用于高胆固醇血症治疗的反向胆固醇转运的介质的制作方法

文档序号:986793阅读:522来源:国知局
专利名称:用于高胆固醇血症治疗的反向胆固醇转运的介质的制作方法
对相关申请的交叉引用本申请要求2005年4月1日提交的美国临时专利申请No.60/667,368和2004年6月9日提交的美国临时专利申请No.60/578,226的根据35U.S.C.§119(e)的优先权,其通过参考完整地结合于此。
背景技术
发明领域
本发明涉及用于治疗高胆固醇血症及关联的心血管疾病和其他疾病的反向胆固醇转运(RCT)的小分子介质。
相关技术描述
目前充分确定的是升高的血清胆固醇(“高胆固醇血症”)是动脉粥样硬化发展的起因,所述动脉粥样硬化是胆固醇在动脉壁内部的进行性积累。高胆固醇血症和动脉粥样硬化是心血管疾病的最主要原因,所述心血管疾病包括高血压、冠心病、心脏病发作和中风。仅在美国,每年有约一百一十万个体遭遇心脏病发作,估计费用超过1170亿美元。尽管有许多降低血液中胆固醇水平的药物策略,但是它们中的许多具有不理想的副作用并且具有增加的安全问题。而且,商购的药物疗法都没有充分地刺激反向胆固醇转运,一种去除体内胆固醇的重要代谢途径。

循环胆固醇是通过血浆脂蛋白-转运血液中脂质的复合脂质和蛋白质组合物的颗粒进行。低密度脂蛋白(LDLs),和高密度脂蛋白(HDLs)是主要的胆固醇载体。认为LDLs负责将胆固醇从肝(合成或者从膳食来源获得其的地方)中传递胆固醇到体内的肝外组织中。术语“反向胆固醇转运”描述将胆固醇从肝外组织转运到肝中,它在肝中被分解代谢和清除。认为血浆HDL颗粒充当组织胆固醇的清除剂而在反向转运过程中具有主要作用。

有说服力的证据支持沉积在动脉粥样硬化损伤处的脂质主要来自血浆LDL的概念;因此,一般已将LDLs称为“坏”胆固醇。相反,血浆HDL水平与冠状心脏疾病呈反向相关-确实,将高血浆水平的HDL视为阴性风险因素。推测高水平的血浆HDL不仅对于冠状动脉疾病是保护性的,而且可以实际上诱导动脉粥样硬化斑块的退化(例如,见Badimonet al.1992,Circulation 86(Suppl.III)86-94)。因此,通常已将HDLs称为“好”胆固醇。

释放自LDLs的胞内胆固醇的量控制细胞胆固醇代谢。来自LDLs的细胞胆固醇的积累控制三个过程(1)其通过关闭HMGCoA还原酶的合成来减少细胞胆固醇合成,所述HMGCoA还原酶是一种在胆固醇生物合成途径中的关键酶;(2)通过活化LCAT,进入的LDL-来源的胆固醇促进胆固醇的贮存,所述LCAT是将胆固醇转变成沉积在储藏液滴中的胆固醇酯的细胞酶;和(3)胆固醇在细胞中的累积促进抑制新LDL受体的细胞合成的反馈机制。因此,细胞调节它们对LDL受体的补充从而带来足够的胆固醇以满足它们的代谢需求,而不过载。(关于综述,见Brown &Goldstein,InThe Pharmacological Basis Of Therapeutics,8th Ed.,Goodman& Gilman,Pergamon Press,NY,1990,Ch.36,pp.874-896)。

反向胆固醇转运(RCT)是一种途径,通过所述途径外周细胞胆固醇可以返回肝以再循环到肝外组织或作为胆汁分泌到肠。所述RCT途径代表从大多数肝外组织中清除胆固醇的仅有方式。RCT主要由三个步骤组成(1)胆固醇流出,胆固醇从外周细胞中的最初去除;(2)通过卵磷脂胆固醇酰基转移酶(LACT)作用的胆固醇酯化,其防止流出的胆固醇再入外周细胞;和(3)将HDL胆固醇酯吸收/传递到肝细胞。LCAT是RCT途径的关键酶并且主要产自肝中,并在与HDL级分关联的血浆中循环。LCAT将细胞来源的胆固醇转变成胆固醇酯,所述胆固醇酯汇集(sequester)在将要被清除的HDL中。RCT途径由HDLs所调节。

HDL是特征在于它们的高密度的脂蛋白颗粒的专业术语。HDL复合体的主要的脂质组分是各种磷脂,胆固醇(酯)和三酰甘油。最主要的载酯蛋白成分是决定HDL的功能特性的A-I和A-II。

每种HDL颗粒包含载脂蛋白A-1(ApoA-I)的至少一个拷贝(通常两个一四个拷贝)。ApoA-I由肝和小肠合成为前载脂蛋白原,所述前载脂蛋白原作为快速裂解以产生具有243个氨基酸残基的成熟多肽的前体蛋白(proprotein)分泌。ApoA-I主要包括由通常是脯氨酸的接头部分间隔的6-8个不同的22个氨基酸残基重复,并且在一些情况中包括由一些残基组成的一段序列。ApoA-I与脂质形成三种类型的稳定复合体被称作pre-beta-1 HDL的小、少-脂质的复合体;被称作pre-beta-2 HDL的包含极性脂质(磷脂和胆固醇)的展平铁饼状颗粒;和被称作球形或成熟HDL(HDL3和HDL2)的包含极性和非极性脂质二者的球形颗粒。尽管大多数在循环中的HDL包含ApoA-I和ApoA-II二者,仅包含ApoA-I(AI-HDL)的HDL的级分似乎在RCT中更为有效。流行病学研究支持AI-HDL是抗-致动脉粥样硬化的假说(Parra et al.,1992,Arterioscler.Thromb.12701-707;Decossin et al.,1997,Eur.J.Clin.Invest.27299-307)。

基于体内获得的数据的一些系列的证据暗示HDL及其主要蛋白组分ApoA-I,在预防动脉粥样硬化损伤,和潜在地斑块的退化一使这些吸引人的目标进行治疗干预。首先在人血清ApoA-I(HDL)浓度和动脉粥样硬化形成之间存在逆相关(Gordon & Rifkind,1989,N.Eng.J.Med.3211311-1316;Gordon et al.,1989,Circulation 798-15)。确实,HDL的特定亚群已经与人中动脉粥样硬化的减少的风险相关(Miller,1987,Amer.Heart113589-597;Cheung et al.,1991,Lipid Res.32383-394);Fruchart &Ailhaud,1992,Clin.Chem.3879)。

第二,动物研究支持ApoA-I(HDL)的保护性作用。用ApoA-I或HDL治疗胆固醇喂养的兔减少了胆固醇-喂养兔的斑块(脂条)的发展和进展(Koizumi et al.,1988,J.Lipid Res.291405-1415;Badimon et al.,1989,Lab.Invest.60455-461;Badimon et al.,1990,J.Clin.Invest.851234-1241)。但是功效取决于HDL的来源而变化(Beitz et al.,1992,Prostaglandins,Leukotrienes and Essential Fatty Acids 47149-152;Mezdouret al.,1995,Atherosclerosis 113237-246)。

第三,ApoA-I作用的直接证据由包括转基因动物的实验获得。转移到小鼠中的人ApoA-I基因的表达保护所述小鼠免于主动脉的损伤的发展,所述小鼠在遗传上倾向饮食诱导的动脉粥样硬化(Rubin et al.,1991,Nature 353265-267)。所述ApoA-I转基因还显示抑制在ApoE-缺陷小鼠中和在Apo(a)转基因小鼠中的动脉粥样硬化(Paszty et al.,1994,J.Clin.Invest.94899-903;Plump et al.,1994,PNAS.USA 919607-9611;Liu et al.,1994,J.Lipid Res.352263-2266)。在表达人ApoA-I的转基因兔(Duverger,1996,Circulation 94713-717;Duverger et al.,1996,Arterioscler.Thromb.Vasc.Biol.161424-1429)和在转基因大鼠(Burkey et al.,1992,Circulation,SupplementI,86I-472,Abstract No.1876;Burkey et al.,1995,J.Lipid Res.361463-1473)中,观察到了相似的结果,在所述转基因大鼠中升高水平的人ApoA-I保护大鼠免于动脉粥样硬化并且在气囊血管成形术后抑制再狭窄。
目前对于高胆固醇血症和其它血脂异常的治疗
在过去的约二十年中,将cholesterolemic化合物分离成HDL和LDL调节剂并认识到减少LDL血液水平的需求已导致了许多药物的开发。然而,这些药物中的许多具有不理想的副作用和/或在某些患者中是禁忌的,特别是当与其它药物结合施用时。这些药物和治疗策略包括 (1)胆汁-酸-结合树脂,其中断胆汁酸从肠到肝的再循环[例如,考来烯胺(QUESTRAN LIGHT,Bristol-Myers Squibb),和盐酸考来替泊(COLESTID,Pharmacia & Upjohn Company)]。
(2)抑制素(statins),其通过阻断HMGCoA还原酶-胆固醇生物合成中涉及的关键酶抑制胆固醇合成[例如,洛伐他汀(MEVACOR,Merck & Co.,Inc.)、来自曲霉属(Aspergillus)菌株的天然产物,普伐他汀(PRAVACHOL,Bristol-Myers Squibb Co.)、和阿托伐他汀(LIPITOR,Warner Lambert)]; (3)烟酸是水溶性维生素B-复合物,其减少VLDL的产生并在降低LDL上是有效的; (4)贝特类(fibrates)通过减少VLDL级分将其用于降低血清的三酸甘油酯并且可以经由相同的机理在一些患者群中产生适度的血浆胆固醇减少[例如,安妥明(ATROMID-S,Wyeth-Ayerst Laboratories)、和吉非贝齐(LOPID,Parke-Davis)]; (5)雌激素替代疗法可降低更年期后妇女的胆固醇水平; (6)长链α,ω-二羧酸已被报道可降低血清三酸甘油酯和胆固醇(见,例如,Bisgaier et al.,1998,J.Lipid Res.3917-30;WO 98/30530;美国专利号4,689,344;WO 99/00116;美国专利号5,756,344;美国专利号3,773,946;美国专利号4,689,344;美国专利号4,689,344;美国专利号4,689,344;和美国专利号3,930,024); (7)公开了降低血清三酸甘油酯和胆固醇水平的其它化合物,包括醚(见,例如,美国专利号4,711,896;美国专利号5,756,544;美国专利号6,506,799),和多萜醇的磷酸酯(美国专利号4,613,593),和azolidinedione衍生物(美国专利号4,287,200)。

目前这些可获得的用于降低胆固醇的药物都没有安全地升高HDL水平和刺激RCT。确实,这些目前治疗策略中的大部分似乎作用在胆固醇转运途径上,调节饮食吸收,再循环,胆固醇的合成和VLDL数量。
治疗高胆固醇血症的ApoA-I激动剂
由于HDL的潜在作用,即ApoA-I及其相关磷脂在抗动脉粥样硬化疾病中的保护,开始了利用重组产生的ApoA-I进行的人临床试验,通过UCB Belgium停止和显然再次开始(Pharmaprojects,Oct.27,1995;IMS R & D Focus,Jun.30,1997;Drug Status Update,1997,Atherosclerosis2(6)261-265;还见M.Eriksson at Congress,″The Role of HDL in DiseasePrevention,″Nov.7-9,1996,Fort Worth;Lacko & Miller,1997,J.Lip.Res.381267-1273;和WO 94/13819)并通过Bio-Tech开始和停止(Pharmaprojects,Apr.7,1989)。使用ApoA-I还尝试进行试验以治疗败血症性休克(0pal,″Reconstituted HDL as a Treatment Strategy for Sepsis,″IBC′s 7th International Conference on Sepsis,Apr.28-30,1997,Washington,D.C.;Gouni et al.,1993,J.Lipid Res.94139-146;Levine,WO 96/04916)。然而,有许多与ApoA-I的生产和使用相关的缺陷,使其作为药物不那么理想;例如ApoA-I是大的蛋白质,生产它是困难的和昂贵的;至于在贮存过程中的稳定性,活性产品的传递和体内的半衰期,必须克服明显的生产和再现性问题。

鉴于这些缺陷,已经尝试制备模拟ApoA-I的肽。由于ApoA-I的关键活性是由于在蛋白质中的独特的二级结构特征中的多个重复的存在-类别A两亲性α-螺旋(Segrest,1974,FEBS Lett.38247-253;Segrest etal.,1990,PROTEINSStructure,Function and Genetics 8103-117),大多数设计模拟ApoA-I活性的肽的努力已集中于设计形成种类A-类型的两亲性α-螺旋的肽(见,例如,在美国专利号6,376,464和6,506,799中的背景讨论;将其全文并入那里作为参考)。

