杀微生物剂组合物的制作方法

文档序号:385544阅读:318来源:国知局
专利名称:杀微生物剂组合物的制作方法
技术领域
本发明涉及所选择的杀微生物剂的协同联用(combination),该联用的活性高于单独的杀微生物剂。
背景技术
在一些情况下,即使采用高浓度的市售杀微生物剂也不能有效地控制微生物,这是由于对某些种类的微生物(例如对某些杀微生物剂有抵抗力的微生物)活性差,或者是由于强烈的环境条件。有时,将不同的杀微生物剂联用,以总体控制特殊的最终应用环境中的微生物进行。例如美国专利申请公开第2004/0014799号公开了2-甲基-4-异噻唑啉-3-酮与其它生物杀伤剂的联用。然而,还需要联用对各种微生物具有提高活性的杀微生物剂,以有效控制这些微生物。另外,出于环境和经济的因素,需要联用低含量的各种杀微生物剂。本发明所处理的问题是提供杀微生物剂联用的额外效果。

发明内容
本发明涉及一种杀微生物剂组合物,该组合物包含(a)1,2-苯并异噻唑啉-3-酮;和(b)至少一种选自以下化合物的杀微生物剂苯扎氯铵(benzalkoniumchloride)、苯索氯铵(benzethonium chloride)、苯甲醇、辛酰基二醇(caprylylglycol)、氯苯甘油醚、2,2’-二硫代双(N-甲基苯甲酰胺)、二偶氮烷基脲、乙二胺四乙酸、对羟基苯甲酸乙酯、咪唑烷基脲、对羟基苯甲酸甲酯、苯氧基乙醇、亚油酰胺基丙基(linoleamidopropyl)PG-二甲基氯化铵的磷酸盐、cocamidopropyl(柯卡酰胺基丙基)PG-二甲基氯化铵的磷酸盐、对羟基苯甲酸丙酯、氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷、脱氢乙酸或其盐、苯甲酸或其盐、羟甲基氨基乙酸钠和2-巯基吡啶氧化锌。
本发明还涉及一种杀微生物剂组合物,该组合物包含(a)2-甲基-4-异噻唑啉-3-酮;和(b)至少一种选自以下化合物的杀微生物剂辛酰基二醇(caprylylglycol)、氯苯甘油醚、羟乙磺酸己氧苯脒(hexamidine diisethionate)、双辛氢啶、磷酸亚油酰胺基丙基PG-二甲基氯化铵、柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐和脱氢乙酸或其盐。
具体实施例方式
“MI”为2-甲基-4-异噻唑啉-3-酮,也称为2-甲基-3-异噻唑啉酮。“BIT”为1,2-苯并异噻唑啉-3-酮。“DU”为二偶氮烷基脲。“IU”为咪唑烷基脲。“EDTA”为乙二胺四乙酸。
除非上下文另有清楚地说明,在本文中,以下术语具有指定的定义。术语“杀微生物剂”表示能够杀死、抑制或控制某部位微生物生长的化合物;杀微生物剂包括杀菌剂、杀真菌剂和杀藻剂。术语“微生物”包括,例如真菌(例如酵母菌和霉菌)、细菌和藻类。术语“部位”指被微生物沾污的工业系统或产品。在整个说明书中使用以下缩写ppm=每一百万中的重量份(重量/重量),mL=毫升,ATCC=美国典型培养物收集保存中心(American Type CultureCollection),MBC=最低生物杀灭浓度,MIC=最低抑制浓度。除非另外说明,温度单位是摄氏度(℃),所用百分数(%)以重量计。有机杀微生物剂的量以活性组分ppm(重量/重量)给出。
出人意料地发现本发明的组合物在联用的活性组分浓度低于各杀微生物剂单用浓度时,具有提高的杀微生物效力。在本发明的一个实施方式中,包含卤代-3-异噻唑啉酮的杀微生物剂组合物,含有较低含量的卤代-3-异噻唑啉酮,较佳的是不超过1000ppm,更佳的是不超过500ppm,更佳的是不超过100ppm,最佳的是不超过50ppm。本发明组合物中卤代-3-异噻唑啉酮的浓度是以该组合物中的活性组分,即除了溶剂、载体、分散剂、稳定剂或可能存在的其它材料以外杀微生物剂的总重量计。在本发明的一个实施方式中,杀微生物剂组合物中5-氯-2-甲基-4-异噻唑啉-3-酮的含量小于1000ppm,更佳的是不超过500ppm,更佳的是不超过100ppm,最佳的是不超过50ppm。