KdV方程,KdV equation
1)KdV equationKdV方程
1.New solitary wave-like solution and analytic solution of generalized KdV equation with variable coefficients;变系数广义KdV方程新的类孤波解和解析解
2.Exact and explicit solutions to KdV equation;KdV方程的显式精确解
3.The meromophic solutions of the complex KdV equation;复化的KdV方程的亚纯解结构
英文短句/例句

1.Solitary waves of the combined Kdv-mKdv equation组合KdV-mKdV方程的孤立波
2.Elliptic Periodic Solutions for Kupershmidt Equation and Couples KdV Equations;Kupershmidt方程与耦合KdV方程组的椭圆周期解
3.The auxiliary equation for constructing the exact solutions of coupled KdV equations辅助方程构造耦合KdV方程组的精确解
4.Finite Difference Methods for Three-order Nonlinear KdV Equation;三阶非线性KdV方程的并行差分方法
5.Coupled KdV Equation with Self-consistent Sources and Its Solutions;带自相容源的耦合KdV方程及其求解
6.Darboux Transformation of a Coupled KdV Equation and Its Exact Solutions;一个耦合KdV方程的Darboux变换及其精确解
7.Explicit Solutions of a Generalized Hirota-Satsuma Coupled Korteweg-de Vries Equation;广义Hirota-Satsuma型耦合KdV方程的精确解
8.Some Dynamical Properties of BBM and Perturbed KdV Equation;BBM和扰动KdV方程的一些动力学性质
9.Integrable Dispersionless KdV Hierarchy with Self-consistent Sources;可积的带自相容源无色散KdV方程
10.The KdV Equation of Rossby Wave in Barotropic Fluid;正压流体中Rossby波振幅的KdV方程
11.New Exact Solutions to Modified KdV Equation;Modified KdV方程的几种新精确解
12.Linear Implicit Difference Scheme for the Generalized Compound KdV Equation;广义组合KdV方程的线性隐式差分格式
13.New exact solutions of the (2+1)-dimensional KdV equation with variable coefficients;(2+1)维变系数KdV方程的新精确解
14.Exact Solutions of Trigonometric Function to the Combined KdV-mKdV Equation;组合KdV-mKdV方程的一类三角函数解
15.Solving the Generalized KdV Equation by Applying the Improved Trial Function Method;用改进的试探函数法求解广义KdV方程
16.The explicit plane travelling wave solutions to nonlinear Ur-KdV equation;非线性Ur-KdV方程的显式平面行波解
17.Exact Solutions to KdV-Burgers-Kuramoto Equation;KdV-Burgers-Kuramoto方程的精确解
18.The new solitary wave solutions to KdV-Burgers equation;KdV-Burgers方程的新的孤波解
相关短句/例句

KdV-Burgers equationKdV-Burgers方程
1.The new solitary wave solutions to KdV-Burgers equation;KdV-Burgers方程的新的孤波解
2.Exact solutions to the KdV-Burgers equation and KdV-Burgers-Kuramoto equation;KdV-Burgers方程和KdV-Burgers-Kuramoto方程的精确解
3.The new solitrary wave solutions of the KdV-Burgers equationKdV-Burgers方程的新孤波解
3)damping KDV-KSV equationKDV-KSV方程
1.Inertial fractal set for damping KDV-KSV equation of chromatic dispersion;具有色散的阻尼KDV-KSV方程的惯性分形集
4)KdV type equationKdV型方程
1.WT5BZ]In this paper, with the aid of Mathematica, exact soliton solutions and two kinds of periodic wave solutions are obtained for the 2N+1 order KdV type equations by using three types of new ansatzes, and three kinds of explictic exact solutions are also found for the 2N+1 order KP equations.借助于Mathematica软件 ,通过引入 3种新的假设 ,获得了 2N +1阶KdV型方程的孤子解和两种周期波解 ,并得到了 2N +1阶KP型方程的 3种显式精确解 。
2.In this paper, the KDV type equation is considered on an unbounded domainR~1.本文研究了无界区域R~1上的KDV型方程,运用带权空间构造一类紧算子和算子分解的方法,得到了该方程在无界区域R~1上拥有一个指数吸引子。
3.In the second chapter, the KDV type equation on unbounded domain is considered.在第二章中,运用带权空间构造一类紧算子和算子分解的方法,研究了无界区域上的KDV型方程,得到了该方程指数吸引子的存在性。
5)cylindrical KdV equation柱KdV方程
1.The cylindrical KdV equation,an important nonlinear mode,is transformed to a nonlinear ordinary differential equation with Painleve II property by similarity transformation.柱KdV方程是一个重要的非线性模型。
2.The generalized solutions are obtained for a class of KdV equations,including the damping KdV equations,the cylindrical KdV equations and spherical KdV equations.对包括阻尼KdV方程、柱KdV方程和球KdV方程在内的一类KdV方程进行求解,得到了这一类方程积分意义下的广义解析解。
3.By means of similar transformation and Miura transformation imposed on the cylindrical KDV equation,the equation is reduced to nonlinear ordinary differential equation with the property of Painleve.对柱KDV方程进行相似变换、Miura变换等将其化为具有Painleve性质的非线性常微分方程,一是在此基础上,进一步将具有Painleve性质的非线性常微分方程弱化为Airy方程;二是引入Boutroux变换,使转化后的方程具有椭圆函数解,在这两种情况下分别得到了该方程的渐进自相似解。
6)KdV-BBM equationKdV-BBM方程
1.In this paper,we study one type of partial differential equations :KdV-BBM equation.研究一类KdV-BBM方程,利用代数方法得到KdV-BBM方程的显式解,并且得到了一些重要的不变量。
延伸阅读

Kdv方程Image:11776596881617173.jpg kdv方程
kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。kdv方程的解为簇集的孤立子(又称孤子,孤波)。kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。