在一项研究中,Fukushima等合成了全部由周期排列的谷氨酸、赖氨酸和亮氨酸残基组成的22个残基的肽从而形成具有等-亲水性和疏水性面的两亲性α-螺旋(″ELK肽″)(Fukushima et al.,1979,J.Amer.Chem.Soc.101(13)3703-3704;Fukushima et al.,1980,J.Biol.Chem.25510651-10657)。所述ELK肽与ApoA-I的198-219片段共享41%的序列同源性。显示所述ELK肽与磷脂有效关联并模仿ApoA-I的一些物理和化学特性(Kaiser et al.,1983,PNAS USA 801137-1140;Kaiser et al.,1984,Science 223249-255;Fukushima et al.,1980,supra;Nakagawa et al.,1985,J.Am.Chem.Soc.1077087-7092)。后来发现该22个残基肽的二聚体比单体更接近地模仿ApoA-I;基于这些结果,提示被螺旋中断者(breaker)(甘氨酸或脯氨酸)在中部打断的44-mer表示ApoA-I中的最小功能域(Nakagawa et al.,1985,如上)。

另一项研究包括被称作″LAP肽″的模型两亲性肽(Pownall etal.,1980,PNAS USA 77(6)3154-3158;Sparrow et al.,1981,InPeptidesSynthesis-Structure-Function,Roch and Gross,Eds.,Pierce Chem.Co.,Rockford,IL,253-256)。基于用天然载脂蛋白的片段的脂质结合研究,设计了一些名称为LAP-16、LAP-20和LAP-24的LAP肽(分别包含16、20和24个氨基酸残基)。这些模型两亲性肽与载脂蛋白没有序列同源性并被设计以具有亲水面,所述亲水面以与和载脂蛋白关联的类别A-类型两亲性螺旋结构域不同的方式构成(Segrest et al.,1992,J.Lipid Res.33141-166)。从这些研究,作者认为20个残基的最小长度是将脂质结合特性赋予模型两亲性肽所必需的。

用在序列的不同位置包含脯氨酸残基的LAP20的突变体进行的研究显示在脂结合和LCAT活化之间存在直接关系,但是肽单独的螺旋潜能没有导致LCAT的活化(Ponsin et al.,1986,J.Biol.Chem.261(20)9202-9205)。而且,接近肽中部的螺旋中断者(脯氨酸)的存在减少了其对于磷脂表面的亲和性及其活化LCAT的能力。尽管某些LAP肽显示结合磷脂(Sparrow et al.,如上),存在关于在脂质存在时LAP肽螺旋的程度的争议(Buchko et al,1996,J.Biol.Chem.271(6)3039-3045;Zhong et al.,1994,Peptide Research 7(2)99-106)。

Segrest等已经合成了由18-24个氨基酸残基组成的肽,所述肽与ApoA-I的螺旋没有序列同源性(Kannelis et al,1980,J.Biol.Chem.255(3)11464-11472;Segrest et al.,1983,J.Biol.Chem.2582290-2295)。对该序列进行具体设计以在疏水力矩(Eisenberg et al.,1982,Nature 299371-374)和电荷分布(Segrest et al.,1990,Proteins 8103-117;美国专利号4,643,988)方面模拟类A可交换的载脂蛋白的两亲性螺旋状结构域。将一个18残基的肽,“18A”肽设计为模型类别-Aα-螺旋(Segrest et al.,1990,如上)。用这些肽和其它具有反向电荷分布的肽,如“18R”肽进行的研究已经一致显示电荷分布对于活性是关键的;具有反向电荷分布的肽显示比18A类别A模拟物减少的脂质亲和性和在脂质存在时更低的螺旋含量(Kanellis et al.,1980,J.Biol.Chem25511464-11472;Anantharamaiah etal.,1985,J.Biol.Chem.26010248-10255;Chung et al.,1985,J.Biol.Chem.26010256-10262;Epand et al.,1987,J.Biol.Chem.2629389-9396;Anantharamaiah et al.,1991,Adv.Exp.Med.Biol.285131-140)。

还已经设计了一种基于人ApoA-I的螺旋的序列的包含22个氨基酸残基的“共有区”肽(Anantharamaiah et al.,1990,Arteriosclerosis 10(1)95-105;Venkatachalapathi et al.,1991,Mol.Conformation and Biol.Interactions,Indian.Acad.Sci.B585-596)。通过鉴定在人ApoA-I的推定螺旋的每个位置上的最普遍的残基来构建该序列。如上述肽,由该肽形成的螺旋具有集簇于亲水-疏水界面的正电荷氨基酸残基,集簇于亲水面中心的负电荷氨基酸残基和少于180°的疏水角。尽管该肽的二聚体在活化LCAT中稍稍有效,单体显示了较差的脂质结合特性(Venkatachalapathi etal.,1991,如上)。

主要基于关于上述肽的体外研究,已经出现了一组设计模拟ApoA-I的功能的肽的“规则”。显然,认为对于脂质亲和性和LCAT的活化,需要具有集簇于亲水-疏水界面的正电荷残基和集簇于亲水面中心的负电荷氨基酸残基的两亲性α-螺旋(Venkatachalapathi et al.,1991,supra)。Anantharamaiah等还已经指出在位于α-螺旋的疏水面中的共有区22-mer肽的13位置上的负电荷谷氨酸残基在LCAT的活化中具有重要作用(Anantharamaiah et al.,1991,supra)。另外,Brasseur已经指出少于180°的疏水角(pho角)是最佳脂质-载脂蛋白复合物的稳定性所需要的,并还解释在脂双层的边缘周围具有肽的饼状颗粒的形成(Brasseur,1991,J.Biol.Chem.66(24)16120-16127)。Rosseneu等还强调少于180°的疏水角是LCAT活化所需要的(WO 93/25581)。

然而,尽管在阐明设计ApoA-I激动剂的“规则”中存在进展,到目前为止,报道的最好的ApoA-I激动剂具有少于40%的完整ApoA-I的活性。文献中描述的肽激动剂没有被证实作为药物是有用的。因此,需要开发模拟ApoA-I的活性并且相对简单和生产经济的稳定分子。优选地,候选分子将调节间接和直接的RCT。这些分子将比现存的肽激动剂更小,并具有更宽的功能范围。然而,尚没有充分阐明设计RCT有效介质的“规则”并且尚不知道设计具有ApoA-I功能的有机分子的原理。
发明概述
公开了反向胆固醇转运的介质,包含下列结构

其中A、B、和C可以处于任何顺序,并且其中
A包含氨基酸或其类似物,其包含酸性团或其生物电子等排体(bioisostere);
B包含氨基酸或其类似物,其包含亲脂基;和
C包含氨基酸或其类似物,其包含碱性基或其生物电子等排体。

其中已经将α氨基或α羧基中的至少之一从它们各自的氨基或羧基末端氨基酸或其类似物上除去。

如果不被除去,优选用选自由乙酰基、苯乙酰基、苯甲酰基、新戊酰基(pivolyl)、9-芴基甲氧基羰基、2-萘酸(2-napthylic acid)、烟酸、CH3-(CH2)n-CO-(其中n在从1至20的范围内)、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基组成的组的保护基将所述α氨基加帽。

如果被不除去,优选将所述α羧基用选自由胺例如RNH(其中R=H)、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基组成的组的保护基加帽。

酸性团的生物电子等排体可以选自由下列各项组成的组
碱性基的生物电子等排体可以选自由下列各项组成的组
在一个实施方案中,半剥裸介质可具有下列结构
其中X选自由下列各项组成的组
其中X1是
其中X2是F、Cl、Br、I、C0-6烷基、OCH3、CF3、或OCF3; 其中X3是Cl、C0-6烷基、OCH3;和 其中n是1或2。

在一个实施方案中,半剥裸介质可选自由戊二酸-BIP-R-NH2、戊二酸-bip-r-NH2、Ac-E-BIP-胍基丁胺、Ac-e-bip-胍基丁胺、Ac-R-BIP-GABA、Ac-r-bip-GABA、4-胍基丁酸-BIP-E-NH2、4-胍基丁酸-bip-e-NH2、戊二酸-BIP-K-NH2,和戊二酸-bip-k-NH2组成的组。

在另一个实施方案中,半剥裸介质可选自由2,2-二甲基戊二酸-f-r-NH2、2,2-二甲基戊二酸-F-R-NH2、戊二酸-F-R-NH2、戊二酸-f-r-NH2、丁二酸-bip-r-NH2、丁二酸-BIP-R-NH2、丁二酸-F-R-NH2、丁二酸-f-r-NH2、2,2-二甲基戊二酸-bip-r-NH2、2,2-二甲基戊二酸-BIP-R-NH2、二甲基丁二酸-bip-r-NH2、二甲基丁二酸-BIP-R-NH2、戊二酸-F-K-NH2、丁二酸-F-K-NH2、丁二酸-f-k-NH2、2,2-二甲基戊二酸-F-K-NH2、2,2-二甲基戊二酸-f-k-NH2、二甲基丁二酸-f-k-NH2、二甲基丁二酸-F-K-NH2、二甲基丁二酸-Aic-r-NH2、2,2-二甲基戊二酸-Aic-r-NH2、戊二酸-Aic-r-NH2、丁二酸-Aic-r-NH2、戊二酸-Aic-R-NH2、四唑酰胺戊二酸-BIP-R-NH2、3,3-二甲基戊二酸-Aic-R-NH2、二甲基丁二酸-Aic-R-NH2、和2,2-二甲基戊二酸-Aic-R-NH2组成的组。

根据本发明优选实施方案的完全剥裸的介质可选自由下列各项组成的组








1.
在优选实施方案中,本发明的介质可选自由戊二酸-bip-r、E-BIP-胍基丁胺、(4-氨基甲酰基丁基)胍-BIP-E、戊二酸-bip-k、(4-氨基甲酰基丁基)胍-bip-GABA、(4-氨基甲酰基丁基)胍-BIP-GABA、戊二酸-Aic-胍基丁胺、(4-氨基甲酰基丁基)胍-苯丙氨酸-GABA、4,4-二甲基戊二酸-苯丙氨酸-胍基丁胺、Dimet.戊二酸-F-R、戊二酸-F-R、戊二酸-f-r、丁二酸-bip-r、丁二酸-BIP-R、丁二酸-f-r、Dimet.戊二酸-bip-r、Dimet.戊二酸-BIP-R、Dimet.丁二酸-BIP-R、丁二酸-phe-k、Dimet.丁二酸-phe-k、Dimet.丁二酸-Phe-K、3,3-二甲基戊二酸-phe-胍基丁胺、Dimet.丁二酸-Aic-r、戊二酸-f-(桥亚乙基)胍基丁胺、戊二酸-Aic-r、丁二酸-Aic-r、戊二酸-Aic-R、(1H-四唑-5-5-基)戊二酰胺-BIP-R、2,2-二甲基丁二酸-Phe-胍基丁胺、Dimet.丁二酸-Aic-R、3,3-螺环戊基戊二酸-Phe-胍基丁胺、3,3-二甲基戊二酸-F-胍基丁胺、戊二酸-Phe-胍基丁胺(Bis-Boc)、戊二酸-f-氰基胍基丁胺、戊二酸(四唑酰胺)-BIP-胍基丁胺(嘧啶)、丁二酸-BIP-胍基丁胺(嘧啶)、3,3-螺环己基戊二酸-bip-胍基丁胺(嘧啶)、3,3-二甲基戊二酸-bip-胍基丁胺(嘧啶)、3,3-螺环戊基戊二酸-Aic-胍基丁胺(嘧啶)、3,3-二甲基戊二酸-Aic-胍基丁胺(嘧啶)、3,3-螺环戊基戊二酸-Phe-3-(二甲基氨基)丁烷、4,4-二甲基戊二酸-bip-胍基丁胺(嘧啶)、和3,3-螺环戊基戊二酸-bip-3-(二甲基氨基)丙烷组成的组,其中任何未衍生化的氨基和/或羧基末端的氨基酸用保护基加帽。

