面向智能机器人的对话系统数据处理方法及装置的制造方法
【专利摘要】一种面向智能机器人的对话系统数据处理方法及装置,该方法包括:步骤一,基于所获取的交互话题序列,按照预设规则从交互话题序列中提取目标话题;步骤二,根据目标话题的属性确定对应的输出模型,并基于预设知识图谱,根据目标话题的属性生成关联信息;步骤三,根据关联信息和输出模型生成对应于目标话题的反馈信息。通过该方法,对话系统能够时不时地针对用户的提问主动发起一些相关的话题,这样也就使得用户能够觉得对话系统真实地理解了自己的对话信息,从而使得人机交互能够持续下去,这样也就提高了对话系统的用户体验和用户粘度。
【专利说明】
面向智能机器人的对话系统数据处理方法及装置
技术领域
[0001]本发明涉及人机交互技术领域,具体地说,涉及面向智能机器人的对话系统数据处理方法及装置。
【背景技术】
[0002]传统的人机交互过程中,用户通常是通过键盘或鼠标等外设来将自己的命令传递给机器人。而这种人机方式操作复杂,效率低下,对于没有使用经验的用户来说,这种传统的人机交互方式成为用户与机器人进行沟通的障碍。
[0003]随着语音技术和自然语言处理技术的发展,基于语音交互的对话系统逐渐成为用户与智能机器人进行人机交互的必备系统。然而对于现有的对话系统而言,其工作方式通常是用户发起一个聊天,然后对话系统对用户输入的内容进行回答,这样一问一答,从而实现人机交互。因此,对话系统的回答就需要与用户发起的聊天主体相关,这样才能吸引用户继续就同一问题来与对话系统进行聊天,这样也就形成了对话。
[0004]然而,对于现有的对话系统来说,其所输出的对话内容常常与用户发起的聊天主题的关联度差,从而使得用户感觉聊天过程无趣,进而影响了人机对话过程的流畅度。
【发明内容】
[0005]为解决上述问题,本发明提供了一种面向智能机器人的对话系统数据处理方法,包括:
[0006]步骤一,基于所获取的交互话题序列,按照预设规则从所述交互话题序列中提取目标话题;
[0007]步骤二,根据所述目标话题的属性确定对应的输出模型,并基于预设知识图谱,根据所述目标话题的属性生成关联信息;
[0008]步骤三,根据所述关联信息和所述输出模型生成对应于所述目标话题的反馈信息。
[0009]根据本发明的一个实施例,在所述步骤一中,按照时间顺序从所述交互话题序列中提取所述目标话题。
[0010]根据本发明的一个实施例,在所述步骤二中,利用预设知识图谱,生成对应于当前目标话题的关联信息,其中,如果利用所述预设知识图谱无法生成对应于所述当前目标话题的关联信息,则返回步骤一以选取所述当前目标话题的上一交互话题作为目标话题来重新确定对应的输出模型和关联信息。
[0011 ]根据本发明的一个实施例,如果所述目标话题属于第一话题类型,则利用所述预设知识图谱确定出所述目标话题中实体的属性信息和关系信息,并将所述属性信息和关系信息作为所述目标话题的关联信息。
[0012]根据本发明的一个实施例,如果所述目标话题属于第二话题类型,则从所述目标话题的相关类别中选取交互实体,并利用所述预设知识图谱确定出所述交互实体对应的关联信息。
[0013]本发明还提供了一种面向智能机器人的对话系统数据处理装置,包括:
[0014]目标话题提取模块,基于所获取的交互话题序列,按照预设规则从所述交互话题序列中提取目标话题;
[0015]关联信息生成模块,根据所述目标话题的属性确定对应的输出模型,并基于预设知识图谱,根据所述目标话题的属性生成关联信息;
[0016]反馈信息生成模块,根据所述关联信息和所述输出模型生成对应于所述目标话题的反馈信息。
[0017]根据本发明的一个实施例,所述目标话题提取模块配置为按照时间顺序从所述交互话题序列中提取所述目标话题。
[0018]根据本发明的一个实施例,所述关联信息生成模块配置为利用预设知识图谱,生成对应于当前目标话题的关联信息,其中,如果利用所述预设知识图谱无法生成对应于所述当前目标话题的关联信息,所述目标话题提取模块则选取所述当前目标话题的上一交互话题作为目标话题来供所述关联信息生成模块重新确定对应的输出模型和关联信息。
[0019]根据本发明的一个实施例,如果所述目标话题属于第一话题类型,所述关联信息生成模块则配置为利用所述预设知识图谱确定出所述目标话题中实体的属性信息和关系信息,并将所述属性信息和关系信息作为所述目标话题的关联信息。
