经鼻抗惊厥性组合物和调节的方法

文档序号:1107945阅读:230来源:国知局
专利名称:经鼻抗惊厥性组合物和调节的方法
技术领域
本发明针对经粘膜传递生物活性剂的药物组合物。更具体的,本发明涉及一种新方法,通过同时施用药物和药物学上可接受的共溶剂系统控制和促进抗惊厥剂经粘膜渗透和吸收的速度和程度,该共溶剂系统含有脂肪醇、二醇和水及其组合,以及生物表面活性剂,如胆汁盐或卵磷脂的组合。甚至更具体的,本发明涉及药物组合物,以提供病人可接受的经鼻抗惊厥传递系统,它可用于迅速和方便的紧急治疗持续性癫痫和发热性癫痫发作。
背景技术
持续性癫痫是一种神经科急症,死亡率在3-35%之间。治疗的主要目的是迅速控制病理性癫痫作用,持续性癫痫的发作时间越长,它就越难控制,永久性大脑损伤的可能性就越大。因此,治疗病人的关键是清楚的计划,包括迅速用足量有效的、具有准确的药物学配方的药物治疗,同时注意肺换气不足和血压过低。
现有的几种药物疗法已被证明在治疗持续性癫痫中是可行的。安定和劳拉西泮是最广泛使用的用于此的苯并二吖庚因。静脉内施用抗惊厥剂是抑制癫痫性惊厥的最迅速的方法。然而,当静脉内给药不便而且延迟,例如因为技术困难,如需要消毒设备和技术人员,和因为可能产生血栓性静脉炎,其它给药途径也是非常需要的。另外,静脉内给药常常引起血压过低、心脏节律障碍或中枢神经系统抑郁。就此Moolenaar[Moolenaar等,Int.J.Pharm.,5127-137(1986)]尝试在人类中通过几种其它途径,如肌肉内注射、口服片剂和直肠溶液施用安定。发现仅直肠溶液提供了相当迅速的吸收,因此它可作为静脉内注射的替代途径。然而,直肠途径是非常不便的给药方法,尤其在紧急治疗中。在Burghardt的美国专利号4,863,720中,公开了一种舌下可喷射药物制剂,其中活性药物可以是苯并吖庚因,最好含有聚乙二醇(PEG)并需要乙醇、脂肪酸的二和/或三甘油酯和药物学上可接受的推进气体。
最近,似乎鼻粘膜提供了给药以得到许多药物物质的疗效的实践途径。鼻内施药的优点是施用药物可轻易而简单的如所需实现全身性或局部作用。然而,鼻内给药的最大问题是大多数药物分子弥散通过鼻粘膜少而缓慢,从而不能通过简单经鼻给药达到治疗药物所需的水平。与鼻部给药有关的另一个限制是需要小的给药体积,通常不可能施用超过每鼻孔约150微升;超过该上限,制剂将流出进入咽并被吞入。因此,对溶剂载体存在很高的要求,其中药物的溶解度要高,另一方面对鼻粘膜无刺激。可通过同时施用化学佐剂或渗透增强剂提高药物的鼻内吸收。例如,Lau和Slattery[Lau等,Int J.Pharm,54171-174(1989)]尝试了通过将苯并二吖庚因(如安定和劳拉西泮)溶于各种溶剂(三乙酸甘油酯、二甲亚砜、PEG 400、Cremophor EL、Lipal-9-LA、己二酸异丙酯和Azone)施用苯并二吖庚因。虽然许多溶剂以所需浓度溶解安定和劳拉西泮,当用于鼻时它们太刺激,所以不能使用。发现Cremophor EL对鼻粘膜组织刺激性最小,但在人中使用该载体鼻部吸收非常低(Tmax=1.4小时),峰浓度也比静脉内给药后观察到的低。在美国专利号4,950,664中Rugby描述了鼻部施用药物学上可接受的载体中的苯并二吖庚因安眠药。载体可以是盐水溶液、醇、甘油、甘油醚或其混合物。