在其它优选实施方案中,所述介质可以选自Dimet.丁二酸-phe-k、Dimet.戊二酸-F-R、或戊二酸-F-R。

虽然不必显示,但是上述优选介质的列表中任何未衍生化的氨基和/或羧基末端的氨基酸残基都是用保护基加帽的。因而,如果不被除去,所述α氨基用保护基加帽,例如乙酰基或二-叔-丁基-4-羟基-苯基。同样地,如果不被除去,所述α羧基用保护基加帽,例如胺或二-叔-丁基-4-羟基-苯基。当然,也可使用在这里公开的任何其它保护基。
优选实施方案详述
本发明优选实施方案中RCT的介质模拟ApoA-I的功能和活性。在广泛的方面中,这些介质是包含三个域,酸性域、亲脂(例如芳族的)域、和碱性域的分子。所述分子优选含有带正电荷的域、带负电荷的域、和不带电的亲脂域。关于彼此域的位置可以在分子之间不同;因而,在优选实施方案中,不管每一个分子内部三个域的相对位置,所述分子介导RCT。而在一些优选实施方案中,分子模板或模型包含酸性氨基酸来源的残基、亲脂氨基酸来源的残基、和碱性氨基酸来源的残基,以任何顺序连接而形成RCT的介质,在其它的优选实施方案中,所述分子模型可以通过具有酸性、亲脂的和碱性域的单个残基来体现,例如,氨基酸,苯丙氨酸。

在一些优选实施方案中,RCT的分子介质包含天然的D-或L-氨基酸、氨基酸类似物(合成的或半合成的)、和氨基酸衍生物的三聚物。例如,三聚物可以包括酸性氨基酸残基或其类似物、芳族的或亲脂的氨基酸残基或其类似物和碱性氨基酸残基或其类似物,所述残基通过肽键或酰胺键的连接而结合。例如,所述三聚物序列EFR包含酸性残基(谷氨酸)、芳族残基(苯丙氨酸)和碱性氨基酸残基(精氨酸)。虽然所述RCT的分子介质通过提高直接和/或间接的RCT途径(即,增加胆固醇流出量)、活化LCAT的能力、和增加血清HDL浓度的能力而共享减少血清胆固醇的共同方面。

在另一个优选实施方案中,反向胆固醇转运的介质优选包含酸性团、亲脂基和碱性基,并且包含序列X1-X2-X3、Y1-X2-X3、或Y1-X2-Y3其中X1是酸性氨基酸或其类似物;X2是芳族或亲脂氨基酸或其类似物;X3是碱性氨基酸或其类似物;Y1是不含α羧基的酸性氨基酸类似物;和Y3是不含α羧基的碱性氨基酸类似物。当所述氨基末端的α氨基存在时(例如,X1),它还包含第一保护基,并且当羧基末端的α羧基存在时(例如,X3),它还包含第二保护基。优选所述第一(氨基末端)保护基选自由乙酰基、苯乙酰基、新戊酰基、2-萘酸、烟酸、CH3-(CH2)n-CO-(其中n在从1至20的范围内)、和乙酰基、苯乙酰基的酰胺、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基等组成的组。优选所述第二(羧基末端)保护基选自由胺例如RNH2(其中R=二-叔-丁基-4-羟基-苯基)、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基等组成的组。酸性、亲脂和碱性氨基酸(或其类似物)的顺序可以以任何和全部可能方式聚集而提供保持所述分子模型的基本特征的化合物。

在另一个实施方案中,所述介质可被结合到更大的实体中,例如约3至10个氨基酸的肽、或分子。

如这里所用,术语“氨基酸”也可以指的是通式NH2-CHR-COOH的分子或者在含有母体氨基酸(parent amino acid)的肽内部的残基,其中“R”是大量不同侧链之一。“R”可以指的是二十种遗传编码氨基酸之一的取代基。“R”也可以指的是不属于二十种遗传编码氨基酸之一的取代基。如这里所用,术语“氨基酸残基”指的是当它结合到另一种氨基酸时在失去水分子后保留的氨基酸部分。如这里所用,术语“氨基酸类似物”指的是氨基酸母体化合物的结构衍生物,其区别于它至少一个元件(element),例如,α氨基或酸性氨基酸,其中所述酸性R基用其生物电子等排体替代。因此,本发明的“半剥裸的”和“剥裸的”实施方案包含氨基酸类似物,因为这些的型式不同于传统的氨基酸结构,失去至少一个元件,例如α氨基或羧基。术语“修饰的氨基酸”更特别地指的是含有“R”取代基的氨基酸,其不对应于二十种遗传编码的氨基酸之一,因此修饰的氨基酸落入氨基酸类似物的更宽类别。

如这里所用,术语“充分保护的”指的是氨基和羧基端都包含保护基的优选实施方案。

如这里所用,术语“半剥裸的”指的是α氨基或α羧基之一从各自的氨基或羧基末端的氨基酸残基或其类似物失去的优选实施方案。保留下的α氨基或α羧基用保护基加帽。

如这里所用,术语“剥裸的”或“完全剥裸的”指的是将α氨基或α羧基都从各自的氨基或羧基末端的氨基酸或其类似物除去的优选实施方案。

某些化合物可以以互变异构形式存在。通过实施方案覆盖所有这样的包括非对映异构体和对映异构体的同分异构体。假设某些化合物或者以同分异构形式或其混合物形式存在。
RCT介导
至今,设计ApoA-I激动剂的努力集中在22聚物单元结构,例如Anantharamaiah et al.,1990,Arteriosclerosis 10(1)95-105;Venkatachalapathi et al.,1991,Mol.Conformation and Biol.Interactions,Indian Acad.Sci.B585-596的“共有22聚物”,其能够在脂质存在下形成两亲性α-螺旋(参见例如U.S.Pat.No.6,376,464指向的从共有22聚物修饰得到的肽模拟物)。相比于较长的22聚物,利用这样相对短的肽有一些优势。例如,较短的RCT介质更容易并且更低成本地生产,它们在化学上和构象上更稳定,优选的构象保持相对刚性,在所述肽链内部有很少的或者没有分子内相互作用,并且越短的肽表现越高程度的口服可用性。这些较短肽的多拷贝可以结合到HDL或LDL,产生更受限制的大肽的相同效果。虽然ApoA-I多功能性可以基于它的多α-螺旋域的贡献,但是即使ApoA-I的单功能,例如LCAT活化,可以通过多于一个α-螺旋域在重复方式中作为中介也是可能的。这样,在本发明的优选方面中,ApoA-I的多功能可以被指向单子域的公开的RCT介质模拟。

ApoA-I的三个功能性特征被广泛接受为ApoA-I激动剂设计用的主要标准(1)与磷脂缔合的能力;(2)活化LCAT的能力;和(3)促进胆固醇流出细胞的能力。根据优选实施方案的一些方式,RCT分子介质可以仅表现所述最后的功能性特征—增加RCT的能力。然而,经常被忽视的相当多的ApoA-I其它性质使ApoA-I成为特别有吸引力的用于治疗介入的目标。例如,ApoA-I经由受体-介导的过程指导胆固醇流量进入肝脏并且经由PLTP驱动的反应调整前-β-HDL(来自周围组织胆固醇的主受体)的生产。然而,这些特征使ApoA-I模拟分子的潜在有用性拓宽。这个为了考察ApoA-I模拟功能的全新方法将使用这里所公开的肽或氨基酸来源的小分子,以促进直接的RCT(经由HDL途径),也促进间接的RCT(即,通过更改它们到肝脏的流向,将LDLs从循环中截取或清除)。为了能够提高间接的RCT,优选实施方案的分子介质将优选能够与磷脂缔合并且结合到肝脏(即,充当肝脏脂蛋白结合位点的配体)。

因而,导致优选实施方案的研究努力的目标是识别、设计、和合成RCT介质,其表现优先的脂结合构象、通过促进直接的和/或间接的反向胆固醇转运增加胆固醇到肝脏的流量、改善血浆脂蛋白轮廓(profile)、并且随后防止动脉粥样硬化损害的进行或/和甚至促进动脉粥样硬化损害的消退。

所述优选实施方案的RCT介质可以以稳定的大批或单位剂量形式制备,例如,可以在体内使用之前重建或者再配制的冻干产品。所述优选实施方案包括在高脂血症、高胆固醇血症、冠心病、动脉粥样硬化、糖尿病、肥胖症、早老性痴呆、多发性硬化、涉及高脂血症的病症例如炎症、和其它病症例如引起脓毒性休克的内毒素血症的治疗中的药物剂型和这种制剂的使用。

通过展示RCT介质与血浆的HDL、和LDL组分缔合并且能增加HDL和前-β-HDL颗粒浓度并且降低LDL血浆水平的工作实例,说明了优选实施方案。这样促进了直接的和间接的RCT。在人的肝细胞(HepG2细胞)中,优选实施方案的RCT介质增加了人LDL介导的胆固醇积累。RCT介质在活化PLTP方面也是有效的并因而促进前-β-HDL粒子的形成。HDL胆固醇的增加作为所述RCT中LCAT参与(未直接显示LCAT活化(体外))的间接证据。在动物模型中,优选实施方案的RCT介质的使用导致血清HDL浓度的增加。

在下面的分部中,更详细地陈述了优选实施方案,它描述了RCT介质的组成和结构,包括半剥裸型和剥裸型;可以在RCT介质结构内部使用的修饰的氨基酸;结构和功能表征;大批和单位剂量剂型的制备方法;和使用方法。
介质结构和功能
优选实施方案的RCT介质通常是至少包含一种氨基酸类似物的类肽分子,其模拟ApoA-I的活性。在一些实施方案中,用取代的酰胺、酰胺的电子等排体或酰胺模拟物替代所述肽中的至少一个酰胺键。另外,一种或多种酰胺键可以用不显著干涉所述介质的结构和活性的肽模拟部分或酰胺模拟部分替代。例如,在Olson et al.,1993,J.Med.Chem.363039-3049中描述了适合的酰胺模拟部分。在其它的优选实施方案中,酸性和/或碱性R基被其生物电子等排体替代。

如这里所用,遗传编码的L-对映异构的氨基酸的缩写是常规的并且如下D-氨基酸是由小写字母指明,例如,D-丙氨酸=a,等。
表1
在不显著有害影响并且在许多情况下甚至提高所述介质活性的条件下,RCT介质中的某些氨基酸残基可以用其它氨基酸残基或其类似物替代。因而,通过优选实施方案也预期它是RCT介质的改变或突变形式,其中在所述结构中至少一种定义的氨基酸残基被另一种氨基酸残基或其衍生物和/或类似物取代。将认识到,在本发明的优选实施方案中,所述氨基酸取代是保守的,即,替代的氨基酸残基或其类似物具有与被替代氨基酸残基相似的物理和化学性质。

为了确定保守的氨基酸取代,所述氨基酸可以常规地分成两个主要类别—亲水的和疏水的—主要取决于所述氨基酸侧链的物理-化学特征。这两种主要类别还可以分成更清楚地定义氨基酸侧链特征的亚类。例如,亲水氨基酸类别还可以细分成酸性、碱性和极性氨基酸。疏水氨基酸类别还可以细分成非极性和芳族氨基酸。定义ApoA-I的不同氨基酸类别的定义如下
根据Eisenberg et al.,1984,J.Mol.Biol.179125-142的正规化公认的疏水性标度,术语“亲水氨基酸”指的是表现疏水性小于零的氨基酸。遗传编码的亲水氨基酸包括Thr(T)、Ser(S)、His(H)、Glu(E)、Asn(N)、Gln(Q)、Asp(D)、Lys(K)和Arg(R)。

根据Eisenberg et al.,1984,J.Mol.Biol.179125-142的正规化公认的疏水性标度,术语“亲水氨基酸”指的是表现疏水性大于零的氨基酸。遗传编码的亲水氨基酸包括Pro(P)、Ile(I)、Phe(F)、Val(V)、Leu(L)、Trp(W)、Met(M)、Ala(A)、Gly(G)和Tyr(Y)。

术语“酸性氨基酸”指的是具有侧链pK值小于7的亲水氨基酸。酸性氨基酸在生理pH下一般具有负电性的侧链,由于失去氢离子。遗传编码的酸性氨基酸包括Glu(E)和Asp(D)。

术语“碱性氨基酸”指的是具有侧链pK值大于7的亲水氨基酸。碱性氨基酸在生理pH下一般具有正电性的侧链,由于与水合氢离子的缔合。遗传编码的碱性氨基酸包括His(H)、Arg(R)和Lys(K)。

术语“极性氨基酸”指的是具有在生理pH下不带电侧链的亲水氨基酸,但是其具有至少一个键,其中共同由两个原子共享的电子对与所述原子的一个保持得更紧密。遗传编码的极性氨基酸包括Asn(N)、Gln(Q)Ser(S)和Thr(T)。

