒子是从包括例如Min—U—Sil(取自美国硅石)或等效物的一个硅石组中选择的。
6.根据权利要求1的多层电子电路封装,其特征在于,其中所述的第一有机聚合物非导电材料是对于10,600nm的蚀化激光波长有吸收性的聚四氟化乙烯,以及所述的第二有机聚合物非导电材料是对于308nm的蚀化激光波长有吸收性的聚酰亚氨掺杂的聚四氟化乙烯。
7.根据权利要求1的多层电子电路封装,其特征在于,一个第二导电层至少部分地覆在所述有机聚合非导电材料的所述第二层上。
8.根据权利要求1的多层电子电路封装,其特征在于,一个电路化层覆盖所述有机聚合非导电材料的第一层,而且所述有机聚合非导电材料的第二层覆盖所述的第一层以及所述的电路化层。
9.一种用于形成多层电路封装的一种方法,其中该多层中的至少一层包括一个导电层,一个有机聚合非导电物质设置在其主表面,所述的方法包括以下步骤(a)在导电层主表面上设置第一有机聚合非非导电材料的第一层,所述第一有机聚合材料对于激束的光波长具有第一光吸收性;(b)把包括焊接区的电路化形成在该有机非导电材料的第一层上;(c)在所述电路化的第一层上放置第二有机聚合非导电材料的第二层,所述第二有机聚合材料对于激光蚀化波长具有不同于所述第一层的第一光吸收性的第二光吸收性;和(d)以所述的激光蚀化波长经过所述的第二层对所述电路化层进行激光蚀化。
10.根据权利要求9的形成多层电子电路封装的方法,其特征在于,所述的第一有机聚合非导电材料是从包括聚四氟化乙烯和由硅石粒子填充的聚四氟化乙烯的一组材料中选择的,并且所述的第二有机聚合材料是从包括以吸收掺杂物所填充的聚四氟化乙烯、以吸收粒子填充的聚四氟化乙烯和以玻璃粒子和聚酰亚氨所填充的聚四氟化乙烯的一组材料中选择的。
11.根据权利要求10的形成多层电子电路封装的方法,其特征在于,其中所述的掺杂物是在聚四氟化乙烯中的聚酰亚氨、在异丁烯酸甲脂中的TINUVIN或在异丁烯酸甲脂中的芘。
12.根据权利要求10的形成多层电子电路封装的方法,其特征在于,其中所述的吸收粒子是从包括具有恰当的色球团(例如共轭边界)的聚合物选出的。
13.根据权利要求10的形成多层电子电路封装的方法,其特征是于,其中所述的玻璃粒子是从包括例如Min—U—Sil(美国硅石)的等效物的一个硅石组中选出的。
14.根据权利要求9的形成多层电子电路封装的方法,其特征在于,其中所述的第一有机聚合物非导电材料是对于10,600nm的蚀化激光波长有吸收性的聚四氟化乙烯,以及所述的第二有机聚合物非导电材料是对于308nm的蚀化激光波长有吸收性的聚酰亚氨掺杂的聚四氟化乙烯。
15.根据权利要求9形成多层电子电路封装的方法,其特征在于,一个第二导电层至少部分地覆盖所述有机聚合非导电材料的所述第二层上。
16.一种多层电子电路封装,它包括至少一个导电层;基于非导电材料的、覆盖所述至少一个导电平面的至少一个表面的第一有机聚合材料层,所述的第一非导电材料对于激光蚀化波长展示出低的光吸收性;和基于覆盖所述第一层的非导电材料的第二有机聚合材料层,所述第二聚合材料对于所述波长展示出高的光吸收性。
17.根据权利要求16的多层电子电路封装,其特征在于,所述第一有机聚合非导电材料是从包括聚四氟化乙烯和石英粒子填充的聚四氟化乙烯的一组材料中选择的,并且所述的第二有机聚合材料是从包括以吸收掺杂物所填充的聚四氟化乙烯、以吸收粒子填充的聚四氟化乙烯和以玻璃粒子和聚酰亚氨所填充的聚四氟化乙烯的一组材料中选择的。
18.根据权利要求17的多层电子电路封装,其特征在于,其中所述的掺杂物是在聚四氟化乙烯中的聚酰亚氨、在异丁烯酸甲脂中的TINUVIN或在异丁烯酸甲脂中的芘。
19.根据权利要求17的多层电子电路封装,其特征在于,其中所述的吸收粒子是从包括具有恰当的色球团(例如共轭边界)的聚合物组中选出的。
20.根据权利要求17的多层电子电路封装,其特征在于,其中所述的玻璃粒子是从包括例如Min—U—Sil(美国硅石)或等效物的一个硅石组中选择的。
21.根据权利要求16的多层电子电路封装,其特征在于,其中所述第一有机聚合物非导电材料是对于10,600nm的蚀化激光波长有吸收性的聚四氟化乙烯,以及所述的第二有机聚合物非导电材料是对于308nm蚀化激光波长有吸收性的聚酰亚氨掺杂的聚四氟乙烯。
22.根据权利要求16的多层电子电路封装,其特征在于,一个第二导电层至少部分地覆盖在所述有机聚合非导电材料的所述第二层上。
23.根据权利要求16的多层电子电路封装,其特征在于,一个电路化层覆盖所述有机聚合非导电材料的第一层,而且所述有机聚合非导电材料的第二层覆盖所述的第一层及所述的电路化层。
全文摘要
一种多层电子电路封装,它包括至少一个导电层,一个对于蚀化激光波长有第一光吸收性的第一有机聚合非导电材料,和对于蚀化激光波长有第二光吸收性的第二有机聚合非导电材料。第一和第二光吸收性互不相同。这种有机聚合非导电材料之一的第一层覆盖在该导电层的至少之一个表面上,而具有与第一层材料不同光吸收性的一个不同有机聚合材料的第二层覆在该第一层上。
文档编号H05K1/03GK1116772SQ9510479
公开日1996年2月14日 申请日期1995年5月4日 优先权日1994年6月2日
发明者查尔斯·罗伯特·戴维斯, 福兰克·丹尼尔·埃吉托, 欧格内·罗曼·斯卡尔文科 申请人:国际商业机器公司