犬的药物动力学研究结果显示,三唑苯二氮的最大血浆浓度在鼻内给药后18分钟达到,而5分钟内达到有效治疗才被视为是吸引人的目标。Bechgaard和Hjortkjer[Bechgaard等,J.Pharm.Pharmacol.,49747-750(1997)]描述了使用纯有机溶剂如糖糠醛和四乙二醇及其组合物作为鼻内传递安定的载体。鼻内给药后头30分钟内测量的绝对生物利用率对于检测的最满意的载体系统是49-62%。在PCT WO 95/31217中,Dumex描述了用基于生育酚及其衍生物的药物乳液制剂鼻内施用生物活性的化合物,包括苯并二吖庚因。
发明简述本发明是一种将抗惊厥剂通过载体调节,施给人和动物粘膜表面的新方法。载体系统是一种水相药物载体,含有脂肪醇或二醇及其与生物表面活性剂,如胆汁盐或卵磷脂的组合。
本发明的一个目的是提供一种药物学上可接受的载体系统,它能增强抗惊厥剂的经粘膜渗透和吸收。该药物组合物中使用的成分优选那些GRAS材料(通常认为是安全的),因此关注的主要不是毒性。本发明的另一个目的是提供一种控制抗惊厥剂以合适调节的速度经粘膜传递,从而获得最佳疗效,而避免或减少不良副作用的方法。这些组合物特别适用于在急性治疗持续性癫痫和发热性癫痫发作中鼻内施用药物。
附图简述

图1显示一种载体对本发明的二吖庚因制剂体外经鼻渗透的作用。
图2显示药物浓度水平对二吖庚因从本发明的载体体外经鼻渗透的作用。
图3显示甘胆酸钠(SGC)对二吖庚因从本发明的载体体外经鼻渗透的影响。
图4显示静脉内(IV)给药和根据本发明的制剂鼻内给药(单剂应用)后二吖庚因的平均血浆浓度-时间图谱。
图5显示静脉内(IV)给药和根据本发明的制剂鼻内给药(多剂应用)后二吖庚因的平均血浆浓度-时间图谱。
图6显示鼻内施用制剂后(作为丙二醇/乙醇在本发明的制剂中的体积比的函数)二吖庚因平均血浆浓度-时间图谱。
图7显示了根据本发明静脉内施用和鼻内施用制剂后(单剂和多剂给药)氯硝西泮平均血浆浓度-时间图谱。
图8显示了根据本发明静脉内施用和鼻内施用制剂后,作为剂量强度的函数的(S)-2-氨基甲酰氧基-1-o-氯苯乙醇平均血浆浓度-时间图谱。
图9显示了根据本发明静脉内施用和鼻内施用制剂(单剂和多剂给药)后(S)-2-氨基甲酰氧基-1-o-氯苯乙醇平均血浆浓度-时间图谱。
发明详述根据本发明,一种含有脂肪醇、二醇和生物表面活性剂的水相共溶剂系统提供了抗惊厥剂速度受控的和增强的经粘膜传递。本发明的醇选自C1-C5脂肪醇;二醇选自丙二醇(PG)、聚丙二醇(PEG)200、PEG 300和PEG 400、以及PEG 600;生物表面活性剂选自胆汁盐,如胆酸钠、脱氧胆酸钠、牛磺胆酸钠、甘胆酸钠和熊去氧胆酸钠或卵磷脂,如溶血磷酯酰胆碱、磷酯酰胆碱、磷酯酰丝氨酸、磷酯酰肌醇、磷酯酰乙醇胺和磷酯酰甘油。上述组合物可用于医药制剂,包括可用于人和动物粘膜的抗惊厥剂。更特别的是,这些组合物是含有苯并二吖庚因,如二吖庚因、氯硝西泮和劳拉西泮,以及一种基于氨基甲酸酯的新抗惊厥化合物(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇,由下式代表 适用于以溶液、悬浮液、凝胶或其它有用的鼻部制剂鼻内给药。这些鼻内组合物可用于任何已知的治疗目的,对其已知这些抗惊厥剂包括苯妥英(苯妥英、美芬妥英和乙妥英)、巴比妥类药物(苯巴比妥、甲苯比妥和扑米酮)、亚氨基二苯乙烯(卡马西平)、琥珀酰胺(乙琥胺)、丙戊酸、噁唑烷二酮(三甲双酮)和其它抗癫痫剂(加巴喷丁、拉莫三嗪、乙酰唑胺、非氨酯和γ-乙烯基GABA)。