术语“非极性氨基酸”指的是具有在生理pH下不带电侧链的疏水氨基酸,并且其具有其中共同由两个原子共享的电子对通常被所述两个原子的每一个相等保持的键(即,所述侧链不是极性的)。遗传编码的非极性氨基酸包括Leu(L)、Val(V)、Ile(I)、Met(M)、Gly(G)和Ala(A)。

术语“芳族氨基酸”指的是具有含至少一个芳环或杂芳环的侧链的疏水氨基酸。所述芳环或杂芳环可以含有一个或多个取代基例如-OH、-SH、-CN、-F、-Cl、-Br、-I、-NO2、-NO、-NH2、-NHR、-NRR、-C(O)R、-C(O)OH、-C(O)OR、-C(O)NH2、-C(O)NHR、-C(O)NRR等,其中每一个R独立地是(C1-C6)烷基、取代的(C1-C6)烷基、(C1-C6)链烯基、取代的(C1-C6)链烯基、(C1-C6)炔基、取代的(C1-C6)炔基、(C5-C20)芳基、取代的(C5-C20)芳基、(C6-C26)烷芳基、取代的(C6-C26)烷芳基、5-20原子数的杂芳基、取代的5-20原子数的杂芳基、6-26原子数的烷杂芳基或取代的6-26原子数的烷杂芳基。遗传编码的芳族氨基酸包括Phe(F)、Tyr(Y)和Trp(W)。

术语“脂族氨基酸”指的是含脂族烃侧链的疏水氨基酸。遗传编码的脂族氨基酸包括Ala(A)、Val(V)、Leu(L)和Ile(I)。

氨基酸残基Cys(C)是例外的,它可与其它Cys(C)残基或其它含硫烷基氨基酸形成二硫键。Cys(C)残基(和其它具有含-SH侧链的氨基酸)在肽中或者以还原的自由-SH或者以氧化的二硫键形式存在的能力影响Cys(C)残基是否对肽贡献净疏水的或亲水的特征。虽然根据Eisenberg etal.,1984,J.Mol.Biol.179125-142的正规化公认的疏水性标度,Cys(C)表现疏水性为0.29,但是应当理解,对优选实施方案来说,不管上述定义的一般分类法,将Cys(C)分类为极性亲水氨基酸。

本领域技术人员将会理解,上面定义的类别不是相互排除的。因而,可以将表现两种或多种物理-化学性质的含侧链氨基酸包括在多个类别中。例如,具有进一步用极性取代基取代的芳族部分的氨基酸侧链,例如Tyr(Y)可以既表现芳族疏水性质又表现极性或亲水性质,并且可以因此被同时包括在芳族和极性类别内。对于本领域技术人员,任何氨基酸的适当类别将是明显的,特别是根据这里提供的详细描述。

虽然上面定义的类别已经按照遗传编码的氨基酸进行了例举,但是所述氨基酸取代不必限制于遗传编码的氨基酸,并且在某些优选实施方案中不限制于遗传编码的氨基酸。实际上,许多优选的RCT介质含有遗传学非编码氨基酸。因而,除了天然存在的遗传编码氨基酸,RCT介质中的氨基酸残基可以用天然存在的非编码氨基酸和合成的氨基酸取代。

某些通常遇到的为RCT介质提供有用的取代的氨基酸包括,但是不限于,β-丙氨酸(β-Ala)和其它ω-氨基酸例如3-氨基丙酸、2,3-二氨基丙酸(Dpr)、4-氨基丁酸等;α-氨基异丁酸(Aib);ε-氨基己酸(Aha);δ-氨基戊酸(Ava);N-甲基甘氨酸或肌氨酸(MeGly);鸟氨酸(Orn);瓜氨酸(Cit);叔-丁基丙氨酸(t-BuA);叔-丁基甘氨酸(t-BuG);N-甲基异亮氨酸(MeIle);苯基甘氨酸(Phg);环己基丙氨酸(Cha);正亮氨酸(Nle);萘基丙氨酸(Nal);4-苯基苯丙氨酸、4-氯苯丙氨酸(Phe(4-Cl));2-氟苯丙氨酸(Phe(2-F));3-氟苯丙氨酸(Phe(3-F));4-氟苯丙氨酸(Phe(4-F));青霉胺(Pen);1,2,3,4-四氢异喹啉-3-羧酸(Tic);β-2-噻吩丙氨酸(Thi);甲硫氨酸亚砜(MSO);高精氨酸(hArg);N-乙酰基赖氨酸(AcLys);2,4-氨基丁酸(Dbu);2,3-氨基丁酸(Dab);对-氨基苯丙氨酸(Phe(pNH2));N-甲基缬氨酸(MeVal);高半胱氨酸(hCys)、高苯丙氨酸(hPhe)和高丝氨酸(hSer);羟基脯氨酸(Hyp)、高脯氨酸(hPro)、N-甲基化氨基酸和肽(N-取代的甘氨酸类)。

按照这里提供的定义,可以将这里没有具体提及的其它氨基酸残基基于它们的观察到的物理和化学性质容易地归类。

根据上面所定义类别的遗传编码和通常的非编码氨基酸的分类总结在下面的表2中。应当理解,表2仅是为了说明目的,而不意味着可用于取代这里描述的RCT介质的氨基酸残基和衍生物的穷举列表。 表2通常遇到的氨基酸的分类
按照这里提供的定义,可以将这里没有具体提及的其它氨基酸残基基于它们的观察到的物理和化学性质容易地归类。

虽然大多数情况下,将用D-对映异构的氨基酸取代RCT介质的氨基酸,所述取代不限于D-对映异构的氨基酸。因而,也包括在“突变的”或“改变的”形式的定义中的是那些用相同的L-氨基酸(例如,D-Arg→L-Arg)或者用相同类别或亚类的L-氨基酸替代D-氨基酸(例如,D-Arg D-Lys)的情况,反之亦然。所述介质可以有利地由至少一种D-对映异构的氨基酸组成。认为含有这样的D-氨基酸的介质比单独由L-氨基酸组成的肽在口腔、肠或血清中是更稳定的。
连接体
可以将RCT介质以从头至尾方式(即N-末端至C-末端)、从头至头方式(即N-末端至N-末端)、从尾至尾方式(即C-末端至C-末端)、或其组合结合(connect)或连接(link)。所述连接体可以是任何能够将两个氨基酸或其类似物相互共价连接的双官能团分子。因而,合适的连接体是双官能团分子,其中所述官能团能够共价地附到肽的N-和/或C-末端。合适用于附到肽的N-或C-末端的官能团在本领域中是众所周知的,与实现这样的共价键形成的合适的化学一样。

充分长度和柔性的连接体包括但不限于Pro(P)、Gly(G)、Cys-Cys、Gly-Gly、H2N-(CH2)n-COOH,其中n是1至12,优选4至6;H2N-芳基-COOH和糖类。然而,在一些实施方案中,单独的连接体在本质上是完全不能使用的。作为替代,酸性、亲脂的和碱性部分是单分子的所有部分。
RCT介质结构内所用的修饰氨基酸
在优选实施方案中,所述保护的、半剥裸的和剥裸的型式还包含修饰的氨基酸,即,包含不对应于二十种遗传编码的R基的R取代基的氨基酸。

这里所用的术语“生物电子等排体”、“生物电子等排替换”、“生物电子等排性”及紧密相关的术语具有与本领域中一般公认的那些相同的含义。生物电子等排体是原子、离子、或者分子,其中电子的周围层可以被认为是相同的。术语生物电子等排体通常用于表示全部分子的一部分,与全部分子自身相反。生物电子等排替换涉及使用一种生物电子等排体以替换另一种,预期维持或稍微修饰所述第一生物电子等排体的生物活性。因而,这种情况下的生物电子等排体是具有相似大小、形状和电子密度的原子或原子群。由于合理的预期,即提出的生物电子等排替换将导致相似生物性质的保持,而产生生物电子等排性。这样的合理预期也可仅基于结构相似性。关于受体等的特征域,在已知大量细节的那些情况下这是特别正确的,所述特征域涉及生物电子等排体以某种方式结合到那里或者其在所述生物电子等排体上起作用。

羧酸和胍基的生物电子等排体的实例表示如下。 羧酸生物电子等排体(R=H/烷基)
胍基生物电子等排体(R=H/烷基)
结构和功能的分析
优选实施方案的RCT介质的结构和功能,包括上述的多聚体形式,可被测定以选择活性化合物。例如,可以测定肽和肽类似物它们结合脂质、与脂质形成复合物、活化LCAT和促进胆固醇流出等的能力。

用于分析所述肽的结构和/或功能的方法和测定在本领域中是众所周知的。以工作实例形式提供了优选的方法,如下。例如,如下描述的核磁共振(NMR)测定法可以用于分析所述肽或肽类似物的结构一特别是在脂质存在下螺旋的程度。结合脂质的能力可以利用如下描述的荧光光谱测定法确定。所述肽和/或肽类似物活化LCAT的能力可以容易地利用如下描述的LCAT活化作用确定。如下描述的体外和体内测定可以用于评价半衰期、分布、胆固醇流出量和对RCT的影响。

RCT介质还可以用优选实施方案的方法定义。

在一个优选实施方案中,存在包含氨基酸-基的组合物的分子,所述分子具有三个独立域酸性域、芳族或亲脂域、和碱性域。所述域彼此的相对位置可以在分子介质之间不同;不管每一个分子内的三个域的位置,所述分子作为RCT的介质。

在另一个优选实施方案中,所述三聚物的芳族域可以由含一个或多个酸性或碱性侧链的烟酸组成。

在另一个优选实施方案中,所述三聚物的芳族域可以由4-苯基苯丙氨酸组成。

在另一优选的变化中,包含氨基酸-基三聚结构的分子介质可以任意地用一个或多个亲脂基在一端或两端封闭所述氨基或羧基末端以改善RCT分子介质的物理化学性质并且利用进入到体内的脂肪或亲脂物质的天然或活性转运(吸收)系统。加帽基团可以是D或L对映异构体或非对映异构分子或基团。在优选实施方案中,所述N-端加帽基团选自由乙酰基、苯乙酰基、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、取代的饱和杂芳基等组成的组。所述C-末端优选用胺例如RNH2(其中R=二-叔-丁基-4-羟基-苯基)、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、取代的饱和杂芳基等加帽。

用于遗传编码氨基酸的D-对映异构体的缩写是表1中所示的单字母符号的小写字母等价物。例如,“R”指定L-精氨酸和“r”指定D-精氨酸。除非另有说明(例如,“OH”),所述N-末端是乙酰化的并且C-末端是酰胺化的。

PhAc表示苯乙酰化的。

BIP表示联苯丙氨酸。

氨基酸取代不必,并且在某些实施方案中不限于所述遗传编码的氨基酸。因而,除了天然存在的遗传编码氨基酸,RCT介质中的氨基酸残基可以用天然存在的非编码氨基酸和合成的氨基酸取代。
代谢保护型
优选的RCT介质的代谢保护型的实例如下所示。含取代到酸的α碳的化合物可以对于消除反应是稳定的。取代的胍可以有助于防止消除反应。

半剥裸介质
RCT介质的优选半剥裸实施方案的实例与合成方案一起表示如下。
半剥裸的
X2=F、Cl、Br、I、C0-6烷基、 X2=F、Cl、Br、I、C0-6烷基、 OCH3、CF3、OCF3OCH3、CF3、OCF3
X3=Cl、C0-6烷基、OCH3 X3=Cl、C0-6烷基、OCH3 一般方案

AA1指的是联苯基和AA2指的是精氨酸或赖氨酸 半剥裸的
X2=F、Cl、Br、I、C0-6烷基、 X2=F、Cl、Br、I、C0-6烷基、 OCH3、CF3、OCF3 OCH3、CF3、OCF3
X3=Cl、C0-6烷基、OCH3 X3=Cl、C0-6烷基、OCH3 方案-2
反向半剥裸的
X2=F、Cl、Br、I、C0-6烷基、 X2=F、Cl、Br、I、C0-6烷基、 OCH3、CF3、OCF3OCH3、CF3、OCF3

反向半剥裸的
X2=F、Cl、Br、I、C0-6烷基、 X2=F、Cl、Br、I、C0-6烷基、 OCH3、CF3、OCF3 OCH3、CF3、OCF3
X3=Cl、C0-6烷基、OCH3 X3=Cl、C0-6烷基、OCH3 剥裸型
RCT介质的优选剥裸型的实例表示如下。



