专利名称:梯形可扩展斯坦特固定模的制作方法
技术领域:
本发明涉及用于维持支撑体腔的可扩展医用植入物。
背景技术:
斯坦特固定模的一个重要的用途是用在管壁的一部分或斑块阻塞或闭锁了血管中的血流的情况下。一种充气导管通常用于经皮横贯体腔的冠状动脉成型术,以扩展血管的闭锁部分。然而,这个闭锁的扩展可能引起动脉粥样硬化斑块形成裂隙,并损伤内皮和内皮下的平滑肌细胞层,有导致出现由于皮瓣形成或血管壁穿孔的近期问题,和扩展的血管再狭窄的远期问题的潜在危险。植入斯坦特固定模可以解决这个问题,并防止血管的再闭锁或对穿孔的血管提供修补。另外,斯坦特固定模可以克服病变血管壁出现坍塌的危险,从而维持通过该血管的更正常的血流。
在European Heart Journal(1997),vol.18,1536-1547页,Balcon等的“斯坦特固定模的制造、植入和用途的推荐”,和Physician’s Press(1998),Birmingham,Michigan,Phillips等人在“斯坦特固定模手册”中介绍了现有的研制斯坦特固定模的例子。第一个用于临床的斯坦特固定模是自扩展“壁斯坦特固定模(wallstent)”,它由一个中国指套(Chinesefingercuff)形式的金属网构成。这些斯坦特固定模从金属线编织的长管上切下,因此有这样的缺陷,即切割过程在它的纵末端留下金属尖。通常用于形成斯坦特固定模的基于合金的钴和铂芯的固有硬度,与这些末端的金属尖一起使得通过血管导引到病变局部很困难,并沿通道通向目标血管时会冒损伤健康组织的危险。另外,一旦放置好后,由于血流和心肌活动产生的持续应力会有极大的形成血栓和损伤靠近病变组织的血管壁,从而导致再狭窄的危险。这种类型的斯坦特固定模的一个主要缺点是它们的径向扩展会显著地缩短它们的长度,导致在完全植入后可能形成不可预测的纵向覆盖范围。
在后面的几种设计中,应用最普遍的是Palmaz-Schatz槽形斯坦特固定管。最初的Palmaz-Schatz斯坦特固定管包括由分开的、通过关节相连的几段构成的槽形不锈钢管。之后的设计加上了螺旋形关节用于改善它的柔韧性。这些斯坦特固定管通过充气导管被送到病变区域,然后扩展到适当尺寸。Palmaz-Schatz设计了在植入后,在扩展时出现的适中的缩短,伴有一定程度的直径减小,或回缩。另外,扩展的金属网会引起相对锯齿状的末端的尖,这也增加了形成血栓和/或再狭窄的危险。
另一种类型的固定模包括由单股钽丝构成的、以正弦螺旋的形式缠绕的管;这被称为Wiktor固定模。与Palmaz-Schatz固定模相比,它的柔韧性增加。然而,它们不能提供足以支持很多用途的台架,包括钙化或大面积血管病变。另外,在径向扩展后,Wiktor还会出现一些回缩。
另一种金属固定模形式是使用Nitinol或镀锡的、受热可扩展的旋管构成的受热扩展装置。这种类型的装置通过可以接受加热的液体的导管被传送到病变区域,一旦放置妥当后,加热的生理盐水通过导管内放置该固定模的部分,引起固定模扩展。但使用这种装置遇到很多困难,包括获得可靠的扩展、以及维持固定模在它的扩展状态的困难。
自扩展型固定模的问题出在它的0.1到0.2mm扩展直径的准确尺寸,是足以减小再狭窄发生率所需的尺寸。然而,目前所用的自扩展型固定模只有0.5mm的增量。因此,扩展的尺寸还需要更大的柔韧性。
通过适当的设计可以将固定模用于体腔。这种方法之一是用充气导管的可膨胀元件充填到收缩的固定模内,并使充气元件膨胀以压迫固定模与体腔接触。当充气元件膨胀时,血管中有问题的组织被压向垂直于血管壁的方向,结果扩展了血管以利于血流通过。冠状动脉的径向扩展出现几种不同的尺寸,并与斑块的性质有关。软、多脂的斑块沉积被充气元件压扁,硬的沉积物碎裂或出现裂缝扩大了管腔。但还需要固定模以均一的方式径向扩展。
另外,固定模可以装在携带固定模的导管上以穿过体腔并适时释放,使得它自扩展以与体腔接触。这种配置通过导管经皮跨体腔将固定模传送并定位到所需位点后发挥作用。