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和苯扎氯铵。较佳的是,1,2-苯并异噻唑啉-3-酮和苯扎氯铵的重量比为1∶0.025至1∶40。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和苯索氯铵。较佳的是,1,2-苯并异噻唑啉-3-酮和苯索氯铵的重量比为1∶0.13至1∶3。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和苯甲醇。较佳的是,1,2-苯并异噻唑啉-3-酮和苯甲醇的重量比为1∶0.4至1∶600,更佳的是1∶0.4至1∶35。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和辛酰二醇。较佳的是,1,2-苯并异噻唑啉-3-酮和辛酰二醇的重量比为1∶0.5至1∶100,更佳的是1∶0.7至1∶67。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和氯苯甘油醚。较佳的是,1,2-苯并异噻唑啉-3-酮和氯苯甘油醚的重量比为1∶20至1∶600,更佳的是1∶20至1∶50。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和2,2’-二硫代双(N-甲基苯甲酰胺)。较佳的是,1,2-苯并异噻唑啉-3-酮和2,2’-二硫代双(N-甲基苯甲酰胺)的重量比为1∶0.1至1∶150,更佳的是1∶0.13至1∶120。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和二偶氮烷基脲。较佳的是,1,2-苯并异噻唑啉-3-酮和二偶氮烷基脲的重量比为1∶1至1∶100。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和EDTA。较佳的是,1,2-苯并异噻唑啉-3-酮和EDTA的重量比为1∶2至1∶700,更佳的是1∶3至1∶640,最佳的是1∶3至1∶500。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和对羟基苯甲酸乙酯。较佳的是,1,2-苯并异噻唑啉-3-酮和对羟基苯甲酸乙酯的重量比为1∶10至1∶500,更佳的是1∶13至1∶400。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和咪唑烷基脲。较佳的是,1,2-苯并异噻唑啉-3-酮和咪唑烷基脲的重量比为1∶20至1∶30。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和对羟基苯甲酸甲酯。较佳的是,1,2-苯并异噻唑啉-3-酮和对羟基苯甲酸甲酯的重量比为1∶1至1∶300,更佳的是1∶3至1∶240。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和苯氧基乙醇。较佳的是,1,2-苯并异噻唑啉-3-酮和苯氧基乙醇的重量比为1∶1至1∶1000,更佳的是1∶2.5至1∶800。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和磷酸亚油酰胺基丙基PG-二甲基氯化铵。较佳的是,1,2-苯并异噻唑啉-3-酮和磷酸亚油酰胺基丙基PG-二甲基氯化铵的重量比为1∶0.1至1∶1000,更佳的是1∶0.5至1∶800。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐。较佳的是,1,2-苯并异噻唑啉-3-酮和柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐的重量比为1∶1至1∶1000,更佳的是1∶1.3至1∶800。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和对羟基苯甲酸丙酯。较佳的是,1,2-苯并异噻唑啉-3-酮和对羟基苯甲酸丙酯的重量比为1∶13至1∶320。