利用抗惊厥剂的鼻内制剂大大方便了给药。与非经肠给药相比,一个简单的喷雾器、滴管或喷洒器将足够迅速和方便的传递药物,特别是紧急治疗癫痫的急性惊厥发作现象。从临床上看,鼻内给药常常提供持续延长的抗惊厥作用。本发明可通过改变载体中脂肪醇和二醇的比例,并通过单剂和/或多剂施用本发明的制剂,更有效和准确的控制疗效(从一发作开始)、强度和持续时间。虽然本发明已用一种抗惊厥剂作为模型化合物描述,应理解本发明也可用于其它可用于人和动物粘膜的生物活性药剂。
下列实施例进一步说明了本发明,它们说明了实施本发明的具体模式,不是为了限制权利要求的范围。
实施例1体外鼻膜渗透研究体外实验中使用的鼻粘膜获自新西兰白兔(2.5-3.0公斤)。静脉注射苯巴比妥杀死家兔。小心的从骨块上用手术剪和剪骨锯取下鼻中隔。然后小心的从鼻中隔上剥下两片鼻粘膜,不碰到膜表面中央,用生理盐水漂洗。将粘膜固定在两个玻璃扩散池仪器的半池之间。鼻粘膜的暴露面积大约是0.64平方厘米。测试溶液或悬浮液(3.5毫升)被引入供应区室中膜的粘膜侧,在受体区室中加入3.5毫升10%乙醇、40%丙二醇和50%pH7.4的等渗磷酸缓冲液。整个扩散系统在实验过程中维持在37℃。在预定的时间间隔,从实验中取出100微升受体溶液,重新充入相同体积的新鲜受体介质,维持体积不变。从渗透的药物累积量对时间的函数获得的直线斜率测定出稳态通量。各实验至少进行两次,实施例2-6中使用了该方法。
本研究中使用了装有多溶剂传递系统(600E型,Waters Associates,Milford,Mass.)、自动注射器(717 Plus型,Waters Ass.)、光电二极管阵检测器(996型,Waters ASS.)、反相Symmetric C18柱(150毫米×3.9毫米ID,5微米)和Millenium2010软件计算机系统的高效液相层析系统。分析安定、氯硝西泮和(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇所用的流动相和紫外光波长分别是70%甲醇、30%水于254纳米;60%甲醇、40%水于252纳米;和25%乙腈、75%水于262纳米。
实施例2本实施例显示以1%w/v水平溶于水相介质的胆汁盐和卵磷脂对模型药物安定渗透过新鲜切下的鼻膜的作用。在这些研究中,检测了一系列胆汁盐,如胆酸钠、脱氧胆酸钠、牛磺胆酸钠和甘胆酸钠,以及卵磷脂如溶血磷酯酰胆碱。用体外膜渗透试验法所述的方法测量渗透速度。表1中列出了用该方法获得的平均稳态经鼻通量数据。
表1胆汁盐和卵磷脂对安定在37℃体外渗透过家兔鼻粘膜的作用平均经鼻通量载体(微克/平方厘米/小时)(n=2)水 79.51%胆酸钠/H2O 66.31%脱氧胆酸钠/H2O 74.91%牛磺胆酸钠/H2O 87.01%甘胆酸钠/H2O 96.41%溶血磷酯酰胆碱/H2O 125.5如表I所见,甘胆酸钠等胆汁盐和溶血磷酯酰胆碱等卵磷脂对渗透经过鼻膜的安定产生显著增强作用。
实施例3该实施例显示了载体对安定在37℃体外膜渗透过家兔鼻粘膜的影响。在该实验中,用水和共溶剂载体(由30%乙醇(ETOH)、60%丙二醇(PG)和10%水(WT)组成)制备了1%安定悬浮液和溶液。用实施例1中所述的方法测定渗透速度。图1列出了该方法获得的安定经鼻渗透概貌。