总之,现有技术的所有固定模都遇到明显的困难。每个都有一定程度的血栓、再狭窄和组织增生的发生,以及各种特定设计的缺陷。因此,需要一种改进的固定模一是具有相对光滑的边缘以减少血栓的发生;一是当它收起的时候要足够小并有足够柔韧性以使得能够传送到病变区域;这种配置还必须有足够的柔韧性以适应病变体腔的形状;再者它均一地扩展到所需直径而不改变长度;并维持它的扩展尺寸不发生明显回缩;还有一条是具有足够的支架以提供畅通的体腔。
长棱可具有多个狭槽,以用于接合靠近梯形元件的末端横档上的制动销。有槽的棱和制动销使得末端横档滑动分开,从而扩展管状元件的直径。然而,制动销接合狭槽以避免末端横档滑回到更缩小的状态。
利用管状构件内部的由径向向外扩展的力可以使可扩展固定模从第一的收缩直径扩展到第二的膨胀直径。或者,管状构件可以通过解除保持管状构件处于第一收缩直径的限制,而被扩展到第二的扩展直径。
根据本发明的一个实施例的可扩展固定模,该固定模可以由选自下组的合金构成,这些组包括不锈钢、耐蚀游丝合金、钽、钛和镍钛诺。在一种变体中,该固定模可以由至少一种选自下组中的可生物降解的材料构成,该组包括多肽、聚缩肽类、尼龙共聚物(copolymides)、脂肪族聚酯、聚二氢吡喃、聚膦腈、聚原酸酯、聚氰基丙烯酸酯和它们的衍生物。生物活性基也可加入到这种可生物降解的材料中。这些活性剂可选自下组,它包括肝磷脂、水蛭素、杀鼠灵、噻氯匹定、双嘧哌胺醇、GP IIb/IIIa受体阻断剂、凝血噁烷、5-羟色胺拮抗剂、前列腺素类、钙离子通道阻断剂、PDGF拮抗剂、ACE抑制剂、angiopeptin、enoxaparin、秋水仙碱、类固醇、非类固醇抗炎性药物、VEGF、腺病毒、酶、固醇、羟化酶、antisense sequences、鱼油、HMG、Co-A还原酶抑制剂、ibutilide延胡索酸盐、腺嘌呤环化酶、生长因子、氧化氮、蛋白质、肽和碳水化合物。
本发明的固定模可以是超薄型的。因此,它可以有一个0.01到0.0001英寸范围的扩展厚度。更优选扩展的固定模的厚度为小于0.0007英寸。
可扩展固定模的最大周长(和直径)由许多组成系列的梯形元件所限定。这种固定模可包括纵向支撑元件,它与系列元件相邻的末端横档相连,从而以彼此恒定的纵向距离固定相连的系列梯形元件。纵向支撑元件和末端横档可定向为大致与固定模的纵轴平行或与其成对角,与纵轴有一定角度。在所述的一个实施例中,一个纵向骨干贯穿固定模的整个轴向长度。
图10是另一个单向锁定装置实施例的大样图;图11是一个单向锁定装置优选实施例的大样图;图12是另一个单向锁定装置实施例的大样图;图13是一个双向锁定装置实施例的大样图;图14是另一个双向锁定装置实施例的大样图;图15是另一个双向锁定装置实施例的大样图;图16是另一个双向锁定装置实施例的大样图;图17是单一个双向锁定装置实施例的大样图;图18是另一个双向锁定装置实施例的大样图;图19是另一个双向锁定装置实施例的大样图;图20是另一个双向锁定装置实施例的大样图;图21是另一个单向锁定装置实施例的大样图;图22是另一个锁定装置实施例的大样图;图23是另一个双向锁定装置实施例的大样图;图24是另一个双向锁定装置实施例的大样图;图25是另一个单向锁定装置实施例的大样图;图26是另一个单向锁定装置实施例的大样图;图27是另一个单向锁定装置实施例的大样图;图28是另一个单向锁定装置的优选实施例的大样图;图29是另一个单向锁定装置的优选实施例的大样图;图30是图30所示的可扩展固定模的变体的分解平面图,显示不同的中间和末端梯形元件的设计和联接。
图31A和B是根据本发明的可扩展固定模的变体的平面图,显示在扩展的(A)和收缩的(B)状态的一系列交叠的梯形元件的平面图;图32是本发明的一个实施例的透视图,显示具有外壳的固定模。
参考图2,根据本发明的固定模的平面图显示了由一系列34交叠的梯形元件32。从一个梯形元件来的长棱28被相邻的梯形元件的末端横档30滑动地接合,如此使得梯形元件可以滑动到一起,如图2A所示,产生收缩的长度(LC),或者梯形元件可以滑动分开,如图2B所示,产生扩展的长度(LE)。组成系列34的梯形元件的数目可以在2到12的范围内变化,优选为每个系列3到8个梯形元件。因此,这种固定模可制造成具有各种不同的扩展率。