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷。较佳的是,1,2-苯并异噻唑啉-3-酮和氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷的重量比为1∶2至1∶240,更佳的是1∶4至1∶240。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和脱氢乙酸或脱氢乙酸盐。较佳的是,1,2-苯并异噻唑啉-3-酮和脱氢乙酸或脱氢乙酸盐的重量比为1∶0.1至1∶6,更佳的是1∶0.4至1∶5。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和苯甲酸或苯甲酸盐。较佳的是,1,2-苯并异噻唑啉-3-酮和苯甲酸或苯甲酸盐的重量比为1∶1至1∶2000,更佳的是1∶5至1∶2000。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和羟甲基氨基乙酸钠。较佳的是,1,2-苯并异噻唑啉-3-酮和羟甲基氨基乙酸钠的重量比为1∶20至1∶150,更佳的是1∶27至1∶100。
在本发明的一个实施方式中,所述杀微生物剂组合物包含1,2-苯并异噻唑啉-3-酮和2-巯基吡啶氧化锌。较佳的是,1,2-苯并异噻唑啉-3-酮和2-巯基吡啶氧化锌的重量比为1∶0.01至1∶7,更佳的是1∶0.04至1∶6。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和辛酰二醇。较佳的是,2-甲基-4-异噻唑啉-3-酮和辛酰二醇的重量比为1∶0.5至1∶267,更佳的是1∶0.5至1∶20。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和氯苯甘油醚。较佳的是,2-甲基-4-异噻唑啉-3-酮和氯苯甘油醚的重量比为1∶0.5至1∶700,更佳的是1∶1.2至1∶600。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和羟乙磺酸己氧苯脒。较佳的是,2-甲基-4-异噻唑啉-3-酮和羟乙磺酸己氧苯脒的重量比为1∶0.0005至1∶70,更佳的是1∶001至1∶60。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和双辛氢啶。较佳的是,2-甲基-4-异噻唑啉-3-酮和双辛氢啶的重量比为1∶0.0005至1∶280,更佳的是1∶0.002至1∶250,最佳的是1∶002至1∶250。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和磷酸亚油酰胺基丙基PG-二甲基氯化铵。较佳的是,2-甲基-4-异噻唑啉-3-酮和磷酸亚油酰胺基丙基PG-二甲基氯化铵的重量比为1∶0.1至1∶1600,更佳的是1∶0.2至1∶1600,最佳的是1∶0.3至1∶600。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐。较佳的是,2-甲基-4-异噻唑啉-3-酮和柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐的重量比为1∶0.03至1∶90,最佳的是1∶0.3至1∶80。
在本发明的一个实施方式中,所述杀微生物剂组合物包含2-甲基-4-异噻唑啉-3-酮和脱氢乙酸或脱氢乙酸盐。较佳的是,2-甲基-4-异噻唑啉-3-酮和脱氢乙酸或脱氢乙酸盐的重量比为1∶0.25至1∶3。
本发明组合物中的杀微生物剂可以“不经处理直接”使用,或者可以首先用溶剂或固相载体配制。合适的溶剂包括例如水;二元醇,例如乙二醇、丙二醇、二甘醇、一缩二丙二醇、聚乙二醇和聚丙二醇;乙二醇醚;醇,例如甲醇、乙醇、丙醇、苯乙醇和苯氧基丙醇;酮,例如丙酮和甲基乙基酮;酯,例如乙酸乙酯、乙酸丁酯、三乙酰基柠檬酸酯和三乙酸甘油酯;碳酸酯,例如碳酸异丙烯酯和碳酸二甲酯;以及它们的混合物。较佳的是溶剂选自水、二元醇、乙二醇醚、酯和它们的混合物。合适的固相载体包括环糊精、二氧化硅、硅藻土、蜡、纤维素材料、碱金属和碱土金属(例如钠、镁、钾)的盐(例如氯化物、硝酸盐、溴化物、硫酸盐)和炭。