如图1所示,含有乙醇、丙二醇和水的共溶剂载体与水相悬浮液获得的结果比较,安定经鼻渗透的速度提高了约8倍。
实施例4本实施例显示供体区室中药物浓度对安定体外渗透过鼻粘膜的影响。在该研究中,用共溶剂混合物(含有30%乙醇、60%丙二醇和10%水)制备了0.5-2%安定制剂。用实施例1所述的测试方法测量了体外膜渗透速度。图2显示了用安定制剂在0.5-2%水平上获得的体外经鼻通量数据。
如图2所示,安定的稳态经鼻通量,随着药物浓度在供体区室中浓度水平在0.5%-2%的增加而线性增加。
实施例5本实施例显示胆汁盐掺入本发明的鼻部制剂对安定体外经鼻膜渗透的作用。在该实验中,测试了在含有30%乙醇、60%丙二醇和10%水的载体中以1%水平加入甘胆酸钠。用含有或不含胆汁盐的载体制备了样品药物溶液(10毫克/毫升)。用实施例1所述的测试方法测量了膜渗透速度。图3列出了该方法获得的体外渗透概貌。
如图3所示,加入1%水平的甘胆酸钠显著增强了安定经鼻渗透速度。当将胆汁盐掺入载体时,注意到稳态通量上升了约50%。
实施例6该实施例显示了三种模式药物(如安定、氯硝西泮和(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇)相对经鼻渗透性。在该实验中,使用了含有30%乙醇、60%丙二醇和10%水的共溶剂载体。用实施例1所述的测试方法进行了体外渗透实验。表II列出了用从5毫克/毫升初始药物浓度的药物获得的相对经鼻渗透系数和稳态通量数据。
表II模式药物物质经鼻渗透过家兔鼻粘膜的相对经鼻渗透性
如表II所示,基于一氨基甲酸酯的抗惊厥剂(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的经鼻渗透性与安定的相比较约高2倍。
实施例7安定制剂的生物利用率和药物动力学在对新西兰白兔(n=3-4)施用本发明含安定的制剂后测试了制剂的生物利用率和药物动力学。为了比较,在用相同剂量静脉内给药后检测了安定注射(表III的配方1)。静脉内注射配方1(10毫克/2毫升)获自Elkins-Sinn,Inc.,它是用丙二醇(0.4毫升)、酒精(0.1毫升)、苯甲醇(0.015毫升)、苯甲酸钠/苯甲酸(50毫克)和足量的注射用水补充到1毫升。为了鼻内给药,分别用本发明的载体系统(含有30%乙醇、60%丙二醇和10%水)有1%甘胆酸钠(表III的配方3)与无1%甘胆酸钠(表III的配方2)制备了两种制剂。为了比较,在鼻内给药后还测试了另一种鼻部制剂(表III的配方4,用非离子表面活性剂聚氧乙烯化的蓖麻油(CremophorEL)载体),因为Lau和Slattery(1989)在人中测试了该制剂。在实验前才通过将20毫克安定(Sigma Chemical)溶于1毫升上述载体制备了所有鼻部制剂。
就在实验前,称重家兔(n=3-4),并钳制在家兔限制器上,使它们面朝上。各家兔在每个鼻孔内用Pfeiffer喷洒装置在5秒中内接受100微升配方2或3。经受静脉内给药的家兔(n=3)接受耳静脉灌注20秒钟的1毫克/公斤配方1。为了重复定剂量研究,将相同体积的配方3(100微升)在第一剂后5分钟喷入各鼻孔。在静脉内和鼻内给药后0、2、5、10、20、30、45、60和120分钟收集血样(1毫升)。从血样中通过离心分离血浆,储藏在-20℃直到分析。