[0020]根据本发明的一个实施例,如果所述目标话题属于第二话题类型,所述关联信息生成模块则配置为从所述目标话题的相关类别中选取交互实体,并利用所述预设知识图谱确定出所述交互实体对应的关联信息。
[0021]本发明提供的面向智能机器人的对话系统数据处理方法及装置,能够使得对话系统变得更加智能,从而使得对话系统能够更加真实地模拟聊天场景。通过该数据处理方法及装置,对话系统能够时不时地针对用户的提问主动发起一些相关的话题,这样也就使得用户能够觉得对话系统真实地理解了自己的对话信息,从而使得人机交互能够持续下去,这样也就提高了对话系统的用户体验和用户粘度。
[0022]本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
【附图说明】
[0023]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
[0024]图1是根据本发明一个实施例的面向智能机器人的对话系统数据处理方法的流程图;
[0025]图2是根据本发明另一个实施例的面向智能机器人的对话系统数据处理方法的流程图;
[0026]图3是根据本发明一个实施例的生成关联信息的流程图;
[0027]图4是本发明一个实施例的面向智能机器人的对话系统数据处理装置的结构示意图。
【具体实施方式】
[0028]以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
[0029]同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。
[0030]另外,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
[0031]AKArtificial Intelligence,人工智能)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,它是计算机科学的一个分支,企图了解智能的实质,并产生一种新的能以人类智能相似的方式做出反应的智能机器。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。Al自诞生以来,理论和技术日益成熟,其应用领域也在不断扩大。
[0032]Al对话系统通过Al来确定用户所输入问题的答案并向用户反馈。传统的Al对话系统与用户对话的模式都是用户发起一个聊天,随后Al对话系统进行回答,这样一问一答便形成了对话。当然,Al对话系统回复的内容需要与用户发起的聊天主题相关,这样才能够吸引用户在同一问题上进行聊天。
[0033]然而,传统的Al对话系统无法像人一样进行一些主动的聊天,这样也就使得传统的对话系统只能被动的回答用户提出的问题。这样三四轮对话下来很容易使得用户感到无趣,从而不愿意再继续与对话系统进行对话。
[0034]针对传统对话系统所存在的上述问题,本发明提供了一种新的面向智能机器人的对话系统数据处理方法及装置,该方法及装置能够使得对话系统变得更加智能,从而使得对话系统能够更加真实地模拟聊天场景。通过该数据处理方法及装置,对话系统能够时不时地针对用户的提问主动发起一些相关的话题,这样也就使得用户能够觉得对话系统真实地理解了自己的对话信息,从而使得人机交互能够持续下去,这样也就提高了对话系统的用户体验和用户粘度。
[0035]为了更加清楚的表明本发明所提供的面向智能机器人的对话系统数据处理方法的实现原理、实现过程以及优点,以下分别结合不同的实施例来对该方法进行进一步地说明。
[0036]实施例一:
[0037]图1示出了本实施例所提供的面向智能机器人的对话系统数据处理方法的流程图。
[0038]如图1所示,该方法首先在步骤SlOl中基于所获取的交互话题序列,按照预设规则来从该交互话题序列中提取目标话题。