RCT介质的优选剥裸型的更多实例表示如下。用四唑酰胺类代替酸类的化合物可以对于消除反应是稳定的。


RCT介质的优选剥裸型的实例表示如下,包括合成方案。
方案3
方案4
方案5

在RCT介质中可以使用的一些生物电子等排修饰的氨基酸的实例表示如下。

优选的介质
在某些优选实施方案中,所述介质选自由下列各项组成的组戊二酸-bip-r、E-BIP-胍基丁胺、(4-氨基甲酰基丁基)胍-BIP-E、戊二酸-bip-k、(4-氨基甲酰基丁基)胍-bip-GABA、(4-氨基甲酰基丁基)胍-BIP-GABA、戊二酸-Aic-胍基丁胺、(4-氨基甲酰基丁基)胍-苯丙氨酸-GABA、4,4-二甲基戊二酸-苯丙氨酸-胍基丁胺、Dimet.戊二酸-F-R、戊二酸-F-R、戊二酸-f-r、丁二酸-bip-r、丁二酸-BIP-R、丁二酸-f-r、Dimet.戊二酸-bip-r、Dimet.戊二酸-BIP-R、Dimet.丁二酸-BIP-R、丁二酸-phe-k、Dimet.丁二酸-phe-k、Dimet.丁二酸-Phe-K、3,3-二甲基戊二酸-phe-胍基丁胺、Dimet.丁二酸-Aic-r、戊二酸-f-(桥亚乙基)胍基丁胺、戊二酸-Aic-r、丁二酸-Aic-r、戊二酸-Aic-R、(1H-四唑-5-5-基)戊二酰胺-BIP-R、2,2-二甲基丁二酸-Phe-胍基丁胺、Dimet.丁二酸-Aic-R、3,3-螺环戊基戊二酸-Phe-胍基丁胺、3,3-二甲基戊二酸-F-胍基丁胺、戊二酸-Phe-胍基丁胺(Bis-Boc)、戊二酸-f-氰基胍基丁胺、戊二酸(四唑酰胺)-BIP-胍基丁胺(嘧啶)、丁二酸-BIP-胍基丁胺(嘧啶)、3,3-螺环己基戊二酸-bip-胍基丁胺(嘧啶)、3,3-二甲基戊二酸-bip-胍基丁胺(嘧啶)、3,3-螺环戊基戊二酸-Aic-胍基丁胺(嘧啶)、3,3-二甲基戊二酸-Aic-胍基丁胺(嘧啶)、3,3-螺环戊基戊二酸-Phe-3-(二甲基氨基)丁烷、4,4-二甲基戊二酸-bip-胍基丁胺(嘧啶)、和3,3-螺环戊基戊二酸-bip-3-(二甲基氨基)丙烷,其中任何未衍生化的氨基和/或羧基末端的氨基酸用保护基加帽。其它优选介质可以选自Dimet.丁二酸-phe-k、MeO2C-苯基-f-苯基-NH2、Dimet.戊二酸-F-R、或戊二酸-F-R。

虽然不必显示,但是上述优选介质的列表中任何未衍生化的氨基和/或羧基末端的氨基酸残基都是用保护基加帽的。因而,如果不被除去,所述α氨基用保护基加帽,例如乙酰基或二-叔-丁基-4-羟基-苯基。同样地,如果不被除去,所述α羧基用保护基加帽,例如胺或二-叔-丁基-4-羟基-苯基。当然,也可使用任何其它保护基。例如,所述氨基末端的保护基优选选自由乙酰基、苯乙酰基、新戊酰基(pivolyl)、2-萘酸(2-napthylic acid)、烟酸、CH3-(CH2)n-CO-(其中n在从1至20的范围),和乙酰基、苯乙酰基的酰胺、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基等组成的组;而优选所述羧基末端的保护基选自由胺例如RNH2其中R=二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基等组成的组。
合成方法
优选实施方案的介质可以利用实际上任何本领域已知的制备肽的技术而制备。例如,可以利用常规的分步溶解或固相肽合成而制备所述肽。

可以利用常规的分步溶解或固相合成而制备所述半剥裸的RCT介质(参见,例如Chemical Approaches to the Synthesis of Peptides andProteins,Williams et al.,Eds.,1997,CRC Press,Boca Raton Fla.,和其中引用的参考文献;Solid Phase Peptide SynthesisA Practical Approach,Atherton &Sheppard,Eds.,1989,IRL Press,Oxford,England,和其中引用的参考文献)。

在常规的固相合成中,第一氨基酸的附着要求将它的羧基末端(C-末端)与衍生化树脂化学地反应而形成低聚肽的羧基末端。氨基酸的α-氨基端一般用叔-丁氧基-碳基(Boc)或者用9-芴基甲氧基羰基(FMOC)封闭而防止可以另外反应的氨基参与偶联反应。氨基酸的侧链基团,如果是反应性的,也通过多种苄基来源的保护基以醚、硫醚、酯、和氨基甲酸酯的形式封闭(或保护)。

下一步和后来的重复循环涉及将所述氨基-末端的(N-末端)树脂结合的氨基酸(或末端的肽链残基)解封而除去所述α-氨基保护基团,接着是下一个封闭的氨基酸的化学加成(偶联)。然而,需要将这个过程重复许多循环而合成所关心的全部肽链。在每一个偶联和解封步骤之后,将所述树脂结合的肽彻底清洗以便在进行下一步之前除去任何残留的反应物。所述固体载体粒子促进任何特定步骤的反应物的去除,因为当所述树脂和树脂结合的肽被保持在具有多孔开口的柱或装置中时可以容易地被过滤和清洗。

可以将合成的肽通过酸催化从所述树脂释放(一般用氢氟酸或三氟乙酸),所述酸催化将所述肽从树脂裂解而在它的C-末端的氨基酸上留下酰胺或羧基。也将酸解裂解用来从合成的肽中的氨基酸侧链除去保护基。然后可以将完成的肽通过多种色谱方法的任何一种纯化。

根据优选实施方案,通过固相合成法用Na-FMOC化学合成所述肽和肽衍生的RCT介质。Na-FMOC保护的氨基酸和Rink酰胺MBHA树脂和Wang树脂是从Novabiochem(San Diego,CA)或Chem-Impex Intl(Wood Dale,IL)购买的。其它化合物和溶剂购自下列来源三氟乙酸(TFA)、茴香醚、1,2-乙二硫醇、茴香硫醚、哌啶、乙酸酐、2-萘酸和新戊酸(Pivaloicacid)(Aldrich,Milwaukee,WI),HOBt和NMP(Chem-Impex Intl,WoodDale,IL),来自Fischer Scientific,Pittsburgh,PA的二氯甲烷、甲醇和HPLC级溶剂。所述肽的纯度用LC/MS检验。利用制备型HPLC系统(Agilenttechnologies,1100 Series)在C18-结合的二氧化硅柱(Tosoh Biospec制备柱,ODS-80TM,Dim21.5mm×30cm)上实现所述肽的纯化。用梯度体系[50%至90%的B溶剂(乙腈∶水为60∶40,含0.1% TFA)]洗脱所述肽。

利用Rink酰胺MBHA树脂(0.5-0.66mmol/g)或wang树脂(1.2mmol/g)以分步方式经由固相法合成全部肽。所述侧链的保护基是Arg(Pbf)、Glu(OtBu)和Asp(OtBu)。利用1.5至3倍过量的保护的氨基酸将每一个FMOC-保护的氨基酸偶联到这个树脂。所述偶联剂是N-羟基苯并三唑(HOBt)和二异丙基碳二亚胺(DIC),并且通过水合茚三酮检验法监控所述偶联。通过30-60分钟的处理用NMP中20%的哌啶除去FMOC基团,然后是用CH2Cl2、CH2Cl2中10%的TEA、甲醇和CH2Cl2的相继清洗。偶联步骤之后接着是乙酰化或者在需要的时候用其它加帽基团。

使用TFA、茴香硫醚、乙二硫醇和茴香醚(90∶5∶3∶2,v/v)的混合物(室温下4-5小时)而将所述肽从肽-树脂裂解并除去全部侧链保护基。从烧结漏斗过滤粗制肽混合物,用TFA清洗(2-3次)。将滤出液浓缩成浓浆并加入到冷醚中。在制冷器中过夜保存并离心之后,所述肽沉淀为白色固体。倒出所述溶液并用醚彻底清洗所述固体。将得到的粗制肽溶解在缓冲液(乙腈∶水为60∶40,含0.1% TFA)中并干燥。通过HPLC利用制备C-18柱(反相)用40分钟内的梯度体系50-90% B纯化所述粗制肽[缓冲液A含0.1%(v/v)TFA的水,缓冲液B含0.1%(v/v)TFA的乙腈∶水(60∶40)]。将纯级分在真空中浓缩,例如,经过Speedvac或冷冻干燥。收率在5%至20%之间变化。

备选地,优选实施方案的肽可以通过片段缩合来制备,即,将小的组成肽链连接在一起而形成较大的肽链,例如在Liu et al.,1996,Tetrahedron Lett.37(7)933-936;Baca,et al.,1995,J.Am.Chem.Soc.1171881-1887;Tam et al.,1995,Int.J.Peptide Protein Res.45209-216;Schnolzer和Kent,1992,Science 256221-225;Liu和Tam,1994,J.Am.Chem.Soc.116(10)4149-4153;Liu和Tam,1994,PNAS.USA 916584-6588;Yamashiro和Li,1988,Int.J.Peptide Protein Res.31322-334;Nakagawa etal.,1985,J.Am Chem.Soc.1077087-7083;Nokihara et al.,1989,Peptides1988166-168;Kneib-Cordonnier et al.,1990,Int.J.Pept.Protein Res.35527-538中所述;通过参考将其内容整体地结合到这里。在Nakagawa et al.,1985,J.Am.Chem.Soc.1077087-7092中描述了其它用于合成优选实施方案的肽的方法。

对于通过片段缩合产生的肽,通过增加偶联时间可以显著增加缩合步骤的偶联效率。一般地,增加偶联时间导致产物外消旋增加(Sieberet al.,1970,Helv.Chim.Acta 532135-2150)。可以利用有机化学的标准技术制备含N-和/或C-末端保护基的RCT介质。例如,肽的N-末端的酰化方法或者肽的C-末端的酰胺化或酯化方法在本领域中是众所周知的。在N-和/或C-末端进行其它修饰的方法,如附着末端保护基所必需的任何侧链官能度的保护方法一样,对于本领域技术人员是明显的。

同样地,例如,对于肽的N-末端或肽的C-末端上的保护基去保护的方法在本领域中是众所周知的。在N-和/或C-末端进行其它修饰的方法,如除去末端保护基所必需的任何侧链官能度的去保护方法一样,对于本领域技术人员是明显的。

制药上可接受的盐(抗衡离子)可以通过离子交换色谱或其它本领域众所周知的方法常规地制备。

将另外的化学合成的氨基酸来源的保护化合物表示在下面的表3中。表3 药物剂型和治疗方法
优选实施方案的RCT介质可以用于治疗动物特别是包括人类的哺乳动物中的任何失调,对于所述失调降低血清胆固醇是有益的,非限制性地包括其中增加血清HDL浓度、活化LCAT、并且促进胆固醇流出和RCT是有益的病症。这样的病症包括但不限于高脂血症并且特别是高胆固醇血症,以及心血管疾病例如动脉粥样硬化(包括动脉粥样硬化的治疗和预防)和冠心病;再狭窄(例如预防或治疗动脉粥样硬化斑,其作为医学操作例如球囊血管成形术的结果而发展);和其它失调,例如局部缺血、和经常导致脓毒性休克的内毒素血症。RCT介质可以单独或者与用于治疗上述病症的其它药物的疗法组合使用。这样的疗法包括但不限于所涉及药物的同时或顺序给药。

例如,在高胆固醇血症或动脉粥样硬化的治疗中,可以与目前使用的胆固醇降低疗法任何一种或多种施用RCT分子介质的制剂;例如,胆汁酸树脂、烟酸、和/或斯特汀。这样的组合治疗计划可以产生特别有益的治疗效果,因为每一种药物作用在胆固醇合成和转运中的不同目标上;即,胆汁酸树脂影响胆固醇循环、乳糜微粒和LDL群;烟酸主要影响VLDL和LDL群;斯特汀抑制胆固醇合成、减少LDL群(并且可能增加LDL受体表达);而所述RCT介质影响RCT、增加HDL、增加LCAT活性并且促进胆固醇流出。

