专利名称:用微型真空泵的微流控芯片负压进样和分离的装置的制作方法
技术领域:
本发明涉及微流控芯片毛细管电泳分析技术,特别是涉及微流控芯片负压进样和分离的装置。
背景技术:
自从1990年提出微全分析系统概念以来,微流控芯片技术已在医学和生命科学领域开辟了广阔的发展空间。微流控芯片毛细管电泳技术已用于DNA测序,DNA片段的分离和鉴定,氨基酸、多肽、蛋白质的分离测定以及单细胞内组分的分析等。
对于上述应用,准确控制皮升级的样品进样量是分离测定的关键。目前普遍采用基于电渗流驱动的电动进样方式进样,如电夹流进样,悬浮进样和门式进样等。但是由于电动进样时有“歧视效应”,即正负离子在电场中迁移速度不一致,导致样品塞的组成与样品溶液的组成不一致。通过延长进样时间可以减小样品塞与样品溶液组成上的差异,但又削弱了微流控芯片快速分析的特点。同时,芯片毛细管表面性质的变化会导致电渗流大小的改变,使进样量的精密度大大降低,毛细管表面性质变化严重时,电渗流方向也会改变,使样品无法进入进样和分离通道。
为了解决上述问题,在微流控芯片毛细管电泳的进样技术方面,也有压力进样的报道。即在注样阶段,用注射泵或其他驱动器施加压力驱动样品池中样品进入进样通道,并通过进样通道和分离通道的交叉处流入废液池。由于微流控芯片的网络结构,为了防止样品溶液在进样时进入分离通道而导致分离效率降低,需要使用一个,两个或多个注射泵,或者使用计算机通过软件和压力传感器控制多个电控阀,使样品溶液在进样通道和分离通道的交叉处形成稳定的样品塞,从而增加了进样系统的成本和进样操作的难度;在分离阶段,在微流控芯片交叉处已形成皮克级的样品塞被加在分离通道上的电场所产生的电渗流带入分离通道分离测定。如果导电的样品或电泳缓冲液泄漏出输液设备,会导致输液设备带高压电而影响安全操作。
专利申请200510050457.4中,提出了一种由微流控芯片、柱塞泵、三通阀、接口和高压电源组成的微流控芯片负压进样和分离的装置,在进样阶段,通过用柱塞泵抽取微流控芯片样品废液池中的空气,使样品废液池中形成负压,从而使样品池中的样品通过微流控芯片交叉处而流入废液池,与此同时,缓冲溶液池和缓冲溶液废液池中的溶液也在大气压的作用下也通过微流控芯片交叉处流入废液池,使样品溶液在进样通道和分离通道的交叉处形成稳定的样品塞,从而防止了样品塞在微流控芯片交叉处扩散增宽;在分离阶段,切换负压进样和分离的装置中的三通阀b端和a端连通。由于三通阀的a端直接与大气相通,从而使使样品废液池与大气相通,它与其他液池之间的压力差立即同时消失,可以使微流控芯片交叉处形成皮克级的样品塞被加在分离通道上的电场所产生的电渗流带入分离通道分离测定。通过优化各储液池的液面高度,可以防止样品溶液在分离时进入分离通道而影响分离效果。
在上述技术中使用注射器容积为0.5-1mL微量注射泵抽取微流控芯片样品废液池中的空气来产生负压,通过电机驱动的三通阀改变阀位来控制微流控芯片的进样和分离。它存在以下缺点1.微量注射泵价格昂贵,每台价值1万多元。2.注射泵抽气效率低,在抽气过程中负压随柱塞的移动距离而变化,且在每次抽气后柱塞必须复位,才能再次在样品废液池中形成负压.3.为了稳定在微流控芯片样品废液池中的负压,在每次抽气后必需保持负压1-10秒钟,从而降低了进样速度.4.步进电机驱动的三通阀的价格比三通电磁阀高,操作比三通电磁阀复杂.因此,该装置在实际产品中存在价格高,效率低和难以普遍推广的问题.