[0039]具体地,本实施例中,当该对话系统通过决策确定当前需要向用户发起主动询问时,其会从前几轮的对话数据中按照时间顺序抽取出一些交互话题,从而形成交互话题序列。本方法在步骤SlOl中会在该交互话题序列中按照预设规则来提取出目标话题,该目标话题也就是该方法在生成反馈信息时所需要参考的话题。这样,该方法最终生成并输出的反馈信息也就会与目标话题相关,从而使得用户觉得对话系统是真实地理解了自己的对话内容。
[0040]当确定出目标话题后,该方法在步骤S102中根据该目标话题的属性确定对应的输出模型。同时,该方法还将在步骤S103中基于预设知识图谱来根据目标话题的属性生成对应的关联信息。
[0041 ]本实施例中,在步骤S102中所确定的输出模型可以视为输出给用户的交互信息的模板,在某些情况下,该模板可以表征出输出给用户的交互信息的句式以及句型等信息。
[0042]为了更加准确地确定出目标话题的关联信息,本实施例所提供的方法在对话系统中添加了知识图谱的支持,从而使得对话系统在进行主动询问时有更加准确的数据支持,这样也就使得对话系统所推荐的事物(例如对话系统主动发起的询问中所包含的内容)能够与用户的交互话题具有更高的相关性。
[0043]知识图谱本质上是语义网络,其由节点(point)和边(edge)组成。在知识图谱中,每个节点表示现实世界中存在的“实体”,每条边表示实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。
[0044]例如,当目标话题中包含实体“姚明”时,该方法利用预设知识图谱可以得到姚明的妻子是叶莉,同时姚明最近在参加两会,那么在步骤S103中利用知识图谱所得到的对应于实体“姚明”的关联信息则可能是“叶莉”和“两会”。
[0045]在得到对应于目标话题的输出模型和关联信息后,该方法在步骤S104中根据步骤S102中所得到的输出模型和步骤S103中所得到的关联信息生成对应于目标话题的反馈信息。
[0046]具体地,本实施例中,在根据输出模型和关联信息生成反馈信息时,优选地通过将关联信息填充到输出模型中的对应位置处,并通过进一步地处理从而生成符合用户交互习惯的反馈信息。
[0047]在步骤S103中,利用知识图谱所得到的目标话题的关联信息为“叶莉”和“两会”,那么该方法在步骤S104中所生成的反馈信息可以为“姚明最近在参加两会,你知道叶莉去了吗”。
[0048]通过该反馈信息可以看出,当用户与对话系统的交互话题涉及到“姚明”时,对话系统利用本方法可以主动向用户提出诸如“姚明最近在参加两会,你知道叶莉去了吗”的交互反馈。该反馈信息一方面与姚明有关,另一方面还告诉了用户有关姚明的最新新闻(即姚明去参加两会了),再者还能够将姚明的妻子叶莉也引入话题中。通过这种方式,在保证话题相关度的前提下,很好地对交互话题进行了延展,这不仅能够保证用户对对话系统所反馈的交互信息的满意度,还能够促使用户与对话系统继续进行更加深入的话题交互,从而提高了对话系统的用户体验和用户粘度。
[0049]实施例二:
[0050]图2示出了本实施例中所提供的面向智能机器人的对话系统数据处理方法的流程图。
[0051]如图2所示,本实施例中,该方法在步骤S201中获取交互话题序列,并将参数i设置为I。
[0052]本实施例中,该方法在步骤S201中所获取到的交互话题序列中包含多个交互话题,这些交互话题按照时间顺序排列。其中,交互话题序列中第I个交互话题为离当前时刻最近的交互话题,而交互话题序列中越往后的交互话题离当前时刻越远。
[0053]在步骤S202中,将交互话题序列中的第i个交互话题作为目标话题,并在步骤S203中基于预设知识图谱,根据目标话题的属性生成对应于目标话题的关联信息。
[0054]由于参数i的初始值为I,因此该方法在步骤S202中将交互话题序列中的第I个交互话题作为了目标话题来分析,即该方法首先分析离当前时刻最近的交互话题。由于离当前时刻越近的交互话题能够更加准确地反映出用户的交互意图,因此本实施例中通过首先分析离当前时刻最近的交互话题能够使得最终生成并输出给用户的反馈信息更加符合用户的交互期望,从而保证了人机交互内容的连续性。
[0055]本实施例中,该方法在步骤S203中利用预设知识图谱生成对应于目标话题的关联信息的实现原理以及实现过程与实施例一中步骤S103所阐述的内容类似,故在此不再赘述。