所述RCT介质可以与贝特类(fibrates)联合使用而治疗高脂血症、高胆固醇血症和/或心血管疾病例如动脉粥样硬化。

优选实施方案的RCT介质可以与目前用于治疗由内毒素引起的脓毒性休克的抗微生物和抗炎症药组合使用。

优选实施方案的RCT介质可以配制为肽-基的组合物或者表示为肽-脂质复合体,它可以以多种方式对受试者给药,优选经由口服,而将RCT介质输送到循环。下面描述例举的剂型和治疗计划。

在另一个优选实施方案中,提供了用于改善和/或防止高胆固醇血症和/或动脉粥样硬化的一种或多种症状的方法。所述方法优选涉及将优选实施方案的介质(或这种肽的模拟物)的一种或多种给药到生物体,优选哺乳动物,更优选人。如这里所述,根据大量标准方法包括但不限于注射剂、栓剂、鼻喷雾、定时释放植入物、透皮贴片等的任一种,可以将所述介质给药。在一个特别优选的实施方案中,将所述介质口服给药(例如糖浆剂、胶囊、或片剂)。

所述方法涉及优选实施方案的单一多肽的给药或者两种或多种不同多肽的给药。可以以单体或者二聚的、寡聚的或聚合的形式提供所述多肽。在某些实施方案中,多聚形式可以包含缔合的单体(例如离子或疏水连接的)而某些其它多聚形式包含共价连接的单体(直接连接或通过连接体连接)。

虽然根据在人中的使用描述了优选实施方案,但是它也适合于动物,例如兽医的使用。因而优选生物体包括但不限于人类、非人类的灵长类、犬科、马科、猫科、猪、有蹄类、largomorphs、等。

优选实施方案的方法不限于表现一种或多种高胆固醇血症和/或动脉粥样硬化症状(例如,高血压,斑的形成和破裂,临床事件例如心脏病发作的减少、绞痛或中风,高水平的低密度脂蛋白,高水平的极低密度脂蛋白,或者炎性蛋白质等)的人类或非人类的动物,而且在预防的范围内也是有用的。因而,优选实施方案的介质(或其模拟物)可以给药到生物体以预防高胆固醇血症和/或动脉粥样硬化的一种或多种症状的发作/发展。关于这点特别优选的受试者是表现一种或多种动脉硬化风险因子(例如,家族病史,高血压,肥胖症,高酒精消费,吸烟,高血液胆固醇,高血液甘油三酸酯,升高的血液LDL、VLDL、IDL、或低HDL,糖尿病或糖尿病的家族病史,高血脂,心脏病发作、绞痛或中风,等)的受试者。优选的实施方案包括药物剂型和这种制剂在高脂血症、高胆固醇血症、冠心病、动脉粥样硬化、糖尿病、肥胖症、早老性痴呆、多发性硬化、涉及高脂血症的病症例如炎症、和其他病症例如引起感染性休克的内毒素血症的治疗中的使用。

在一个优选实施方案中,可以利用先前部分中描述的与RCT介质的合成和纯化有关的任何技术合成或制造所述RCT介质。具有长贮藏期限的稳定制剂可以通过冷冻干燥所述介质而制造一或者制备用于再形成的大批,或者制备可以在给药到受试者之前通过用灭菌水或合适的灭菌缓冲溶液通过再次水合而重构的个体等分试样或剂量单位。

在另一个优选实施方案中,RCT介质可以以肽-脂质复合体形式配制和给药。这个方法具有一些优点,因为所述复合体应当在循环中具有增加的半衰期,特别是当所述复合体具有与HDL并且特别是前-β-1或前-β-2 HDL群相似的大小和密度时。所述肽-脂质复合体可以通过下面描述的大量方法的任一种而方便地制备。具有长贮藏期限的稳定制剂可以通过下面作为优选方法描述的冷冻干燥-共冷冻干燥程序制造。冷冻干燥的肽-脂质复合体可以用于制备药物再形成的大批,或用于制备可以通过在施用给受试者前用灭菌水或合适的缓冲溶液通过再次水合而重构的个体等分试样或剂量单位。

可以将本领域技术人员众所周知的多种方法用于制备肽-脂质小泡或复合物。为此目的,可以使用许多制备脂质体或脂蛋白体可获得的技术。例如,所述介质可以与适当的脂质共超声波处理(利用浴槽或探头声波处理器)而形成复合体。备选地,所述肽可以与预先形成的脂质小泡结合,导致肽-脂质复合物的自发形成。在另一个备选方法中,可以通过去污剂透析方法形成肽-脂质复合物;例如,将介质、脂质和去污剂的混合物进行透析从而去除去污剂并重构或形成肽-脂质复合物(例如,见Jonas etal.,1986,Methods in Enzymol.128553-582)。

虽然前面的方法是可行的,但是每一种方法存在它自身特有的在成本、收率、再现性和安全性方面的生产问题。根据一种优选方法,所述介质和脂质结合在能共溶解每一种成分并能通过冷冻干燥完全除去的溶剂体系中。为此,应当仔细地选择溶剂对而确保两亲性肽和脂质二者的共溶解性。在一个实施方案中,要结合到粒子中的蛋白质、肽或其衍生物/类似物可以溶解在水或有机溶剂或溶剂的混合物(溶剂1)中。将(二氧磷基)脂质成分溶解在水或有机溶剂或溶剂的混合物(溶剂2)中,所述溶剂2与溶剂1可互溶,并且将两种溶液混合。备选地,所述介质和脂质可以结合到共溶剂体系中;即,可互溶的溶剂混合物。介质与脂质的适合比例首先经验确定以便得到的复合体拥有适当的物理和化学性质;即,通常(但是不必)在大小上类似于HDL。将得到的混合物冷冻并冷冻干燥到干度。有时必须将另外的溶剂加入到所述混合物而促进冷冻干燥。这个冷冻干燥的产品可以长期贮存并将保持稳定。

可以将所述冷冻干燥的产物重构以便获得肽-脂质复合体的溶液或悬浮液。为此,所述冷冻干燥粉末可以用水溶液再水化到适合的体积(通常是方便静脉注射的5mg肽/ml)。在优选实施方案中,所述冷冻干燥粉末用磷酸盐缓冲液或生理盐水溶液再水化。必须将所述混合物搅拌或涡旋以促进再水化,并且在大多数情况下,应当在等于或大于复合体脂质组分的相变温度进行所述重构步骤。重构的脂质-蛋白质复合体的清澈制剂在几分钟之内产生。

可以将所得重构制剂的等分部分进行表征而确定所述制剂中的复合体具有所需的大小分布;例如,HDL的大小分布。为此可以使用凝胶过滤色谱。例如,可以使用Pharmacia Superose 6 FPLC凝胶过滤色谱体系。使用的缓冲液在50mM磷酸盐缓冲液中含有150mM NaCl,pH7.4。典型的样品体积是20至200毫升含有5mg肽/ml的复合体。柱流速是0.5ml/min。一系列已知分子量和斯托克斯直径的蛋白质以及人HDL优选用作标准标定所述柱。通过波长254至280nm的光的吸光度或者散射监控所述蛋白质和脂蛋白复合体。

RCT介质可以和多种脂质复合,包括饱和的、不饱和的、天然的或者合成的脂质和/或磷脂。合适的脂质包括,但不限于,小烷基链磷脂,例如,卵磷脂酰胆碱,大豆磷脂酰胆碱,二棕榈酰磷脂酰胆碱,二肉豆蔻酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱1-肉豆蔻酰-2-棕榈酰磷脂酰胆碱,1-棕榈酰-2-肉豆蔻酰磷脂酰胆碱,1-棕榈酰-2-硬脂酰磷脂酰胆碱,1-硬脂酰-2-棕榈酰磷脂酰胆碱,二油酰磷脂酰胆碱二油酰磷脂酰乙醇胺,二月桂酰磷脂酰甘油 磷脂酰胆碱,磷脂酰丝氨酸,磷脂酰乙醇胺,磷脂酰肌醇,神经鞘磷脂,神经鞘脂类,磷脂酰甘油,二磷脂酰甘油,二肉豆蔻酰磷脂酰甘油,二棕榈酰磷脂酰甘油,二硬脂酰磷脂酰甘油,二油酰磷脂酰甘油,二肉豆蔻酰磷脂酸,二棕榈酰磷脂酸,二肉豆蔻酰磷脂酰乙醇胺,二棕榈酰磷脂酰乙醇胺,二肉豆蔻酰磷脂酰丝氨酸,二棕榈酰磷脂酰丝氨酸,脑磷脂酰丝氨酸,脑神经鞘磷脂,二棕榈酰神经鞘磷脂,二硬脂酰神经鞘磷脂,磷脂酸,半乳糖脑苷脂,神经节苷脂,脑苷脂,二月桂基磷脂酰胆碱,(1,3)-D-mannosyl-(1,3)甘油二酯,氨基苯基糖苷,3-胆甾烯基-6′-(糖基硫代)己基醚糖脂,和胆固醇及其衍生物
优选实施方案的药物制剂含有RCT介质或者肽-脂质复合体作为适合于在体内给药和递送的药物可接受的载体中的活性成分。因为所述介质可以含有酸性和/或碱性末端和/或侧链,可以将它们或者以游离酸或碱的形式、或者以药物可接受的盐的形式包括在制剂中。

可注射的制剂包括在水性或油性赋形剂中的活性组分的无菌混悬液、溶液或乳状液。所述组合物还可以包含配方剂(formulating agents),诸如悬浮剂、稳定剂和/或分散剂。用于注射的制剂可以以单位剂型,例如以安瓿或多剂量容器形式存在,并可以包含另外的防腐剂。

备选地,可注射的制剂可以以在使用前用合适的赋形剂进行重构的粉末形式进行提供,所述赋形剂包括,但不限于无菌的无热原的水,缓冲液,葡萄糖溶液等。为此目的,可以冻干RCT的介质,或可以制备共-冻干的肽-脂质复合物。可以以单位剂型的形式提供贮存的制剂并在体内使用前进行重构。

对于延长的传递,可以将活性组分配制为通过植入进行施用的长效制剂;例如,皮下、皮内或肌内注射。因此,例如,可以将活性组分与合适的聚合或疏水性材料一起进行配制(例如,作为在可接受的油中的乳状液)或与离子交换树脂一起进行配制,或配制为少量可溶的衍生物;例如。作为RCT的介质的少量可溶的盐形式。

备选地,可以使用被生产为缓慢释放活性组分以进行经皮吸收的粘着盘或贴片的透皮传递系统。为此目的,可以使用渗透增强物以促进活性组分的透皮渗透。可以通过将优选实施方案的RCT的介质或肽-脂质复合物结合到硝化甘油贴片中以使用在患有局部缺血性心脏疾病和高胆固醇血症的患者中以获得特别的益处。

对于口服施用,药物组合物可以采取通过传统方式用药用赋形剂诸如粘合剂(例如,预凝胶化的玉米淀粉、聚乙烯吡咯烷酮或羟丙基甲基纤维素);填充剂(例如,乳糖、微晶纤维素或磷酸氢钙);润滑剂(例如,硬脂酸镁、滑石或二氧化硅);崩解剂(例如马铃薯淀粉或羟基乙酸淀粉钠);或湿润剂(例如,十二烷基硫酸钠)进行制备的片剂或胶囊形式。所述片剂可以通过本领域众所周知的方法进行包被。进行口服施用的液体制剂可以采用,例如溶液、糖浆或混悬液的形式,或它们可作为在使用前用水或其它合适的赋形剂构成的干燥产品存在。这些液体制剂可以通过常规方法用药用添加剂诸如悬浮剂(例如,山梨醇糖浆、纤维素衍生物或氢化的可食脂肪);乳化剂(例如,卵磷脂或阿拉伯胶);非水性赋形剂(例如,杏仁油、油性酯、乙醇或分级分离的植物油);和防腐剂(例如,甲基或丙基-对-羟基苯甲酸酯或山梨酸)进行制备。所述制剂还可包含合适的缓冲盐、调味剂、着色剂和甜味剂。可以将口服施用的制剂合适地配制成控释的活性化合物。

对于颊含施用,所述组合物可以采取以常规方法配制的片剂或锭剂的形式。对于直肠和阴道施用路径,可以将活性组分配制为溶液(对于滞留型灌肠剂)栓剂或软膏剂。

对于通过吸入进行施用,使用合适的推进剂,例如,二氯二氟甲烷、三氯氟甲烷、二氯四氟乙烷、二氧化碳或其它合适的气体,以来自压缩包装或喷雾器的气溶胶喷雾剂形式来方便地传递活性组分。在压缩的气溶胶情形中,可以通过提供阀以传递计量来确定剂量单位。可以配制用在吸气器或吸入器中的例如,明胶的胶囊和药筒,其包含化合物的粉末混合物和合适的粉末基质诸如乳糖或淀粉。