对于分析,将血样(0.5毫升)精确的转移到1.5毫升聚丙烯离心管。在血浆样品中加入0.5毫升0.01%体积/体积高氯酸的乙腈溶液,它含有内部标准(氯硝西泮1微克/毫升)。将混合物旋转30秒钟,4000rpm离心10分钟。用HPLC测试安定的血浆浓度。用实施例1中所述的Waters HPLC进行分析。该研究中使用的柱是3.9毫米×150毫米×5微米Symmetric C18柱。流动相是50%甲醇∶10%乙腈∶40%pH3.5磷酸缓冲液,以体积计。流动相的流速是1毫升/分钟,UV检测在228.5纳米处进行。安定的检测极限是70纳摩尔/升。从0-120分钟的药物血浆浓度-时间曲线下的面积(AUC)用线性梯形方法计算。表III列出了用该方法获得的生物利用率和药物动力学数据。图4和5分别描述了单剂静脉内给药(配方1)和单剂和二剂鼻内施用本发明的制剂(配方3和4)的相对药物动力学概貌。
表III在家兔中IV和IN施用本发明的制剂后安定的生物利用率和药物动力学参数
aIV配方10.5%安定针剂,USP,Elkins-Sinn,Inc.
(PG/ETOH/苯甲醇/苯甲酸钠/苯甲酸/注射用水)bIN配方22%安定的60%PG、30%ETOH和10%水的溶液cIN配方32%安定的1%SGC、60%PG、30%ETOH和10%水的溶液d标准误差e用下列等式确定的标准化数据F={AUCIN,1毫克×2/2×AUCIV,1毫克×1×100}f给药时间t0鼻内给药的第一剂t5分钟鼻内给药的第二剂gIN配方42%安定的Cremophor EL溶液。
如图4和表III所见,当与CRemophor EL配方4比较时,用1%SGC、30%乙醇、60%PG和10%水制备的IN配方3显著提高了经鼻吸收。IN配方3的Cmax和AUC0-120 分钟相对于IV给药分别是约69%和76%。在另一方面,Cremophor EL配方4的Cmax和AUC0-120分钟对于IV注射是约19%和42.6%。这些相对结果看来与Lau和Slattery(1989)报道的人药物动力学数据一致。根据报道的数据,Cremophor EL制剂在人的鼻内给药后得到1.4小时的Tmax和Cmax,相对于IV注射仅约27%。令人惊奇的是,如图5和表III所见,第一剂后5分钟重复鼻内给药显著提高了安定的经鼻吸收。第二次给药后Cmax和AUC值与第一次给药获得的相比,恰好是两倍。另外,第二次给药后的血浆安定水平在7分钟内超过了一次IV给药的水平。这些发现清楚的证明,当单剂鼻内给药不能产生理想的疗效时,重复给药方案(在短时间内)可有效的用于急性治疗持续性癫痫。
实施例8峰血浆水平动力学的控制制备2毫克安定的100微升载体溶液,以与实施例7所述类似的方法用于家兔(n=3)。测试了下列载体60%EtOH、30%PG和10%水(WT),含1%SGC;30%EtOH、60%PG和10%水(WT),含1%SGC;和20%ETOH、70%PG和10%水(WT),含1%SGC。在下列时间间隔从耳静脉收集血样0、2、5、10、20、30、45、60和120分钟。用HPLC测试血浆中的安定浓度。表IV和图6列出了IV和IN施用制剂后获得的动力学概况。
表IV对家兔IV和IN施用本发明的制剂后载体的ETOH/PG体积比对安定的药物动力学参数的作用
aIV配方10.5%安定针剂,USP,Elkins-Sinn,Inc.