当用溶剂配制杀微生物剂组合物时,配方中可任选地包含表面活性剂。当这些配方中包含表面活性剂时,它们通常为乳化浓缩液、乳液、微乳浓缩液或微乳液形式。向乳化浓缩液中加入足量的水可形成乳液。向微乳浓缩液加入足量的水,可形成微乳液。这些乳化或微乳浓缩液通常是本领域中众所周知的;较佳的是这些配方中不含表面活性剂。参照美国专利第5444078号可以进一步获得各种微乳液和微乳浓缩液制备的全面和具体细节。
可将杀微生物剂组分配制成分散体形式。该分散体的溶剂组分可以是有机溶剂或水,较佳的是水。这些分散体可包含辅助剂,例如共溶剂、增稠剂、防冻剂、分散剂、充填剂、颜料、表面活性剂、生物分散剂、磺基琥珀酸盐、萜烯、呋喃酮(furanones)、聚阳离子、稳定剂、结垢抑制剂和抗腐蚀添加剂。
当两种杀微生物剂各自先用溶剂配制时,用于第一杀微生物剂的溶剂可以与用于配制其它市售杀微生物剂的溶剂相同或不同,但是对于大多数工业生物杀伤剂应用优选水。较佳的是这两种溶剂是可混溶的。
本领域的技术人员将认识到,可将本发明的杀微生物组分依次、同时加到某部位,或者在加到该部位之前相混合。较佳的是将所述第一杀微生物组分和第二杀微生物组分同时或依次加到某部位。当同时或依次地加这些杀微生物剂时,每一种杀微生物剂可包含辅助剂单独组分,例如溶剂、增稠剂、防冻剂、色料、螯合剂(例如乙二胺四乙酸、乙二胺二琥珀酸、亚氨基二琥珀酸和它们的盐)、分散剂、表面活性剂、生物分散剂、磺基琥珀酸酯、萜烯、呋喃酮、聚阳离子、稳定剂、结垢抑制剂和抗腐蚀添加剂。
通过将杀微生物有效量的本发明杀微生物剂组合物加入受到微生物侵袭的部位之上或之内,可以抑制微生物或更高等形式水生生物(例如原生动物、无脊椎动物、苔藓虫、腰鞭毛虫、甲壳类、软体动物等)的生长。合适的部位包括,例如生产加工用水;电镀沉积系统;冷却塔;空气洗涤器;气体洗涤器;矿物浆液;废水处理;装饰喷泉;反渗透过滤;超滤;压舱水;蒸发浓缩器;热交换器;纸浆和纸加工液和添加剂;淀粉;塑料;乳液;分散体;油墨;胶乳;清漆之类涂料;建筑产品,例如胶泥、堵缝材料和密封剂;建筑粘合剂,例如陶瓷粘合剂、地毯背衬粘合剂和层压粘合剂;工业或消费用粘合剂;照相化学试剂;印刷液;家用产品,例如浴室和厨房清洁剂;化妆品;盥洗用品;洗发精;肥皂;洗涤剂;工业清洁剂;地板上光剂;洗衣冲洗水;金属加工液;运输润滑剂;液压机液;皮革和皮革产品;纺织物;纺织产品;木材和木质产品,例如胶合板、纸板、刨花板、叠层梁、定向铰合板、硬纸板和颗粒板;石油加工液;燃料;油田液,例如注入水、断裂液和钻探泥浆;农业辅助防腐剂;表面活性剂防腐剂;医疗设备;诊断试剂防腐剂;食物防腐剂,例如塑料或纸质食物包装物;食品、饮料和工业加工巴氏杀菌器;抽水马桶;娱乐用水;游泳池;和温泉。
较佳的是,用本发明的杀微生物剂组合物来抑制选自以下一种或多种部位微生物生长矿物浆液;纸浆和纸加工液和添加剂、淀粉、乳液、分散体、油墨、胶乳、涂料、例如陶瓷粘合剂和地毯背衬粘合剂之类的建筑粘合剂、照相化学试剂、印刷液、例如浴室和厨房清洁剂之类的家用产品、化妆品、盥洗用品、洗发精、肥皂、洗涤剂、工业清洁剂、地板上光剂、洗衣冲洗水、金属加工液、农业辅助防腐剂、表面活性剂防腐剂、诊断试剂防腐剂、食物防腐剂和食品、饮料和工业加工巴氏杀菌器。
本发明组合物抑制或控制微生物和高等形式水生生物在某部位的生长所需的具体用量,取决于需要保护的具体部位。通常当本发明组合物在某一部位提供0.1-1000ppm的组合物噻唑啉组分,便可有效控制微生物在某一部位的生长。较佳的是该组合物异噻唑啉组分在该部位的用量至少为0.5ppm,更佳的是至少为4ppm,最佳的是至少为10ppm。较佳的是该组合物异噻唑啉组分在该部位的含量不超过1000ppm,更佳的是不超过500ppm,最佳的是不超过200ppm。