如果需要,所述组合物可以存在于包装或分配器装置中,其可以包含一个或多个单位剂型,所述剂型包含活性组分。所述包装可以例如,包含金属或塑料箔,诸如泡眼包装。所述包装或分配器可配有施用的说明书。

优选实施方案的RCT的介质和/或肽-脂质复合体可以通过确保在循环中的生物利用度的任何合适的路径来施用。这可以通过包括静脉内(IV)、肌内(IM)、皮内、皮下(SC)和腹膜内(IP)注射的施用的肠胃外路径来完成。然而,可以使用其它施用途径。例如,如果将合适的制剂(例如,肠溶包衣)用于避免或最小化活性组分在,例如口腔粘膜、胃和/或小肠的苛刻环境中的降解,经过胃肠道的吸收可以通过施用的口服路径(包括但不限于摄取、颊含和舌下路径)来完成。口服施用具有易于应用和因此提高顺应性的优势。或者,可以将经过粘膜组织的施用诸如阴道和直肠施用方式用于避免或最小化在胃肠道中的降解。在另一个备选方法中,可以将本发明的制剂经过皮肤地(例如,透皮地),或通过吸入进行施用。将理解的是优选的路径可以随受者的疾病、年龄和顺应性而变化。

使用的RCT介质或肽-脂质复合体的实际剂量可以随着给药路线而改变,并且应当被调节以实现1.0mg/l至2g/l的循环血浆浓度。这里描述的动物模型体系中获得的数据显示优选实施方案的ApoA-I激动剂与HDL组分缔合,并在人中具有约5天的预计的半衰期。因而,在一个实施方案中,RCT介质可以通过每星期一次的以0.5mg/kg至100mg/kg之间剂量的注射进行给药。在另一个实施方案中,理想的血清水平可通过持续的输注或通过提供约0.1mg/kg/小时-100mg/kg/小时的间歇输注来维持。

不同的RCT介质的毒性和治疗功效可以利用细胞培养或实验动物中用于确定LD50(致死群体的50%的剂量)和ED50(在群体的50%中治疗有效的剂量)的标准制药程序而确定。毒性和治疗效应之间的剂量比率是治疗指数并且可将其表示为比率LD50/ED50。优选显示大的治疗指数的ApoA-I肽激动剂。
其它使用
可将优选实施方案的RCT激动剂的介质用在体外测定中以测量血清HDL,例如用于诊断目的。因为RCT的介质与血清的HDL和LDL成分缔合,可以将激动剂用作HDL和LDL群体的“标记”。而且,可以将激动剂用作在RCT中有效的HDL的亚群的标记。为此目的,可将激动剂加入患者的血清样品中或与其混合;在合适的温育时间后,通过检测结合的RCT的介质可以测定HDL的成分。这可以通过使用标记的激动剂(例如,放射性标记,荧光标记,酶标记,染料等),或使用特异于激动剂的抗体(或抗体片段)的免疫测定来完成。

备选地,可以将标记的激动剂用在成像方法(例如,CAT扫描,MRI扫描)中以显现循环系统,或监测RCT,或显现HDL在脂条、动脉粥样硬化损伤等中的聚集。(其中HDL应在胆固醇流出中是有活性的)。
用于反向胆固醇转运的介质分析的检测方法 LCAT活化检测
可通过各种体外测定,例如,通过它们在体外活化LCAT的能力来评价按照优选实施方案的RCT的介质的潜在临床功效。在LCAT测定中,用等量的肽或ApoA-I(分离自人血浆)对由卵磷脂酰胆碱(EPC)或1-棕榈酰-2-油基-磷脂酰-胆碱(POPC)与放射性标记的胆固醇组成的底物小泡(小的单层小泡或“SUVs”)进行预温育。通过LCAT的添加(纯化自人血浆)来起始反应。被用作阳性对照的天然ApoA-I,表现了100%的活化活性。可将分子介质的“比活”(即活性的单位(LCAT活化)/质量单位)计算为获得最大LCAT活化的介质的浓度。例如,可对一系列浓度的肽(例如,有限稀释)进行测定以确定介质的“比活”--分析中在特定时间点(例如1小时)获得最大LCAT活化(即,胆固醇向胆固醇酯的百分比转变)的浓度。当在例如1hr.绘制相对于所用肽浓度的胆固醇转化百分数时,可以将“比活”确定为在绘制的曲线上达到稳定水平的介质浓度。
底物小泡的制备
用在LCAT测定中的小泡是由摩尔比为20∶1的卵卵磷脂(EPC)或1-棕榈酰-2-油基-磷脂酰胆碱(POPC)与胆固醇组成的SUVs。为了制备足够40次测定的小泡贮存溶液,将7.7mg EPC(或7.6mg POPC;10μmol),78μg(0.2μmol)4-14C-胆固醇,116μg胆固醇(0.3μmol)溶解于5ml的二甲苯中并进行冻干。其后,将4ml的测定缓冲液加入干燥粉末中并在氮气氛下于4℃超声处理。超声处理条件Branson 250超声波仪,10mm探头(tip),6×5分钟;测定缓冲液10mM Tris,0.14M NaCl,1mM EDTA,pH7.4。将超声处理的混合物在14,000rpm(16,000×g)离心6次,每次5分钟以去除钛颗粒。将得到的澄清溶液用于酶测定。
LCAT的纯化
对于LCAT的纯化,将葡聚糖硫酸酯/Mg2+处理的人血浆用于获得缺乏脂蛋白的血清(LPDS),将其在Phenylsepharose、Affigelblue、ConcanavalinA sepharose和抗-ApoA-I亲和层析法上顺序进行色谱分析。
LPDS的制备
为了制备LPDS,将500ml血浆加入到50ml葡聚糖硫酸酯(MW=500,000)溶液。搅拌20分钟。在3000rpm(16,000×g)、4℃离心30分钟。利用上清液(LPDS)用于进一步纯化(约500ml)。
苯基琼脂糖凝胶色谱
使用下列材料和条件用于苯基琼脂糖凝胶色谱。固相高流动性苯基琼脂糖凝胶,高坚固等级(subst.grade),Pharmacia柱XK26/40,凝胶床层高度33cm,V=约175ml,流速200ml/hr(样品),冲洗200ml/hr(缓冲液),洗脱80ml/hr(蒸馏水),缓冲液10mM Tris,140mMNaCl,1mM EDTA,pH7.4,0.01%叠氮化钠。

将所述柱在Tris-缓冲液中平衡,向500ml LPDS加入29g NaCl并施加到所述柱。用若干体积的Tris缓冲液冲洗直到在280nm波长的吸光度近似在基线,然后用蒸馏水开始洗脱。将含有蛋白质的级分汇合(汇合大小180ml)并用于Affigelblue色谱。
Affigelblue色谱
将苯基琼脂糖凝胶合并物对着20mM Tris-HCl、pH7.4、0.01%叠氮化钠在4℃过夜透析。将合并的体积通过超滤(Amicon YM30)减少到50-60ml并装载到Affigelblue柱上。固相Affigelblue,Biorad,153-7301柱,XK26/20,凝胶床层高度约13cm;柱体积约70ml。流速装载15ml/h冲洗50ml/h。在Tris-缓冲液中平衡柱。将苯基琼脂糖凝胶合并物施加到柱。并行地开始收集级分。用Tris-缓冲液冲洗。将合并的级分(170ml)用于ConA色谱。
ConA色谱
经由Amicon(YM30)将Affigelblue合并物减少到30-40ml并用ConA起始缓冲液(1mM Tris HCl pH7.4;1mM MgCl2,1mM MnCl2,1mMCaCl2,0.01%叠氮化钠)在4℃过夜透析。固相ConA琼脂糖凝胶(Pharmacia)柱XK26/20,凝胶床层高度14cm(75ml)。流速装载40ml/h冲洗(用起始缓冲液)90ml/h洗脱50ml/h,1mM Tris中的0.2M甲基-α-D-甘露糖苷,pH7.4。收集甘露糖苷洗脱的蛋白质级分(110ml),并且通过超滤(YM30)将体积减少到44ml。将ConA合并物分成贮存于-20℃的2ml的等分试样。
抗-ApoA-I亲合色谱
在已经与抗-ApoA-I abs共价偶联的Affigel-Hz材料(Biorad)上进行抗-ApoA-I亲和层析法。柱XK16/20,V=16ml。用pH7.4的PBS平衡柱。在装载到柱上之前,将2ml的ConA合并物向着PBS进行透析2小时。流动速度装载15ml/小时洗涤(PBS)40ml/小时。将合并的蛋白质级分(V=14ml)用于LCAT测定。用0.1M的柠檬酸缓冲液(pH4.5)再生柱以洗脱结合的A-I(100ml),并在该方法后立即用PBS再次平衡。
RCT介质的药物动力学
下列试验计划可以用于证明所述RCT介质在循环中是稳定的并且与血浆的HDL组分缔合。
肽激动剂的合成和/或放射性标记
将125I-标记的LDL通过一氯化碘程序制备成比活为500-900cpm/ng(Goldstein and Brown 1974 J.Biol.Chem.2495153-5162)。如所述,通过培养的人成纤维细胞在最终比活为500-900cpm/ng下测定低密度脂蛋白的结合和降解(Goldstein and Brown 1974 J.Biol.Chem.2495153-5162)。在每个情况中,通过所述脂蛋白与10%(重量/体积)三氯乙酸(TCA)在4℃的温育,>99%的放射性是可沉淀的。将酪氨酸残基附着在每一个介质的N-末端而实现放射性碘标记。利用矿珠(Pierce Chemicals)和下列制造计划,将所述介质用Na125I(ICN)放射性碘标记成比活为800-1000cpm/ng。透析之后,所述肽的可沉淀的放射性(10% TCA)一直是>97%。

备选地,可以通过偶联14C-标记的FMOC-脯氨酸作为N-末端的氨基酸合成放射性标记的介质。L-[U-14C]X,比活为9.25GBq/mmol,可以用于含X的标记激动剂的合成。可以根据Lapatsanis,Synthesis,1983,671-173进行所述合成。简言之,将250μM(29.6mg)的未标记的L-X溶解在225μl的9% Na2CO3溶液中并且加入到9.25MBq(250μM)14C-标记的L-X溶液(9% Na2CO3)。将所述液体冷却降到0℃,与0.75ml DMF中的600μM(202mg)9-芴基甲基-N-琥珀酰亚胺基碳酸酯(9-fluorenylmethyl-N-succinimidylcarbonate(FMOC-OSu))混合并在室温下振荡4小时。此后,用二乙醚(2×5ml)和氯仿(1×5ml)萃取所述混合物,用30%HCl将剩余的水相酸化并用氯仿(5×8ml)萃取。将有机相通过Na2SO41滤出干燥并且在氮气流下将体积减少到5ml。用UV检测通过TLC(CHCl3∶MeOH∶Hac为9∶1∶0.1体积比,固定相HPTLC硅胶60,Merck,Germany)估计纯度,例如,放射化学纯度线性分析仪,Berthold,Germany;反应收率可以约为90%(通过LSC测定)。