(PG/ETOH/苯甲醇/苯甲酸钠/苯甲酸/注射用水)bIN配方A2%安定的1%SGC、30%PG、60%ETOH和10%水的溶液cIN配方B2%安定的1%SGC、60%PG、30%ETOH和10%水的溶液dIN配方C2%安定的1%SGC、70%PG、20%ETOH和10%水的溶液e标准误差如表IV和图6所示,IN给药后2分钟内观察到的药物峰血浆浓度可依赖于检测的载体中的ETOH/PG体积比控制。Cmax随着ETOH/PG体积比从0.3增加到2逐渐上升。另外,IN载体(由60%ETOH、30%PG和10%水(WT)和1%SGC构成)的峰血浆浓度在2分钟时大约是IV注射相同剂量的约79%。
另外,调节载体中的ETOH/PG体积比还可控制消除期间的血浆水平-时间概况。
实施例9安定制剂的药理反应在新西兰白兔中用IV和IN施用1毫克/公斤剂量水平的本发明的制剂,通过评估安定的肌肉松弛作用,检测药理反应。鼻部制剂的载体由30%乙醇、60%丙二醇和10%水组成,含有1%SGC。将20毫克安定通过超声溶于1毫升载体,制备了相同制剂。IV制剂与实施例7中所用的相同。在每个鼻孔加入100微升鼻部制剂后测量了家兔中的药理反应,施药时家兔呈卧位,用手指在臀部牢固夹紧。表V列出了家兔保持在卧位,后腿伸在一侧的平均反应时间。
表V安定制剂IV和IN给药后平均药物反应时间
如表V所见,本发明的鼻部制剂提供了非常快速的应答。药理反应的时间是1.5分钟。
实施例10氯硝西泮制剂的生物利用率和药物动力学将8.36毫克氯硝西泮溶于2毫升本发明的载体(含有30%ETOH、60%PG、10%水和1%SGC),制备了鼻内制剂。将3毫克氯硝西泮溶于2毫升40%PG、30%ETOH和30%水溶液,将溶液在无菌条件下滤过消毒滤器,制备了IV注射的制剂。将制剂以0.2毫克/公斤的剂量,与实施例7相似的方式施给家兔(n=3)。还测试了隔5分钟的重复给药方案(两次或三次给药)。在下列时间间隔0、2、5、10、20、30、45、60和120分钟从耳静脉得到血样。从血样用离心分离血浆,储藏在-20℃直到分析。为了分析,将血浆样品(0.5毫升)准确的转移到15毫升试管中。在血浆样品中加入10微升内部标准溶液(安定5微克/毫升)和50微升NaOH(0.5M)。在上述混合物中,加入5毫升二乙醚,旋转该混合物60秒钟。4000rpm离心10分钟。将上层乙醚溶液转移到5毫升试管中,在真空蒸发器中40℃蒸发30分钟。用100微升HPLC分析的流动相(含有20%甲醇、30%乙腈和50%pH3.5的KH2PO4/H3PO4缓冲溶液)重建剩余物。用1毫升/分钟流速的HPLC和254纳米处的紫外检测确定血浆中的氯硝西泮浓度。氯硝西泮的检测极限是16纳摩尔/升。表VI列出了以单剂或多剂给药时间表IV和IN给药后获得的生物利用率和药物动力学,图7显示了平均血浆浓度-时间概貌。
表VI对家兔IV和IN施用制剂后氯硝西泮的生物利用率和药物动力学参数
aIV配方0.15%氯硝西泮的40%PG、30%ETOH和30%水的溶液bIN配方0.42%氯硝西泮的1%SGC、60%PG、30%ETOH和10%水的溶液c标准误差d用下列等式计算的标准化数据F={AUCIN,0.2毫克×2/2×AUCIV,0 2毫克×1}×100e用下列等式计算的标准化数据F={AUCIN,0.2毫克×3/3×AUCIV,0.2毫克×1}×100f给药时间t0鼻内给药的第一剂t5分钟鼻内给药的第二剂t10分钟鼻内给药的第三剂如表VI和图7所示,制剂第一次鼻内给药后2分钟内获得了初始峰血浆浓度。峰血浆水平约为32%IV注射。然而,5分钟间隔的第三次给药后在15分钟时观察到的峰血浆浓度与单剂IV注射氯硝西泮几乎相同。
实施例11氯硝西泮制剂的药理反应在新西兰白兔中,以实施例9所述的类似方法在各鼻孔中加入了100微升4.18毫克氯硝西泮/毫升载体的溶液后,检测了氯硝西泮制剂的药理反应。载体由30%ETOH、60%PG和10%水组成,含有1%SGC。将氯硝西泮通过超声溶于载体。研究中所用的IV制剂与实施例10中所用的相同。表VII列出了IV和IN给药后测量的平均反应时间。