当交叠的梯形元件的数目增加时,最大LE也如扩展率(LE∶LC)一样增加。当系列34卷起形成一个管状构件时限定了管状构件的周长。很重要的一点是要注意根据本发明制造的任何给定的固定模的扩展直径和周长可以随着使用期间引起的滑动量变化。因此,固定模的管状构件具有作为第一直径的收缩直径(相邻末端横档之间的收缩距离限定的),以及作为第二直径扩展直径(在相邻末端横档之间增加的距离限定的),其中该第二直径是可变的,并且由体内通道的所希望的扩展内径。
然而,每一系列的梯形元件个数限定了管状构件的最大周长,因而管构件的直径、管构件的总轴长由纵向联接以形成固定模的系列数确定。参考图3,根据本发明的固定模的平面图说明了每三个梯形元件一组的三个系列。每个系列与相邻的系列通过纵向支撑元件36连接,它固定到相邻系列的末端横挡。纵向支撑元件36不仅作为用于将一个系列联接到下一个系列的连接装置,还用于固定相邻系列之间的纵向距离,提供轴向强度,避免在使用期间扩展的固定模的缩短或变长。
参考图4,该图说明了本发明的一个实施例的透视图,该图示出了具有近端22和远端24的管状构件20。弯曲长棱28以形成圆弧。该棱联接到末端横档30。在本实施例中,横跨管状构件全长的纵向骨架38连接所有位于纵轴上的直线的末端横挡。骨干通过将相邻系列彼此连接,用作一个单独的纵向支撑元件36,并提供轴向强度。然而当使用骨架提供最佳轴向强度以避免使用期间的长度变化时,具有一个骨干的固定模的实施例减少了替代物适应目标血管的弯曲的柔韧性。因此,固定模可以联合一个本发明的纵向骨干用于目标血管的直线段,很重要的一点是骨架是一个可选择的特征,根据本发明的能变形的固定模,另一个优选实施例提供了仅仅具有较短的纵向支撑元件(图3所示)或对角放置的末端横档和纵向支撑元件(见下面;图5和6)。
参考图5,这里显示了本发明的另一个优选实施例的平面图。管状构件也是从梯形元件32的单独的系列34构成的,每个包括长棱28和末端横档30,一个系列的末端横档通过纵向支撑元件30连接到相邻的系列的末端横档。然而,末端横档30和纵向支撑元件36平行于管状构件的纵轴,如图3所示,或者它也可以与管状构件5的纵轴呈对角,如图5所示。因此,最后得到的梯形元件呈平行四边形,而不是矩形。末端横档和偏离纵轴的纵形支撑元件的角度设定在0到60度范围内变化。更优选该角度是在15到60度范围变化,最优选该角度是在15到45度范围内变化。
图6示出了这种实施例的透视图,它具有对角的末端横档30和纵向支撑元件36。该实施例中的长棱28基本彼此平行并垂直于纵轴防治。然而,末端横档30在该固定模中不与纵轴平行。而是末端横档30与纵轴呈对角放置。用于构建本发明的优选实施例的固定模的任何纵形支撑元件也和末端横档一样以与纵轴承相同的角度对角排列。
很重要的是,本发明的可变形的实施例有很多层这一优点。首先,再回来看图2A和2B,在制造期间可以通过改变每一系列34的梯形元件32的数目来很容易地改变固定模的直径,收缩(LC)和扩展(LE)周长、因此该管状直径,由一个系列中第一和最后末端横档之间的距离界定。特别是,根据本发明的可扩展固定模可以从收缩状态的0.5-5.0mm的直径范围到扩展状态的2.0到200mm的直径范围。更优选为该直径可以从收缩状态的0.7-1.8mm到扩展状态的2.0-8.0mm。
下面,再回过来看图3和4,通过使用由纵向支撑元件36和/或纵向骨干在纵轴向彼此相连的系列34的数目不同,固定模的总轴长可以改变。末端横档30的轴长的不同也会改变固定模的总轴长。一般来讲,对于传统的固定模的用途来说,至少需要两个系列的固定模;然而,根据本发明的环状固定模被设想包括一个系列的梯形元件,可以用于在近端或远端沿直向切割动脉瘤时贴近血管壁保护聚合的套管或移植物。特别是,根据本发明的固定模的总长度范围可以在1.0-200mm。更优选长度在4.0-40mm范围,最优选在16-24mm范围。