[0056]对于某些交互话题来说,通过预设知识图谱无法生成对应于这些交互话题的关联信息,因此如图2所示,本实施例所提供的方法在步骤S204中判断是否能够正常生成对应于目标话题的关联信息。
[0057]如果利用预设知识图谱能够正常生成对应于目标交互话题的关联信息,那么该方法则在步骤S206中根据目标话题的属性确定输出模型,并在步骤S207中根据输出步骤S203中确定出的对应于目标话题的关联信息和步骤S206中确定出的对应于目标话题的输出模型,生成对应于目标话题的反馈信息。
[0058]本实施例中,步骤S206和步骤S207的实现原理以及实现过程与实施例一中图1所示的步骤S102以及步骤S104所阐述的内容类似,故在此不在赘述。同时,还需要说明的是,在本发明的其他实施例中,该方法也可以在判断利用是否能够利用预设知识图谱正常生成对应于目标话题的关联信息和/或生成关联信息之前,来根据目标话题的属性确定输出模型,本发明不限于此。
[0059]而如果利用预设知识图谱无法正常生成对应于目标交互话题的关联信息,那么该方法则在步骤S205中将参数i的取值加I后反馈步骤S202以重新执行步骤S202。此时,由于参数i的取值为2,因此此时所分析的交互话题将是交互话题序列中的第2个交互话题,该交互话题也即为当前交互话题的前一交互话题。
[0060]根据上述描述可以看出,在实施例一所提供的对话系统数据处理方法的基础上,本实施例所提提供的面向智能机器人的对话系统数据处理方法还通过进一步判断所提取的目标话题是否能够利用知识图谱得到对应的关联信息,这样能够使得最终生成的反馈信息更加准确、关联度更高。
[0061 ] 实施例三:
[0062]本实施例所提供的面向智能机器人的对话系统数据处理方法首先根据获取到的交互话题序列,按照预设规则来从该交互话题序列中提取目标话题,随后根据目标话题的属性来确定目标话题所对应的输出模型,并且还利用预设知识图谱来根据目标话题的属性生成关联信息。
[0063]需要指出的是,本实施例中,目标话题的提取原理以及过程与实施例二所阐述的目标话题的提取原理以及提取过程相同,故在此不再赘述。
[0064]本实施例中,对应于目标话题的关联信息是根据目标话题的话题类型来生成的,其具体生成过程如图3所示。
[0065]如图3所示,本实施例所提供的方法在利用预设知识图谱生成对应于目标话题的关联信息时,首先在步骤S301中获取目标话题的话题类型。本实施例中,交互话题的话题类型优选地包括两类,即第一话题类型和第二话题类型。其中,第一话题类型为针对具体的一个实体的交互话题,例如某交互话题中包含命名实体“姚明”,而“姚明”便是一个具体的实体,因此该交互话题也就属于第一话题类型。第二话题类型为针对一个类别的交互话题,例如某交互话题中包含关键词“科技”,由于“科技”不是表征一个具体的实体而是表征某一类实体的集合,因此该交互话题也就属于第二话题类型。
[0066]本实施例中,如果在步骤S302中判断出目标话题属于第一话题类型,那么该方法则在步骤S303中利用预设知识图谱确定出目标中实体的属性信息和关系信息,并将这些属性信息和关系信息作为目标话题的关联信息。
[0067]而如果该方法在步骤S304中判断出目标话题属于属于第二话题类型的话,那么该方法则在步骤S305中从目标话题的相关类别中选取交互实体,并在步骤S306中利用预设知识图谱确定出该交互实体所对应的关联信息。
[0068]例如目标话题是针对“科技”这一类别的,那么该方法将在步骤S305中从“科技”这个类别中选取最热门的交互实体,例如“AlphaGo”、“引力波”或“核弹”等。随后在步骤S306中,利用预设知识谱图可以确定出步骤S305中所得到的交互实体的关联信息。例如,对于交互实体“AlphaGo”,利用知识图谱可以得到诸如“李世石”的关联信息;对于“核弹”,利用知识图谱可以得到诸如“朝鲜”的关联信息。
[0069]在得到目标话题的关联信息和输出模型后,该方法便可以根据该关联信息和输出模型生成对应于目标话题的反馈信息。