在本发明的一个实施方式中,该组合物基本不含酶催化生物杀伤剂。较佳的是,当BIT与对羟基苯甲酸甲酯或对羟基苯甲酸乙酯相联用时,该组合物基本不含酶催化生物杀伤剂。如美国专利申请公开第2002/0028754号所述,酶催化生物杀伤剂是对微生物具有活性的酶。
实施例材料和方法通过对诸化合物宽范围浓度和比例的测试,证明了本发明的药物联用具有协同作用。
一种测量协同作用的方法是Kull,F.C.;Eisman,P.C.;Sylwestrowicz,H.D.和Mayer,R.L.在1961年的Applied Microbiology 9538-541(1961)中所述的工业上已接受的方法,使用下式所确定的比值Qa/QA+Qb/QB=协同作用指数(“SI”)式中QA=化合物A(第一组分)单独作用产生终点(化合物A的MIC)的以ppm为单位的浓度。
Qa=混合物中化合物A产生终点的以ppm为单位的浓度。
QB=化合物B(第二组分)单独作用产生终点(化合物B的MIC)的以ppm为单位的浓度。
Qb=混合物中化合物B产生终点的以ppm为单位的浓度。
当Qa/QA和Qb/QB之和大于1时,显示拮抗作用。当该和等于1时,显示叠加作用,当小于1时,显示协同作用。SI越小,特定混合物显示的协同作用越大。杀微生物剂的最低抑制浓度(MIC)是在一系列测定条件下测到的能阻止加入的微生物生长的最低浓度。
采用标准微量滴定板试验和设计的能使受测微生物最佳生长的培养基进行了协同作用测试。采用大豆干酪素消化肉汤培养液(胰蛋白酶大豆肉汤培养液,TSB培养基)或补充了0.2%葡萄糖和0.1%酵母抽提物的基础盐培养基(M9GY培养基)测定细菌;采用马铃薯葡萄糖肉汤培养液(PDB培养基)测定酵母菌和霉菌。在此方法中,通过在各种浓度MI的存在下进行高分辨MIC测定,测试了杀微生物剂宽范围的联用的效果。在微量滴定板的一排孔中加入各种量的杀微生物剂,然后用自动液体处理系统将其稀释十倍,得到2-10000ppm活性组分的一系列终点。
对于MI联用,测定了本发明药物联用对两类细菌,大肠杆菌(E.大肠杆菌-ATCC#8739)或假单胞铜绿菌(P.铜绿菌-ATCC#15442);酵母菌白色念珠菌(白色念珠菌-ATCC10231);和霉菌,黑曲霉菌(黑曲霉菌-ATCC16404)的协同作用。所用的细菌浓度约为每毫升5×106个细菌,酵母菌和霉菌的浓度为每毫升5×105个真菌。这些微生物是许多消费和工业应用中的代表性天然染污物。在25℃(酵母菌和霉菌)或30℃(细菌)培养不同时间后,观察评价这些板中的微生物生长情况(浊度),测定其MIC。
对于BIT联用,测定了本发明药物联用对细菌,假单胞铜绿菌(P.铜绿菌-ATCC#15442);酵母菌白色念珠菌(白色念珠菌-ATCC10231);和霉菌黑曲霉菌(黑曲霉菌-ATCC16404)的协同作用。所用细菌浓度约为每毫升5×106个细菌,酵母菌和霉菌的浓度为每毫升5×105个真菌。这些微生物是许多消费和工业应用中的代表性天然染污物。在25℃(酵母菌和霉菌)或30℃(细菌)中培养不同时间之后,观察评价这些板中的微生物生长情况(浊度),测定其MIC。
显示本发明MI联用协同作用的测试结果见下表1-7。在各测试中,第一组分(A)为MI,第二组分(B)为其它市售杀微生物剂。各表显示了MI与第二组分的具体联用;测定不同培养时间的微生物结果;通过MIC测定了以下的终点活性,单位为ppm单用MI(QA)、单用第二组分(QB)、混合物中的MI(Qa)和混合物中的第二组分(Qb);计算出SI值;和各受测药物联用协同作用的比例范围(MI/第二组分或A/B)。
显示本发明BIT联用协同作用的测试结果见下表8-28。在各测试中,第一组分(A)为BIT,第二组分(B)为其它市售杀微生物剂。各表显示了BIT与第二组分的具体联用;测定不同培养时间的微生物结果;通过MIC测定了以下的终点活性,单位为ppm单用BIT(QA)、单用第二组分(QB)、混合物中的BIT(Qa)和混合物中的第二组分(Qb);计算出SI值;和各受测药物联用协同作用的比例范围(BIT/第二组分或A/B)。
表1第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=辛酰二醇