设计柔韧性的另一个参数包括传送和植入柔韧性。传送柔韧形使得在导管上的固定模弯曲以利于传送到目标位点。植入柔韧形使得固定模弯曲以适应弯曲的血管或体腔。当固定模的柔韧性增加,轴向强度和硬度降低。根据本发明的固定模的制造者有很多选项,以选择适当的柔韧性和强度组合以用于临床。一种改变柔韧性的方法包括调节纵向支撑元件36的数目。例如,如果梯形元件32的系列34完全没有与相邻的系列相连,最后的一节固定模将提供最大的柔韧性。另一方面,如果纵向支撑元件36连接每个相邻系列的互补的末端横档30,则柔韧性降低的很少。但是,第一,较柔韧的实施例,更容易受到轴向压迫的影响,而第二,柔韧性较低的实施例,将显示具有较强的轴向强度。如上面所讨论的,纵向骨干38的包含物将极大地增加轴向强度,因此降低了传送和植入的柔韧性。设计的柔韧性和轴向强度的全范围也包含在本发明的精神中。
如上面所讨论的,参考图5和6,制造者可以改变柔韧性/轴向强度比率的另一个选项是使用末端横档30和与管状构件的总轴呈对角的纵向支撑元件36。当然,固定模的柔韧性可通过加上不同数目对角的纵向支撑元件36来改变,以及通过改变偏转角度来改变。与纵轴的偏转角度越小,柔韧性越小(轴向强度越大)。因此,根据本发明设计的固定模对于特殊的临床用途特别有利。
参考图7,这里显示了滑动地与末端横档30接合的长棱28c的一个实施例的细致图。末端横档30由两个优选相同的横档叶40、42构成,横档叶以夹心的方式固定在统一梯形元件的长棱28a和28b,从而产生一个允许相邻的梯形元件的长棱28c滑动的敞开的通道。很多用于滑动接合装置的实施例都可以使用。形成于末端横档上的一对平行狭槽可用与长棱接合,其中该棱以编织的方式从一个狭缝通过,从另一个狭缝穿出。或者,在一对狭槽之间的末端横档材料可以在制造期间垂直于末端横档的表面移动,从而产生一个通道,使得棱可以不必相对于末端横档的表面弯曲而向上或向下滑动。与此相似,可以将一条单独的搭接线或导线孔固定到末端横档以建立该接合的棱可以滑动的通道。本领域中已知的其它可滑动的接合也设想为可用的结合装置。
除了可滑动的结合装置的配置的变化外,梯形元件中的这些接合装置也可以改变。例如,图8示出了可滑动地接合在末端横档30上的长棱28c,但该接合装置不是位于一个梯形元件之间的,而是图8所示的接合装置位于末端横档30的悬空端。可滑动地结合的长棱28c穿过通过关于固定棱28a折叠末端横档30所建立的通道。产生的末端横档30的上层40和下层42两片限定该通道。因此,可以设想,根据本发明的固定模的不同实施例会采用或者是位于多条棱和这些棱之间的给定的梯形元件上的末端横档之间的交叉点的接合装置(如图7所示),位于只连接到一个棱的端接末端横档的接合装置(如图8所示),或者位于连接到两条或多条棱的端接末端横档的接合装置,但它们伸出到其棱所限定的空间限定的梯形元件的轴向距离。
参考图9-29,说明了多个锁定装置的实施例。为了清楚起见,全部锁定装置都是针对关于接合装置的最少杂乱的定位进行说明的,端接末端横档30连接到单独的固定棱28a。但注意到,这些锁定装置可以以上讨论的任何定位方式集成到可滑动的接合装置。图示出了一个在可滑动接合棱28c具有制动销44的锁定装置的实施例。制动销44只能够在一个方向(扩展该固定模的方向)穿过该接合装置。在本实施例中,制动销44是这样的形状或短小突起部分,即,它以一个角度向上突出棱28c的表向。在穿过接合装置时,这些短小突起部分制动销44受压,然后弹出,因而防止可滑动接合棱28c相对于末端横档30往回移动更收缩的配置。
参考10,示出了锁定装置的另一个实施例,其中在可滑动接合棱28c的边上按这样一种方式开槽,使得允许在一个方向上相对于末端横档30移动。在本实施例中,接合棱28c的开槽的边形成制动销。此外,当这些制动销穿过接合装置时被压下,并从侧边弹出以防止回缩。
参考图11,这里显示了优选锁定装置,其中一个弹簧片46固定在接合装置上,修改滑动的接合棱28c以具有用于接合弹簧片46的多个孔或开槽。片46接合孔48的角度使得只能单向滑动。参考图12,这里显示了图10所示的锁定装置的另一个变体。在可滑动的接合棱28c中的开槽的制动销44使得只能单向滑动。