发明内容
本发明目的是在200510050457.4基础上,提供一种操作更方便、负压稳定、成本低廉、结构简单、便于推广使用的微流控芯片毛细管电泳负压进样和分离的装置。
本发明提供的微流控芯片负压进样和分离的装置,由微流控芯片、微型真空泵、真空瓶、电触点真空表、三通电磁阀、接口和高压电源组成。其特征是负压源由真空瓶与电触点真空表和微型真空泵连接构成,电触点真空表作为控制微型真空泵的开关和用于指示真空瓶内压力,真空瓶与三通电磁阀c端口相接,三通电磁阀a端口直接与大气相通,三通电磁阀b端口通过接管道和安装微流控芯片样品废液池SW上面的接口与微流控芯片样品废液池SW相通。微流控芯片上有缓冲液储液池B、缓冲液废液储液池BW、样品储液池S、样品废液池SW。微流控芯片进样通道为S-SW,分离通道为B-BW,在分离通道B-BW二端连接高压电源。
本发明的真空瓶的容积为20mL~2000mL。
本发明的真空瓶内的最佳压力为-50~-500mbar。
本发明通过三通电磁阀控制三通电磁阀与微流控芯片样品废液池SW相通的b端口分别与大气(a端口)或真空瓶(c端口)相通。当三通电磁阀通电时,三通电磁阀b端口和c端口相通,使真空瓶与微流控芯片样品废液池相通,使样品废液池中形成负压,从而使样品池中的样品通过微流控芯片交叉处而流入废液池,与此同时,缓冲溶液池和缓冲溶液废液池中的溶液也在大气压的作用下也通过微流控芯片交叉处流入废液池,使样品溶液在进样通道和分离通道的交叉处形成稳定的样品塞,防止了样品塞在微流控芯片交叉处扩散增宽。当三通电磁阀断电时,三通电磁阀b端口和a端连通。由于三通阀的a端直接与大气相通,从而使使样品废液池与大气相通,它与其他液池之间的压力差立即同时消失,可以使微流控芯片交叉处形成皮克级的样品塞被加在分离通道上的电场所产生的电渗流带入分离通道分离测定。通过优化各储液池的液面高度,可以防止样品溶液在分离时进入分离通道而影响分离效果。
本发明提供微流控芯片负压进样和分离的装置,操作过程是首先设定电触点真空表的最大真空度为-500mbar,最小真空度为-50mbar。三通电磁阀5断电,三通电磁阀b端和a端连通,c端截止。接通微型真空泵电源,使真空瓶内形成负压,当瓶内真空度达到设定真空度上限时,电触点真空表关闭微型真空泵电源,当瓶内真空度低于设定真空度下限时,电触点真空表启动微型真空泵,使瓶内真空度稳定在设定的-50~-500mbar范围内;在进样阶段,三通电磁阀通电,b端口与c端口连通,使微流控芯片样品废液池中形成负压,从而使样品池中的样品通过微流控芯片交叉处而流入废液池。与此同时,缓冲溶液池和缓冲溶液废液池中的溶液也在大气压的作用下也通过微流控芯片交叉处流入废液池,使样品溶液在进样通道和分离通道的交叉处形成稳定的样品塞,从而防止了样品塞在微流控芯片交叉处扩散增宽;在分离阶段,三通电磁阀断电,使b端和a端连通。由于三通电磁阀的a端直接与大气相通,从而使使样品废液池与大气相通,它与其他液池之间的压力差立即同时消失,可以使微流控芯片交叉处形成皮克级的样品塞被加在分离通道上的电场所产生的电渗流带入分离通道分离测定。通过优化各储液池的液面高度,可以防止样品溶液在分离时进入分离通道而影响分离效果。
本发明的微流控芯片负压进样和分离的装置结构简单,除微流控芯片外,仅用一个微型真空泵,一个三通电磁阀,一个真空瓶、一个电触点真空表和一个高压电源。与专利申请200510050457.4中装置相比较,本发明使用成本低廉(仅300元左右)的微量真空泵产生负压,由电触点真空表自动控制真空瓶内的真空度,由成本低廉三通电磁阀(仅几十元)的通断电控制微流控芯片的进样阶段向分离阶段的转换,代替了原来由步进电机控制的三通阀才能完成的功能。本装置结构简单,操作方便、成本低廉、负压稳定、进样速度更快。
图1负压进样微流控芯片毛细管电泳分离装置示意2微流控芯片与三通电磁阀接口示意中1-微流控芯片,2-微型真空泵,3-真空瓶,4-电触点真空表,5-三通电磁阀及a、b、c三个端口,6-接口,7-高压电源,8-进样通道,9-样品废液储液池中的溶液,10-样品废液储液池中液面上方的空气,11-样品废液储液池SW,12-密封胶管,13-联接管道。
具体实施例方式