MI/辛酰二醇协同作用的比例为1/0.5至1/267。MI/辛酰二醇联用显示出对霉菌和酵母菌的控制增强。
表2第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=氯苯甘油醚


MI/氯苯甘油醚协同作用的比例为1/1.2至1/600。MI/氯苯甘油醚联用显示出对霉菌和酵母菌的控制增强。
表3第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=羟乙磺酸己氧苯脒




MI/羟乙磺酸己氧苯脒协同作用的比例为1/0.001至1/60。MI/羟乙磺酸己氧苯脒联用显示出对酵母菌和细菌的控制增强。
表4第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=双辛氢啶



MI/双辛氢啶协同作用的比例为1/0.002至1/250。该MI/双辛氢啶联用显示出提高的对酵母菌和细菌的控制增强。
表5第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=磷酸亚油酰胺基丙基PG-二甲基氯化铵




MI/磷酸亚油酰胺基丙基PG-二甲基氯化铵协同作用的比例为1/0.3至1/1600。该MI/磷酸亚油酰胺基丙基PG-二甲基氯化铵联用显示出对细菌和霉菌的控制增强。
表6第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐




MI/柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐协同作用的比例为1/0.03至1/80。该MI/柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐联用显示出对细菌、酵母菌和霉菌的控制增强。
表7第一组分(A)=2-甲基3-异噻唑啉酮第二组分(B)=脱氢乙酸钠

MI/脱氢乙酸钠协同作用的比例为1/0.25至1/3。该MI/脱氢乙酸钠联用显示出对酵母菌和霉菌的控制增强。
表8第一组分(A)=BIT第二组分(B)=苯扎氯铵


B1T/苯扎氯铵协同作用的比例为1/0.025至1/40。该BIT/苯扎氯铵联用显示出对细菌和霉菌的控制增强。
表9第一组分(A)=BIT第二组分(B)=苯索氯铵

BIT/苯索氯铵协同作用的比例为1/0.13至1/3。该BIT/苯索氯铵联用显示出对霉菌的控制增强。
表10第一组分(A)=BIT第二组分(B)=苯甲醇


BIT/苯甲醇协同作用的比例为1/0.4至1/600。该BIT苯甲醇联用显示出对细菌、酵母菌和霉菌的控制增强。
表11第一组分(A)=BIT第二组分(B)=辛酰二醇


BIT/辛酰二醇协同作用的比例为1/0.7至1/100。该BIT/辛酰二醇联用显示出对酵母菌和霉菌的控制增强。
表12第一组分(A)=BIT第二组分(B)=氯苯甘油醚

BIT/氯苯甘油醚协同作用的比例为1/20至1/600。BIT/氯苯甘油醚联用显示出对细菌和霉菌的控制增强。
表13第一组分(A)=BIT第二组分(B)=2,2’-二硫代双(N-甲基苯甲酰胺)

BIT/2,2’-二硫代双(N-甲基苯甲酰胺)协同作用的比例为1/0.13至1/120。BIT/2,2’-二硫代双(N-甲基苯甲酰胺)联用显示出对细菌和霉菌的控制增强。
表14第一组分(A)=BIT第二组分(B)=二偶氮烷基脲

BIT/二偶氮烷基脲协同作用的比例为1/1至1/100。BIT/二偶氮烷基脲联用显示出对细菌的控制增强。
表15第一组分(A)=BIT第二组分(B)=EDTA

BIT/EDTA协同作用的比例为1/3至1/640。BIT/EDTA联用显示出对霉菌的控制增强。
表16第一组分(A)=BIT第二组分(B)=对羟基苯甲酸乙酯

BIT/对羟基苯甲酸乙酯协同作用的比例为1/13至1/400。BIT/对羟基苯甲酸乙酯联用显示出对细菌和霉菌的控制增强。
表17第一组分(A)=BIT第二组分(B)=戊二醛

在本试验中,BIT/戊二醛未显示协同作用。
表18第一组分(A)=BIT第二组分(B)=咪唑烷基脲

BIT/咪唑烷基脲协同作用的比例为1/20至1/30。BIT/咪唑烷基脲联用显示出对细菌和酵母菌的控制增强。
表19第一组分(A)=BIT第二组分(B)=对羟基苯甲酸甲酯