参考图13-16,这里显示了各种能够抵抗两个方向的滑动的锁定装置。这些实施例的有效性依赖于使用高压充气导管的配置。因此,通过充气气囊来使用收缩的固定模,气囊产生足够的径向压力以克服锁定装置的阻力。例如,图13显示了基于摩擦的锁定装置。在滑动棱28c上的粗糙面产生制动销44。一旦使用充气导管施加压力时,由于摩擦产生的制滑作用将足以防止回缩,扩展期间缺乏大于或等于由气囊施加的径向外力的径向内力的应用。图14-16示出了将阻止两个方向滑动的锁定装置的另一个实施例。图14和15显示的锁定装置在滑动棱28c的表面具有多个凸起的凸形制动销48,和互补的凹形制动装置46。当棱28c滑动时,凸形制动销48与凹形制动装置46接合,从而阻止进一步的滑动。参考图16,这里显示了具有联接在末端横档上的球形制动装置46。改进滑动棱28c使具有一个中央通道,球形制动装置从其穿过。通道具有一个制动销48的重复井网占据通道,如此使得当棱滑动时,球形制动装置46卡住制动销46,从而防止进一步滑动。
参考图17,这里示出了在开槽48和制动销46锁定装置中的另一个变体。然而,在该实施例中,开槽被从侧面切入滑动棱28c的中央通道,因此,制动销46被加工成具有可压下的侧制动装置,适合用于使棱28c相对于末端横档单向滑动。
图18和19示出了阻止向两个方向滑动的双向锁定装置。图18所示的锁定装置在滑动棱28c的侧缘具有凹座48,在接合装置内具有凸形制动装置46。凸形制动装置显示有足够的柔韧性,在滑动时能向外弯曲,当它们进入接合装置时咬合进凹座48。图19所示的实施例有从中央通道的侧面的凹座48,和凸起的球形制动装置46。
图20显示了单向锁定装置的另一个实施例。棱28c有一个中央通道,内装有规律间隔的有角的制动销48,其通过接合装置46时被压下,然后从侧面向外弹出以阻止回缩。
图21显示的锁定装置使用了在滑动棱28c上的凸起的制动销48。制动销48成一定角度,以允许单向滑动通过位于接合装置上的制动装置46。同样,图22显示的实施例也具有一个凸起的制动销48,它是呈方形的,并且弹簧片46具有适于容纳凸起的制动销48的互补的方形孔。弹簧片可被加工成允许单向或双向阻挡的形状。
图23的实施例包括滑动棱28c和固定棱28a两者的改型。滑动棱28c具有可弯曲的制动片48,它与相邻的固定棱28a的侧缘的规律间隔的凹形制动装置相互咬合。图24显示另一个双向制动装置,其中在接合装置上的制动装置46沿滑动棱28c的外侧缘与槽形制动销咬合。
图25-29显示了单向制动装置的另一个实施例。在图25-27中,制动机构包括形成于可滑动的接合棱28c上的弹簧片或制动销48,和在末端横档上由接合装置形成的制动装置或接受装置46的相互咬合。图28和29所示的不同点在于制动销48在滑动棱的表面交错,以减少回缩。
典型的是,长棱、末端横档和纵向支撑元件应该由相同的材料构成。可以使用诸如不锈钢、埃尔吉洛伊耐蚀游丝合金、钽、钛金属,或耐久压烫保形整理金属如镍钛金属化合物。塑料材料也可以用于各种变体。本发明的固定模也可以部分由诸如金、铂,或钛这类不透过射线的金属构造或由这些金属镀层的材料构造,以在荧光检查时提供体腔内的固定模位置。优选近端和远端加入一层不过透射线的标记材料。另外,在粘合剂中可以加入一种次碳酸铋或前述不透射线的合金(如不透射线环氧树脂EP21BAS),然后放置在所需位置的固定模上。
应该明白,所有的固定模的边缘优选光滑并且圆形的,以防止血栓形成和减少刺激内模平滑肌细胞增生和再狭窄的危险。另外,所述的固定模材料应该涂布一层材料,可减少急性血栓形成,改善长期血管不愈合,或处理非血管流出(address non-vascular issue)。也可使用诸如聚对亚苯基二甲基等惰性涂层材料,以提供润滑表面,避免损伤血管和发生急性血栓形成。另外,也可以在该固定模上涂上生物活性物质。这包括抗凝血剂,例如肝素、水蛭素或杀鼠灵;抗血小板剂,如ticlopidine、联吡啶,或GP IIb/IIIa受体阻断剂、凝血噁烷抑制剂、5-羟色胺拮抗剂、前列腺素类、钙离子通道阻断剂、细胞增殖调节剂和migration(即PDGF拮抗剂、ACE抑制剂、angiopeptin、enoxaparin、秋水仙碱)和炎性物质(类固醇、非类固醇抗炎性药物)。可用于改善长期(大于48小时)血管不闭合的涂层材料包括血管生成药物,如血管内皮生长因子(VEGF),腺病毒、酶、固醇、羟化酶、antisense技术,对局部缺血的损伤提供保护的药物、降脂药物如鱼油、HMG,Co-A还原酶抑制剂,其它生长因子;氧化氮、蛋白质、肽和碳水化合物。最后还有处理非血管病变的ibutilide延胡索酸盐(纤维化fibrillation/震颤flutter)、腺嘌呤环化酶(收缩性)和其它也可用作固定模的涂层。