实施例1参见图1、图2,微流控芯片1上S和SW之间的通道是进样通道,B和BW之间的通道是分离通道,负压源由真空瓶3与电触点真空表4和微型真空泵2连接构成,真空瓶3与三通电磁阀5的c端口相接,三通电磁阀5的a端口直接与大气相通,三通电磁阀5的b端口通过联接管道13与接口6相连,接口6安装在微流控芯片样品废液池SW上面。在微流控芯片上的样品储液池S中加入样品溶液,在其他储液池B、SW、BW加入不同体积的电泳缓冲液,保持分离通道两端储液池B和BW的液面高度相同,样品储液池S中液面的高度小于分离通道两端储液池B和BW的液面高度,样品废液储液池SW中的液面高度小于储液池S中液面的高度。接口示意图见图2。其中8为进样通道,9为样品废液储液池中的溶液,10是样品废液储液池中液面上方的空气,11是样品废液储液池SW,12是密封胶管,13是联接管道,将密封胶管插入废液储液池SW上部作为接口,插入的密封胶管始终保持不与SW储液池内的电泳缓冲液的液面相接触,同时保证接口的气密性。在分离通道B端施加+1200V高电压,BW端接地。
首先设定电触点真空表的最大真空度为-500mbar,最小真空度为-50mbar。三通电磁阀5断电,三通电磁阀b端和a端连通,c端截止。开启微型真空泵2,使真空瓶3内形成负压,当瓶内压力达到设定真空度上限时,电触点真空表4关闭微型真空泵电源,当瓶内压力低于设定真空度下限时,电触点真空表启动微型真空泵2,使瓶内真空度稳定在-50mbar~-500mbar的设定范围内。
微流控芯片毛细管电泳分析的操作由注样和分离两个阶段组成。在进样阶段,三通电磁阀5通电,使三通电磁阀b端和c端连通,真空瓶3经接口6与微流控芯片样品废液池11连通,使样品废液池中形成负压,微流控芯片上其他储液池中的样品溶液和缓冲液等在大气压的作用下向样品废液池流动,在进样通道和分离通道的交叉处形成稳定的样品塞;在分离阶段,三通电磁阀5断电,三通电磁阀b端和a端连通。由于三通电磁阀5的a端直接与大气相通,从而使使样品废液池与大气相通,它与其它液池之间的压力差立即同时消失,可以使在微流控芯片交叉处已形成皮克级的样品塞被加在分离通道上的电场所产生的电渗流带入分离通道,开始电泳分离。
权利要求
1.一种用微型真空泵的微流控芯片负压进样和分离的装置,由微流控芯片、微型真空泵、真空瓶、三通电磁阀、电触点真空表、接口和高压电源组成,其特征是三通电磁阀a端口直接与大气相通,真空瓶与三通电磁阀c端口相接,三通电磁阀b端口通过接管道与接口相通,真空泵将真空瓶内抽成一定的负压,电触点真空表用于指示真空瓶内压力,微流控芯片上有缓冲液储液池(B)、缓冲液废液储液池(BW)、样品储液池(S)、样品废液池(SW),接口安装微流控芯片样品废液池(SW)上面,微流控芯片进样通道为(S-SW),分离通道为(B-BW),在分离通道(B-BW)二端连接高压电源。
2.根据权利要求1所述的微流控芯片负压进样和分离的装置,其特征是电触点真空表控制微型真空泵的开关和真空瓶内真空度。
3.根据权利要求1所述的微流控芯片负压进样和分离的装置,其特征是真空瓶的容积为20mL~2000mL。
4.根据权利要求1所述的微流控芯片负压进样和分离的装置,其特征是真空瓶内的真空度为-50~-500mbar。
5.根据权利要求1所述的微流控芯片负压进样和分离的装置,其特征是三通电磁阀的通电或断电控制微流控芯片的进样阶段或分离阶段。
全文摘要
一种微流控芯片负压进样和分离的装置,由微流控芯片、负压源、三通电磁阀、接口和高压电源组成,其特征是负压源由真空瓶与电触点真空表和微型真空泵连接构成,电触点真空表作为控制微型真空泵的开关和用于指示真空瓶内压力,真空瓶与三通电磁阀c端口相接,三通电磁阀a端口直接与大气相通,三通电磁阀b端口通过接管道与接口相通,微流控芯片上有缓冲液储液池B、缓冲液废液储液池BW、样品储液池S、样品废液池SW,接口安装微流控芯片样品废液池SW上面,微流控芯片进样通道为S-SW,分离通道为B-BW,在分离通道B-BW二端连接高压电源。本发明成本低廉,自动控制真空瓶内的真空度,进样和分离的操作简单、负压稳定、速度快。
文档编号C12Q1/00GK1793890SQ20061004890
公开日2006年6月28日 申请日期2006年1月5日 优先权日2006年1月5日
发明者殷学锋, 张磊 申请人:浙江大学