表VII氯硝西泮制剂IV和IN给药后平均药物反应时间
如表VII所见,当与IV注射的反应时间比较时(1.7分钟)本发明的氯硝西泮制剂鼻内给药提供了更快的反应时间(1.4分钟)。
实施例12(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇制剂的生物利用率和药物动力学将50毫克或100毫克基于一氨基甲酸酯的新抗惊厥剂(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇溶于1毫升本发明的载体(含有30%ETOH、60%PG、10%水和1%SGC),制备了鼻内制剂。将15毫克(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇溶于1毫升40%PEG 400和60%水溶液,将溶液在无菌条件下滤过消毒膜,制备了IV注射的制剂。将制剂以2.5毫克/公斤和5毫克/公斤的两个剂量水平,与实施例7相似的方式施给家兔(n=2-4)。还在鼻内施用本发明的制剂中研究了隔5分钟的重复给药方案。在下列时间间隔0、2、5、10、20、30、45、60、120、180和240分钟从耳静脉得到血样。从血样用离心分离血浆,储藏在-20℃直到分析。为了分析,将血浆样品(0.5毫升)准确转移到15毫升试管中。在血浆样品中加入50微升内部标准溶液(2-(2,6-二氯苯基)-2-氨基甲酰氧基乙基)氧代甲酰胺-10微克/毫升)和5毫升甲基-丁基醚。旋转该混合物60秒钟,3500rpm离心10分钟。将上层乙醚溶液转移到5毫升试管中,在真空蒸发器中40℃蒸发30分钟。用200微升去离子水重建剩余物。用HPLC(流动相含有20%乙腈和80%水,流速为1毫升/分钟)和210纳米处的紫外检测确定血浆中的(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇浓度。(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的检测极限是23纳摩尔/升。表VIII中列出了以两剂强度IV和IN施用(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇后测定的药物动力学参数。表IX列出了以单剂和两剂方案静脉内和鼻内施用本发明的制剂后获得的生物利用率和药物动力学参数。图8和9列出了单剂和两剂时间表中IV和IN施用(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇制剂获得的平均血浆浓度-时间概貌。
表VIII以两剂强度单剂IV和IN给药后的(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇药物动力学参数
aIV配方1.5%(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的40%PEG 400和60%水的溶液bIN配方110%(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的1%SGC、60%PG、30%ETOH和10%水的溶液cIN配方25%(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的1%SGC、60%PG、30%ETOH和10%水的溶液d标准误差表IX以单剂或两剂方案IV和IN施用制剂后(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的生物利用率和药物动力学参数