在一个实施例中,本发明的可扩展固定模设计可用于任何原位扩展装置,如以常规方式的可充气导管或在应用压力时扩展的聚合塞(plug)进行体腔内扩展。例如,固定模的管体首先定位,以环绕充气导管的部分。其内具有充气导管的固定模首先以收缩形式,其中相邻的梯形元件的末端横档之间的圆周距离是缩小的。固定模和可充气气囊经皮下引入体腔,跟随在over-the-wire血管成型术导管系统中预先定位的导线,由荧光镜示踪,直到充气部分和相连的固定模位于固定模将要放置的体内通道的一点。然后,气囊被充气,固定模被充气部分扩展,从收缩直径变成扩展直径。在固定模被扩展到所需的最终扩展直径后,气囊内的气体被排出,导管撤回,将固定模留于所需位置。
扩展直径根据体内通道所需的扩展内径变化和确定。因此,固定模的控制的扩展不会引起体内通道破裂。另外,由于锁定装置阻止了在末端横档上的接合装置内的长棱的滑动,所以固定模不会回缩。因此,扩展的固定模将贴紧体内通道的壁继续发挥由径向向外的压力,所以不会从所需位置游走。
根据本发明的另一个实施例的自扩展型固定模可以不需要外部扩展力,如气囊而使用。这种固定模通过物理限制,如护套或其它装置将在导管内的固定模维持在收缩状态。导管和固定模按照上述方式进入到目标位点,用荧光镜(聚焦固定模的不过透射线的元件)跟踪固定模的位置。一旦到达目标位点,通过除去限制可以使用位于导管内的收缩的固定模。例如,撤除限制护套,从而释放固定模的物理限制。另外,或者护套可保持精致,而收缩的固定模和导管从护套的末端推出。不管除去该限制的装置是什么,固定模在它固有的弹力作用下自然扩展到它的第二,扩展直径,贴紧目标通道的内壁。
参考图30,显示了根据本发明的可扩展固定模100的变体的低剖面分解平面图,其中的中间梯形元件102a和102b,左和右末端梯形元件104和106具有不同的结构。每个梯形元件包括两个长棱,顶棱108和底棱110,和量各末端横档,左末端横档112和右末端横档114。长棱108和110具有多个槽116。棱具有窄末端118和宽末端120,其中在棱的窄末端中的槽116比在宽末端上的槽细小,并当它们从窄末端118向宽末端120移动时宽度渐增。每个梯形元件具有一到两个锁定片122。锁定片122形成U形区域124,它适于与相邻的梯形元件滑动地接合。
当单个梯形元件被组装在一起时,设计每个顶长棱108可从相邻的梯形元件滑动地接触底长棱110的上方,并嵌套相邻梯形元件的由锁定片122形成的U形区域124内。顶棱108的宽末端120邻接底棱110的窄末端118。因此,例如,当中间梯形元件102a的顶棱108位于并邻近左端梯形元件104的底棱110时,中间梯形元件102a的顶棱108嵌套左端梯形元件104的U形区域124内。一旦位于这个位置,从中间梯形元件102a向前伸出的锁定片122可被包卷在左端元件104的底棱110周围,并焊接固定到中间元件102a的的左端横档112上。每个锁定片122都具有一个锁尖126,它与滑动地接合到锁定片122的U形区域124的棱上的槽成一定角度接合。结果,锁定片122从左端元件104与中间梯形元件102a的顶棱108上的槽接合。同样,一旦锁定片被向后折于底棱110之上,并固定到中间梯形元件102a的左末端横档112上,中间元件102a的锁定片122与左端梯形元件104的底棱110上的槽116接合。
其它梯形元件以相同的方式彼此连接,形成本发明的可扩展固定模的系列。图31A和B显示的组装的系列的平面图,说明了在收缩(A)和扩展(B)状态下嵌套的梯形元件104、102a、102b和106。