BIT/对羟基苯甲酸甲酯协同作用的比例为1/3至1/240。BIT/对羟基苯甲酸甲酯联用显示出对细菌和霉菌的控制增强。
表20第一组分(A)=BIT第二组分(B)=苯氧基乙醇

BIT/苯氧基乙醇协同作用的比例为1/2.5至1/800。BIT/苯氧基乙醇联用显示出对细菌和霉菌的控制增强。
表21第一组分(A)=BIT第二组分(B)=磷酸亚油酰胺基丙基PG-二甲基氯化铵


BIT/磷酸亚油酰胺基丙基PG-二甲基氯化铵协同作用的比例为1/0.5至1/800。BIT/磷酸亚油酰胺基丙基PG-二甲基氯化铵联用显示出对细菌和霉菌的控制增强。
表22第一组分(A)=BIT第二组分(B)=柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐


BIT/柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐协同作用的比例为1/1.3至1/800。BIT/柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐联用显示出对霉菌的控制增强。
表23第一组分(A)=BIT第二组分(B)=对羟基苯甲酸丙酯

BIT/对羟基苯甲酸丙酯协同作用的比例为1/13至1/320。该BIT/对羟基苯甲酸丙酯联用显示出对霉菌的控制增强。
表24第一组分(A)=BIT第二组分(B)=氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷

BIT/氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷协同作用的比例为1/4至1/240。BIT/氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷联用显示出对细菌、酵母菌和霉菌的控制增强。
表25第一组分(A)=BIT第二组分(B)=脱氢乙酸钠

BIT/脱氢乙酸钠协同作用的比例为1/0.4至1/5。BIT/脱氢乙酸钠联用显示出对酵母菌和霉菌的控制增强。
表26第一组分(A)=BIT第二组分(B)=苯甲酸钠


BIT/苯甲酸钠协同作用的比例为1/5至1/2000。BIT/苯甲酸钠联用显示出对酵母菌和霉菌的控制增强。
表27第一组分(A)=BIT第二组分(B)=羟甲基氨基乙酸钠

BIT/羟甲基氨基乙酸钠协同作用的比例为1/27至1/100。BIT/羟甲基氨基乙酸钠联用显示出对细菌的控制增强。
表28第一组分(A)=BIT第二组分(B)=2-巯基吡啶氧化锌


BIT/2-巯基吡啶氧化锌协同作用的比例为1/0.04至1/6。该BIT/2-巯基吡啶氧化锌联用显示出对细菌和霉菌的控制增强。
权利要求
1.一种杀微生物剂组合物,包含(a)2-甲基-4-异噻唑啉-3-酮;和(b)辛酰基二醇。
2.如权利要求1所述的杀微生物剂组合物,其特征在于,所述2-甲基-4-异噻唑啉-3-酮和辛酰二醇的重量比为1∶0.5至1∶267。
3.如权利要求1所述的杀微生物剂组合物,其特征在于,所述2-甲基-4-异噻唑啉-3-酮和辛酰二醇的重量比为1∶0.5至1∶20。
全文摘要
一种杀微生物剂组合物,包含(a)1,2-苯并异噻唑啉-3-酮;和(b)至少一种选自以下化合物的杀微生物剂苯扎氯铵、苯索氯铵、苯甲醇、辛酰基二醇、氯苯甘油醚、2,2’-二硫代双(N-甲基苯甲酰胺)、二偶氮烷基脲、乙二胺四乙酸、对羟基苯甲酸乙酯、咪唑烷基脲、对羟基苯甲酸甲酯、苯氧基乙醇、磷酸亚油酰胺基丙基PG-二甲基氯化铵、柯卡酰胺基丙基PG-二甲基氯化铵的磷酸盐、对羟基苯甲酸丙酯、氯化顺-1-(3-氯烯丙基)-3,5,7-三氮-1-氮金刚烷、脱氢乙酸或其盐、苯甲酸或其盐、羟甲基氨基乙酸钠和2-巯基吡啶氧化锌。
文档编号A01P3/00GK101023746SQ20071008408
公开日2007年8月29日 申请日期2005年11月16日 优先权日2004年11月16日
发明者R·莱维, M·A·戴尔, D·A·肖尔, E·F·沃维克 申请人:罗门哈斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1