[0070]例如,对于包含实体“姚的目标话题,该方法确定出的目标话题的关联信息为“叶莉”和“两会”,那么该方法最终可以生成诸如“姚明最近在参加两会,你知道叶莉去了吗”的反馈信息;对于属于“科技”类别的目标话题,对于所选取的交互实体“AlphaGo”,该方法确定出的目标话题的关联信息为“李世石”,那么该方法最终可以生成诸如“你知道AlphaGo吗,它最近可战胜了李世石”的反馈信息;而对于属于“科技”类别的目标话题,对于所选取的交互实体“核弹”,该方法确定出的目标话题的关联信息为“朝鲜”,那么该方法最终可以生成诸如“你知道朝鲜又进行了核弹试验吗”的反馈信息。
[0071]需要指出的是,本实施例中,当当前所选取的目标话题属于第二话题类型时,如果无法从目标话题所属的类别中选取出合适的交互实体,那么该方法将从交互话题序列中选取出下一交互话题作为目标话题来进行分析。
[0072]从上述描述中可以看出,本实施例所提供的方法在实施例一以及实施例二所提供的方法的基础上,还能够根据目标话题所属的不同话题类型来采用不同的处理方式来生成反馈信息,该方法进一步提高了所生成的反馈信息与目标话题的关联度,改善了对话系统的用户体验。
[0073]本实施例还提供了一种面向智能机器人的对话系统数据处理装置,图4示出了该装置的结构示意图。
[0074]如图4所示,本实施例中,该对话系统数据处理装置优选地包括:交互话题提取模块401、关联信息生成模块402以及反馈信息生成模块403。当对话系统通过决策确定当前需要向用户发起主动询问时,其会从前几轮的对话数据中按照时间顺序抽取出一些交互话题,从而形成交互话题序列。交互话题提取模块401则会基于所获取的交互话题序列,按照预设规则来从该交互话题序列中提取目标话题。
[0075]当确定出目标话题后,交互话题提取模块401会将提取到的目标话题传输给关联信息生成模块402。关联信息生成模块402会根据目标话题的属性确定出对应的输出模型,同时,其还会基于预设知识图谱来根据目标话题的属性生成对应的关联信息。
[0076]本实施例中,关联信息生成模块402所确定的输出模型可以视为输出给用户的交互信息的模板,在某些情况下,该模板可以表征出输出给用户的交互信息的句式以及句型等信息。
[0077]为了更加准确地确定出目标话题的关联信息,本实施例所提供的装置在对话系统中添加了知识图谱的支持,从而使得对话系统在进行主动询问时有更加准确的数据支持,这样也就使得对话系统所推荐的事物(例如对话系统主动发起的询问中所包含的内容)能够与用户的交互话题具有更高的相关性。
[0078]在得到对应于目标话题的输出模型和关联信息后,关联信息生成模块402会将确定出的输出模型和关联信息传输给反馈信息生成模块403。反馈信息生成模块403会根据输出模型和关联信息生成对应于目标话题的反馈信息。
[0079]具体地,本实施例中,反馈信息生成模块403在根据输出模型和关联信息生成反馈信息时,优选地通过将关联信息填充到输出模型中的对应位置处,并通过进一步地处理从而生成符合用户交互习惯的反馈信息。
[0080]例如,目标话题提取模块401所确定出的目标话题包含实体“叙利亚”,关联信息生成模块402利用知识图谱所得到的目标话题的关联信息为“难民危机”,那么反馈信息生成模块所生成的反馈信息可以为“你知道叙利亚难民危机现在处理得怎么样了吗”。
[0081 ]本实施例中,当关联信息生成模块402利用预设知识图谱无法得到当前目标话题的关联信息时,此时目标话题提取模块401会提取交互话题序列中的下一交互话题来作为新的目标话题,并将该目标话题传输给关联信息生成模块402,以由关联信息生成模块402进行进一步地处理。
[0082]需要指出的是,本实施例中,关联信息生成模块402会根据标话题的话题类型来采用不同的方式来生成的关联信息。具体地,关联信息生成模块402首先获取目标话题的话题类型。本实施例中,交互话题的话题类型优选地包括两类,即第一话题类型和第二话题类型。其中,第一话题类型为针对具体的一个实体的交互话题,例如某交互话题中包含命名实体“姚明”,而“姚明”便是一个具体的实体,因此该交互话题也就属于第一话题类型。第二话题类型为针对一个类别的交互话题,例如某交互话题中包含关键词“科技”,由于“科技”不是表征一个具体的实体而是表征某一类实体的集合,因此该交互话题也就属于第二话题类型。
[0083]如果关联信息生成模块402判断出目标话题属于第一话题类型,那么其会利用预设知识图谱确定出目标中实体的属性信息和关系信息,并将这些属性信息和关系信息作为目标话题的关联信息。