参考图30和31描述的可扩展固定模的变体显示了它的低剖面。固定模的梯形元件可具有0.01到0.0001英寸范围的壁厚度。优选梯形元件的壁厚小于0.0007英寸。跨越点0.0014英寸。例如,当收缩一个传送导管时,该变体没有单个梯形元件交迭。如果使用较薄的材料,收缩的整体可能比其它设计的固定模小的多。这种特性在世固定模穿过非常紧窄的通道时尤其需要,可使得能够不需预先使用分离充气导管预扩展直接治疗病变血管。这个与由较厚的可变形材料构成的固定模,或自身盘曲成收缩状态、产生几层固定模材料,具有高的机座整体和非常硬的收缩和扩展状态的片状固定模相反。
图30和31所示的可扩展固定模的低剖面实施例中的锁定设计使用可以与许多槽116之一接合的锁定片122,与软管夹相似。为了减小膨胀摩擦,该变体中的锁定片偏离梯形元件互相穿插的位置。结果,当组装时,至少有两层材料与第三层偏离。这种设计导致较低的扩展力和收缩整体。潜在的“过度嵌套”,其中梯形元件的拐角塞在锁定片的U形区域124下,可通过使梯形元件的尺寸,即长棱108和110足够长来避免。额外的长度保证了长棱108和110的宽末端120很大,以至于不会塞进U形区域124内。或者,可通过包含一个制动销以防止过度收缩来避免出现过度嵌套,本领域的技术人员不难理解这一点。
在可扩展固定模的低剖面变体中的梯形元件的长棱108和110随着它的长度可改变宽度。例如,在收缩状态,如图31A所示,长棱的窄点接合在锁定片的U形区域内,因此提供更大间隙以方便使用。然而,关于固定模的扩展,梯形元件滑动(open),棱变宽,从而减小间隙,保证接片与宽槽更好的接合。
在低剖面固定模的两端的梯形元件被设计成,通过连接底部而不是目标元件的顶部以形成环而得到完全的径向支撑。当组装该固定模时,嵌套形成环的梯形元件的单个系列分开滚动。长棱108和110弯曲以限定在系列滚动时形成的管状构件的圆弧。多个管状系列,各包括大约3-8个嵌套的梯形元件,连接在一起获得所需的固定模长度。该结构既在传送时有柔韧性,并在扩展时,固定模设计使用较短的关节以连接拱顶。这些关节在长期植入后可能变得加工硬化和最终破碎。这种问题在使用柔韧的线钢(string-steel)材料的低剖面的实施例中可以降到最小。
该系列可以在各插入侧边以与固定模元件相接触的两板之间滚动。一个板保持不动,另一个板可相对于另一板横向移动。因此,夹在两板之间的固定模元件可以通过相对于另一板的移动围绕轴心滚动。或者,可使用本领域公知的三向轴方法来滚动系列。
可以模切或化学蚀刻单独的梯形元件。化学蚀刻以相对低的成本提供高分辨成分,与激光切割的竞争产品的成本相比尤其如此。可以使用定位焊接固定金属成分上的横撑。在使用塑性和/或可生物吸收的材料的地方,该元件可以利用火印压凸以产生零件和加热压凹以固定该横撑来制作该元件。
除了以上所述的合金外,还可以用可生物降解的材料制作可扩展的固定模的低剖面(low-profile)实施例,以便该固定模在效完其力之后可以被吸收掉。一般来说,过去了在2-4个月之后,固定模的效果就不稳定了。实际上,“不固定模(instent)”的再狭窄难以处理。可生物降解的材料可以包括多肽、聚缩肽类、尼龙共聚物、诸如聚乙醇酸(polyglycolicacid)(PGA)、聚乳酸(PLA)、聚乙烯琥珀酸、聚羟基丁酸(PHB)、聚丁烯二甘醇酸酯和聚e-己内酯、聚二氢吡喃、聚膦腈、聚原酸酯、聚氰基丙烯酸酯和它们的衍生物和组合物和其它本领域公知的可生物降解材料。(例如,参见Atale,A.,Mooney,D.,合成可生物降解聚合物,1997,Birkhauser,波士顿;通过引起结合到这里)。
也可以使用诸如由血液中的水水解的水凝胶这样的水溶性材料。交联的聚-2-羟乙基甲基丙烯酸盐(PHEMA)和它的共聚物,如聚丙烯酰胺,和聚乙烯乙醇。
药物或其它生物活性化合物可以结合成可将解的基质,并因此在该狭窄的场所提供这种化合物的持续释放。用于覆盖由金属和/或上述非生物降解材料制作的固定模的示例,还可以用于结合成生物可降解的固定模。