aIV配方1.5%(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的40%PEG 400和60%水的溶液bIN配方10%(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的1%SGC、60%PG、30%ETOH和10%水的溶液c标准误差d用下列等式确定的标准化数据F={AUCIN,5毫克×2/2×AUCIV,5毫克×1}×100e给药时间t0鼻内给药的第一剂t5分钟鼻内给药的第二剂如表VIII所示,初始鼻内给药后制剂5-30分钟内观察到的初始峰浓度随着剂量强度的增加呈比例上升。发现鼻内制剂的生物利用率是IV注射的73-79%。表IX和图9中列出的动力学结果清楚的证明了第一剂5分钟后第二次施用鼻内制剂产生与第一剂后获得的几乎相同的生物利用率。Cmax和AUC0-240分钟在第二次鼻部给药后达两倍。另外,在第二剂后达到的(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇的血浆浓度,超过了单剂IV注射在30分钟时获得的血浆水平。
实施例13稳定性研究为了优化本发明药物组合物中药物的稳定性,在储藏温度37℃下,10-14周的时间内进行了加速稳定性研究。用本发明含有30%ETOH、60%PG和10%水的载体制备了样品药物溶液(0.1毫克/毫升)。将药物溶液储藏在设定为37℃的炉中。在合适的时间间隔,取出100微升样品,用HPLC分析。表X列出了以药物回收百分数测定的化学稳定性数据。
表X37℃时本发明制剂的化学稳定性
权利要求
1.一种对哺乳动物的粘膜以吸收速度控制的方式施用治疗有效量的抗惊厥剂的方法,其特征在于,该方法是通过一种药物组合物实现的,该药物组合物含有治疗有效量的药物,溶于或分散于含有10-80%体积的脂肪醇、10-80%体积的二醇和0.1-5%重量的胆汁盐或卵磷脂的含水载体。
2.如权利要求1所述的组合物,其特征在于,所述抗惊厥剂选自安定、氯硝西泮、劳拉西泮、苯妥英、美芬妥英、乙苯妥英、苯巴比妥、甲苯比妥、扑米酮、卡马西平、乙琥胺、丙戊酸、三甲双酮、加巴喷丁、拉莫三嗪、非氨酯、γ-乙烯基GABA和乙酰唑胺。
3.如权利要求1所述的化合物,其特征在于,所述抗惊厥剂是一氨基甲酯抗惊厥剂(S)-2-氨基甲酰氧基-1-o-氯苯基乙醇,具有下式
4.如权利要求1所述的化合物,其特征在于,该醇是含有1-5个碳原子的脂肪醇。
5.如权利要求1所述的化合物,其特征在于,二醇选自丙二醇、聚乙二醇200、聚乙二醇300、聚乙二醇400和聚乙二醇600。
6.如权利要求1所述的组合物,其特征在于,所述胆汁盐选自胆酸钠、去氧胆酸钠、甘胆酸钠、牛磺碳酸钠和熊去氧胆酸钠。
7.如权利要求1所述的组合物,其特征在于,所述卵磷脂选自溶血磷酯酰胆碱、磷酯酰胆碱、磷酯酰丝氨酸、磷酯酰肌醇、磷酯酰乙醇胺和磷酯酰甘油。
8.一种通过鼻内施用药物组合物,对哺乳动物以吸收速度控制的方式提供吸收的方法,其特征在于,该组合物含有治疗有效量的抗惊厥剂,该方法是通过调节鼻内载体系统中脂肪醇/二醇体积比实现的。
9.如权利要求8所述的方法,其特征在于,所述抗惊厥剂溶于或分散于鼻内载体系统中,通过将载体中脂肪醇/二醇比从0.1提高到8.0,产生快速起始和高的药物血浆浓度水平。
10.如权利要求8所述的方法,其特征在于,所述抗惊厥剂被溶于或分散于鼻内载体系统,通过将脂肪醇/二醇在载体中的体积比从8.0降到0.1,产生快速起始和延长的药物血浆浓度水平。
11.如权利要求8所述的方法,其特征在于,用单剂或多剂给药方案,对哺乳动物鼻内施用治疗癫痫或其它发热引起的癫痫有效量的抗惊厥剂和鼻内载体。
全文摘要
公开了一种载体调节的,对人和动物粘膜施用抗惊厥剂的新方法。载体系统是水相的药物载体,含有脂肪醇(10-80%)或二醇(10-80%)及其组合,与生物表面活性剂,如胆汁盐或卵磷脂的组合。药物组合物提供了经一次和多次给药控制和促进药物透粘膜渗透和吸收的速度和程度。药物制剂的鼻内给药几乎和静脉内给药一样快的产生抗惊厥剂的高血浆浓度。这些组合物特别适用于在持续癫痫和其它发热引起的癫痫发作的急性和/或紧急治疗中迅速和及时的给药。
文档编号A61K31/4015GK1364079SQ00810856
公开日2002年8月14日 申请日期2000年7月24日 优先权日1999年7月26日
发明者崔溶文, 李连利, 金权镐 申请人:Sk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1