[0084]而如果关联信息生成模块402判断出目标话题属于属于第二话题类型的话,那么其会从目标话题的相关类别中选取交互实体,并利用预设知识图谱确定出该交互实体所对应的关联信息。
[0085]从上述描述中可以看出,本实施例所提供的面向智能机器人的对话系统数据处理装置能够使得对话系统变得更加智能,从而使得对话系统能够更加真实地模拟聊天场景。通过该装置,对话系统能够时不时地针对用户的提问主动发起一些相关的话题,这样也就使得用户能够觉得对话系统真实地理解了自己的对话信息,从而使得人机交互能够持续下去,这样也就提高了对话系统的用户体验和用户粘度。
[0086]应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构或处理步骤,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
[0087]说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
[0088]虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。
【主权项】
1.一种面向智能机器人的对话系统数据处理方法,其特征在于,包括: 步骤一,基于所获取的交互话题序列,按照预设规则从所述交互话题序列中提取目标话题; 步骤二,根据所述目标话题的属性确定对应的输出模型,并基于预设知识图谱,根据所述目标话题的属性生成关联信息; 步骤三,根据所述关联信息和所述输出模型生成对应于所述目标话题的反馈信息。2.如权利要求1所述的方法,其特征在于,在所述步骤一中,按照时间顺序从所述交互话题序列中提取所述目标话题。3.如权利要求2所述的方法,其特征在于,在所述步骤二中,利用预设知识图谱,生成对应于当前目标话题的关联信息,其中,如果利用所述预设知识图谱无法生成对应于所述当前目标话题的关联信息,则返回步骤一以选取所述当前目标话题的上一交互话题作为目标话题来重新确定对应的输出模型和关联信息。4.如权利要求1?3中任一项所述的方法,其特征在于,如果所述目标话题属于第一话题类型,则利用所述预设知识图谱确定出所述目标话题中实体的属性信息和关系信息,并将所述属性信息和关系信息作为所述目标话题的关联信息。5.如权利要求1?4中任一项所述的方法,特征在于,如果所述目标话题属于第二话题类型,则从所述目标话题的相关类别中选取交互实体,并利用所述预设知识图谱确定出所述交互实体对应的关联信息。6.一种面向智能机器人的对话系统数据处理装置,其特征在于,包括: 目标话题提取模块,基于所获取的交互话题序列,按照预设规则从所述交互话题序列中提取目标话题; 关联信息生成模块,根据所述目标话题的属性确定对应的输出模型,并基于预设知识图谱,根据所述目标话题的属性生成关联信息; 反馈信息生成模块,根据所述关联信息和所述输出模型生成对应于所述目标话题的反馈信息。7.如权利要求6所述的装置,其特征在于,所述目标话题提取模块配置为按照时间顺序从所述交互话题序列中提取所述目标话题。8.如权利要求7所述的装置,其特征在于,所述关联信息生成模块配置为利用预设知识图谱,生成对应于当前目标话题的关联信息,其中,如果利用所述预设知识图谱无法生成对应于所述当前目标话题的关联信息,所述目标话题提取模块则选取所述当前目标话题的上一交互话题作为目标话题来供所述关联信息生成模块重新确定对应的输出模型和关联信息。9.如权利要求6?8中任一项所述的装置,其特征在于,如果所述目标话题属于第一话题类型,所述关联信息生成模块则配置为利用所述预设知识图谱确定出所述目标话题中实体的属性信息和关系信息,并将所述属性信息和关系信息作为所述目标话题的关联信息。10.如权利要求6?9中任一项所述的装置,特征在于,如果所述目标话题属于第二话题类型,所述关联信息生成模块则配置为从所述目标话题的相关类别中选取交互实体,并利用所述预设知识图谱确定出所述交互实体对应的关联信息。
【文档编号】G10L15/22GK105931638SQ201610266216
【公开日】2016年9月7日
【申请日】2016年4月26日
【发明人】孔德乾
【申请人】北京光年无限科技有限公司