按照图30和31所说明的实施例的低剖面固定模还可以用于血管移植,其中该固定模可以由诸如扩展的PTFE这样的聚合材料或诸如血纤维蛋白这样的天然材料形成的护套所覆盖。按照本发明的一种移植的变体在32中说明。该管状移植包括低剖面可扩展固定模100和聚合护套200。此外,由于该非常低的剖面、小收缩直径和大柔软性,按照这个实施例制作的固定模还可以航行小或者弯曲的路径。因此,低剖面变形可以用于冠状动脉、劲动脉、血管的动脉瘤(在用护套覆盖时)、肾动脉、周围(骼骨、股骨、窝骨、锁骨)动脉。其它非血管的应用包括肠胃、十二指肠、胆管、食道、尿道、气管和支气管。
虽然已经详细地描述了本发明的一系列优选实施例及其变形,但本领域的熟练技术人员应明白利用和治疗同样应用的其它修改和方法,因此,应该理解,在不脱离本发明的思想和权利要求书的范围的情况下,可以进行等效的各种应用、修改和替代。
权利要求
1.一种可扩展的体腔内固定模,包括管状构件,由一系列可滑动交叠的梯形元件组成,每个梯形元件由至少各有两个末端、径向安装的细长棱、以及至少两个固定于长棱上的两个末端的横档组成;其中,来自第一梯形元件的长棱滑动地由来自第二梯形元件的末端横档部分接合,使得梯形元件的滑动在第一梯形元件和第二梯形元件的末端横档之间产生一个可变的距离;所述管状构件有一个第一直径,在其中第一梯形元件和第二梯形元件的末端横档之间的距离处于收缩状态;以及所述管状构件有一个第二直径,在其中第一梯形元件和第二梯形元件的末端横档之间的距离处于扩展状态。
2.根据权利要求1的可扩展固定模,其中在每个梯形元件上至少一个长棱具有多个狭槽以用于接合相邻的梯形元件的末端横档上的制动销。
3.根据权利要求2的可扩展固定模,其中所述槽和制动销允许末端横档滑动分开,从而扩展管状元件的直径,但其中所述制动销接合所述狭槽以避免末端横档滑回到更缩小的状态。
4.根据权利要求1的可扩展固定模,其中所述管状构件在从该管状构件里边应用径向向外扩展的力时,从第一收缩直径扩展到第二膨胀直径。
5.根据权利要求1的可扩展固定模,其中管状构件在解除保持管状构件处于第一收缩直径的限制时,自行扩展到第二扩展直径。
6.根据权利要求1的可扩展固定模,其中该梯形元件可以由从不锈钢、耐蚀游丝合金、钽、钛和镍钛诺组成的组中选择的合金构成。
7.根据权利要求1的可扩展固定模,其中该梯形元件可以由从多肽、聚缩肽类、尼龙共聚物、脂肪族聚酯、聚二氢吡喃、聚膦腈、聚原酸酯、聚氰基丙烯酸酯和它们的衍生物组成的组中选择的至少一种可生物降解的材料构成。
8.根据权利要求7的可扩展固定模,其中生物活性剂加入到这种可生物降解的材料中,所述活性剂选自由肝磷脂、水蛭素、杀鼠灵、噻氯匹定、双嘧哌胺醇、GP IIb/IIIa受体阻断剂、凝血噁烷、5-羟色胺拮抗剂、前列腺素类、钙离子通道阻断剂、PDGF拮抗剂、ACE抑制剂、angiopeptin、enoxaparin、秋水仙碱、类固醇、非类固醇抗炎性药物、VEGF、腺病毒、酶、固醇、羟化酶、antisense sequences、鱼油、HMG、Co-A还原酶抑制剂、ibutilide延胡索酸盐、腺嘌呤环化酶、生长因子、氧化氮、蛋白质、肽和碳水化合物组成的组。
9.根据权利要求1的可扩展固定模,其中至少该固定模的一部分是射线透不过的。
10.根据权利要求1的可扩展固定模,其中该固定模可以有在0.01到0.0001英寸范围内的壁厚。
11.根据权利要求1的可扩展固定模,其中该固定模可以有小于0.0007英寸的壁厚。
12.根据权利要求1的可扩展固定模,其中以细长棱的宽度逐渐地从狭窄的末端相宽末端增加。
13.根据权利要求1的可扩展固定模,其中该管状构件还包括护套。
全文摘要
本发明提供用于动脉或体腔内的体腔支撑固定模。该固定模由多个具有长棱和固定到该长棱上的末端横档的梯形元件构成。相邻梯形元件的长棱由相邻梯形元件的末端横档滑动地接合。滑动长棱在相邻的末端横档之间产生可变距离。结果,固定模具有第一直径,其中相邻梯形元件的末端横档之间的距离缩小,和可变的第二直径,其中在相邻梯形元件的末端横档之间的距离扩展。
文档编号A61L31/16GK1345209SQ00805725
公开日2002年4月17日 申请日期2000年3月31日 优先权日1999年4月1日
发明者汤姆·施泰因克 申请人:Md3公司