将包含14C-肽X的氯仿溶液直接用于肽的合成。如上所述,可以自动合成包含氨基酸2-22的肽树脂并将其用于合成。通过Edman降解来确定肽的序列。偶联的进行如前面所述,除了优选使用取代TBTU的HATU(O-(7-氮杂苯并三唑-1-基)1,1,3,3-四甲基uroniumhexafluorophosphate)。手动进行用未标记的Fmoc-L-X进行的第二次偶联。
小鼠中的药物代谢动力学
在每个实验中,可将300-500μg/kg(0.3-0.5mg/kg)[或更多诸如2.5mg/kg]放射性标记的介质腹膜内注射到小鼠中,用正常小鼠食物(Chow)或导致动脉粥样硬化的Thomas-Harcroft改进的食物(导致VLDL和IDL胆固醇的剧烈升高)对所述小鼠进行喂养。在多个时间间隔取血液样品以进行血浆中放射性的评价。
人血清中的稳定性
可将100μg标记的介质可与2ml新鲜人血浆(于37℃)混和,并被立即去脂质化(delipidated)(对照样品)或在于37℃温育8天后被去脂质化(测试样品)。通过用等体积的2∶1(v/v)氯仿甲醇抽提脂质来进行去脂质化。将样品装载到反相C18HPLC柱上并用线性梯度(在33分钟内25-58%)的乙腈(包含0.1%w的TFA)进行洗脱。洗脱图谱根据吸光度(220nm)和放射性绘制。
前-β样颗粒的形成
可通过在密度d=1.21g/ml处的KBr密度超离心来分离人HDL以获得上层级分,随后通过Superose 6凝胶过滤层析法来从其它脂蛋白中分离HDL。基于Bradford蛋白测定所确定的蛋白质含量,用生理盐水将分离的HDL调整为1.0mg/ml的终浓度。从分离的HDL制备物中移出300μl的等分试样,并用100μl标记的介质(0.2-1.0μg/l)于37℃温育2小时。分析多个单独的温育物,包括包含100μl的生理盐水的空白和四个稀释度的标记的介质。例如(i)0.20μg/μl的肽∶HDL比率=1∶15;(ii)0.30μg/μl肽∶HDL比率=1∶10;(iii)0.60μg/μl肽HDL比率=1∶5;和(iv)1.00μg/μl肽∶HDL比率=1∶3。2小时温育后,将200μl的样品的等分试样(总体积=400μl)装载到Superose 6凝胶过滤柱上以进行脂蛋白分离和分析并将100μl用于确定总的装载的放射性。
介质与人脂蛋白的缔合
可通过与每个脂蛋白类别(HDL、LDL和VLDL)和不同脂蛋白类别的混合物一起温育标记的介质来确定介质与人脂蛋白级分之间的缔合。通过在d=1.21g/ml的KBr密度梯度超离心来分离HDL、LDL和VLDL,并通过在Superose 6B柱大小排阻柱上的FPLC进行纯化(用0.7ml/min的流速和1mM Tris(pH8),115mM NaCl,2mM EDTA和0.0% NaN3的运行缓冲液进行层析法)。标记的介质与HDL,LDL和VLDL一起在1∶5的介质磷脂比率(质量比率)上于37℃温育2小时。所需量的脂蛋白(基于产生1000μg所需的量的体积)与0.2ml的介质贮存液(1mg/ml)混和并使用0.9% NaCl使溶液达到2.2ml。

在37℃温育2小时后,将等分试样(0.1ml)取出用于总放射性(例如,通过液体闪烁计数或伽马计数,取决于标记同位素)的测定,将残留的温育混合物的密度用KBr调整到1.21g/ml,并且利用Beckman台式超速离心机在TLA 100.3转子中将样品在4℃以100,000rpm(300,000g)离心24小时。通过从每一个样品的顶部移出0.3ml而将得到的上清液分级为总共5个级分,并且将每个级分的0.05ml用于计数。顶部的两个级分含有漂浮的脂蛋白,其它级分(3-5)对应于溶液中的蛋白质/肽。
选择性结合到HDL脂质
用20、40、60、80、和100μg标记的介质将人血浆(2ml)在37℃温育2小时。通过将密度调整到1.21g/ml并在TLA 100.3转子中在4℃以100,000rpm(300,000g)离心36小时分离所述脂蛋白。取出顶部的900μl(在300μl级分中)用于分析。将来自每一个300μl级分的50μl进行放射性计数并且通过FPLC(Superose 6/Superose 12联合柱)分析来自每一个级分的200μl。
动物模型体系中反向胆固醇转运介质的使用
优选实施方案的RCT介质的功效可以在兔或其它合适的动物模型中证明。
磷脂/肽复合体的制备
遵循胆酸盐透析法制备由磷脂(DPPC)和肽组成的小的盘状粒子。将所述磷脂溶解在氯仿中并且在氮气流下干燥。将所述肽以1-2mg/ml的浓度溶解在缓冲液(盐水)中。将所述脂膜再溶解在含胆酸盐的缓冲液(43℃)中并且以3∶1的磷脂/肽的重量比加入所述肽溶液。将混合物在43℃过夜温育并在43℃(24hr)、室温(24hr)和4℃(24hr)透析,在温度点有三次缓冲液(大体积)的改变。可以将所述复合体无菌过滤(0.22μm)用于注射并且保存在4℃。
肽/磷脂粒子的分离和表征
可以在凝胶过滤柱(Superose 6HR)上分离所述粒子。通过测定每一个级分中的磷脂浓度确定含有所述粒子的峰位置。从洗脱体积,可以确定斯托克斯半径。通过测定在16小时酸水解后的苯丙氨酸含量(用HPLC)而确定复合体中的介质浓度。
兔中的注射
用一剂量的磷脂/介质复合体(5或10mg/kg体重,表示为肽)以不超过10-15ml的推注形式静脉注射雄性新西兰白兔(2.5-3kg)。在操作之前使所述动物稍微镇静。在注射前和注射后5、15、30、60、240和1440分钟取血样(在EDTA上收集)。对于每一个样品,测定血细胞比容(Hct)。将样品等分并在分析之前保存在-20℃。
兔血清的分析
利用商购的检验法酶促测定总血浆胆固醇、血浆甘油三酸酯和血浆磷脂,例如按照生产商的手册(Boehringer Mannheim,Mannheim,Germany and Biomerieux,69280,Marcy-L′etoile,France)。

在将所述血浆分离成它的脂蛋白级分后获得的级分血浆脂蛋白轮廓可以通过在蔗糖密度梯度中的旋转而确定。例如,收集级分并且可以通过常规的酶分析法测定对应于VLDL、ILDL、LDL和HDL脂蛋白密度的级分中磷脂和胆固醇的水平。
含修饰氨基酸的RCT介质的合成 亲脂基修饰的肽序列的合成(固相载体上的Suzuki偶联)
A1A指的是戊二酸或精氨酸(以相反顺序) AA3指的是或者精氨酸或者戊二酸(以相反顺序) R指的是多种取代,苯基、取代的苯基、卤素、-CH3、-OCH3、吡啶、等。
Pd催化的实例包括,例如,Pd(PPh3)4/Na2CO3和Pd(PPh3)Cl2/KOH
在圆底烧瓶中加入树脂结合的碘代化合物(1G)、Pd(PPh3)2Cl2(14mg,0.02mmol)或等价的Pd(PPh3)4和过量的苯基硼酸(3.0mmol)。在加入无水DMF之前用氩气冲刷所述固体并且在室温下搅拌几分钟,加入50μL的KOH水溶液。在80℃继续搅拌过夜。

反应完成后,通过烧结玻璃漏斗过滤并用CH2Cl2、MeOH、水和CH2Cl2冲洗以除去未反应的原料。所述树脂经过真空干燥并用于下一步而获得终产物。
树脂的裂解和侧保护基接着是HPLC纯化
TFA、茴香硫醚、乙二硫醇(ethanedithiol)和茴香醚(90∶5∶3∶2,体积比)的混合物用于从所述肽-树脂裂解肽(室温下4-5小时)并除去全部侧链保护基。从烧结漏斗过滤粗肽混合物,将其用TFA冲洗(2-3次)。将滤出液浓缩成浓浆并加入到冷醚中。在冰箱中过夜保存并离心之后所述肽作为白色固体而沉淀。将溶液倾析出并用醚彻底清洗。将得到的粗肽溶解在缓冲液(乙腈∶水60∶40,含0.1% TFA)中并干燥。通过HPLC利用制备的C-18柱(反相)用33分钟内35-50%B的梯度体系纯化所述粗肽(每分钟12mL)。[缓冲液A含有0.1%(体积)TFA的水,[缓冲液B含有0.1%(体积)TFA的乙腈]。冷冻干燥纯的级分。
半剥裸(规则序列)化合物的合成
将树脂结合的二肽与戊二酸酐或丁二酸酐(2.0mmol)反应,在室温下将DMAP(0.25mmol)在NMP(10mL)中轻轻地混合2小时。过滤所述树脂并连续用CH2Cl2、甲醇接着是CH2Cl2(各自15mL)冲洗。将TFA/茴香硫醚/EDT/茴香醚(90∶5∶3∶2)的混合物用于氨基酸的侧链保护和合成的肽从所述树脂的裂解。通过加入冷二乙醚(Et2O)沉淀粗制肽。在冰箱中过夜保存并离心之后所述肽作为白色固体而沉淀。将溶液倾析出并用醚彻底清洗。将得到的粗制肽溶解在缓冲液(乙腈∶水60∶40,含0.1% TFA)中并干燥。通过HPLC利用制备的C-18柱(反相)用30分钟内35-50%B的梯度体系纯化所述粗制肽(每分钟12mL)。[缓冲液A含有0.1%(体积)TFA的水,[缓冲液B含有0.1%(体积)TFA的乙腈]。并且3分钟作为后运行。冷冻干燥纯的级分。

合成的化合物的实例包括下列化合物。

L-系列 D-系列
合成的化合物的其它实例包括下列表4所示的下列化合物。 表4
化合物的另外实例包括下面用合成方案表示的下列化合物。
半剥裸的
X2=F、Cl、Br、I、C0-6烷基、 X2=F、Cl、Br、I、C0-6烷基、 OCH3、CF3、OCF3 OCH3、CF3、OCF3
X3=Cl、C0-6烷基、OCH3X3=C1、C0-6烷基、OCH3 一般方案
AA1指的是联苯基和AA2指的是精氨酸或赖氨酸 半剥裸(规则系列)化合物的合成
用CH2Cl2中1% TFA处理树脂结合的二肽[Ac-Glu(OtBu)-bip-树脂]2小时,给出侧链保护的粗二肽。在0℃用HOBt(0.5mmol)、EDCI(0.5mmol)将这个二肽(0.5mmol)搅拌15-20分钟并加入保护的精氨酸(0.5mmol)。将溶液加热到室温并搅拌3小时。将所述用水(15mL)骤冷。所述水层用CH2Cl2(2×10mL)萃取。用盐水(15mL)清洗合并的有机层,在Mg2SO4上干燥,过滤并浓缩。将TFA/CH2Cl2(3∶7)的混合物用于氨基酸的侧链去保护。通过加入冷二乙醚(Et2O)将粗制肽沉淀。通过使用上述条件纯化所述粗制肽。
一般方案
AA1指的是谷氨酸和AA2指的是联苯基
合成的化合物实例包括下列化合物
L-系列 D-系列
化合物的另外实例包括下列化合物 半剥裸的
X2=F、Cl、Br、I、C0-6烷基、 X2=F、Cl、Br、I、C0-6烷基、 OCH3、CF3、OCF3 OCH3、CF3、OCF3
X3=Cl、C0-6烷基、OCH3 X3=Cl、C0-6烷基、OCH3 半剥裸(反向系列)化合物的合成
这些化合物已经通过利用标准SPPS方案使用Wang树脂和Rink酰胺MBHA树脂制备。
WANG树脂(100-200目)(1G)(取代0.6mmol/g)
Rink酰胺MBHA树脂(1G)(取代0.66mmol/g) Fmoc-HN-树脂

合成的化合物的实例包括下列化合物
L-系列D-系列
一般分析方法
全部试剂属于商业品质。通过标准方法干燥和纯化溶剂。从Bachem Feinchemikalien AG获得氨基酸衍生物。分析的TLC在涂覆有0.2mm层的硅胶60 F254,Merck的铝板上进行,以及制备的TLC在涂覆有2mm层的硅胶PF254,Merck的20cm×20cm玻璃板上进行。硅胶60(230-400目),Merck用于快速色谱(flash chromatography)。制备径向展开色谱法在涂覆有2mm层的硅胶PF254,Merck的20cm直径的玻璃板上进行。在微型高温台(micro-hot-stage)设备上获得熔点并且是未修正的。用Brucker400分光计记录1H NMR光谱,在400MHz下操作,利用TMS或溶剂作为参比。用Brucker 400分光计记录13C NMR光谱,在50或100MHz下操作。在CH-O-RAPID装置上获得元素分析。分析的RP HPLC在流速为1mL/min的WatersμBondapak C18(3.9mm×300mm,4μm)或Novapak C18(3.9mm×150mm,4μm)柱上并利用设定在214nm的可调UV检测器进行。将CH3CN(溶剂A)和在水中的0.05% TFA(溶剂B)的混合物用作流动相。终产物的分析和制备HPLC在Phenomenex Luna 5μ C18(2)(60mm×21.2mm)柱上进行,流速为15mL/min,利用可调的设定在254nm的UV检测器。CH3CN和H2O的混合物用作梯度方式中的流动相。在Hewlett-Packard 1100 MSD装置上以正模式进行ESI-MS实验。
方法A
方法A1 FMOC-D-Phe-双-Boc-胍基丁胺(A-3)
将FMOC-D-苯丙氨酸(1.125g,2.9mmol)和1-羟基苯并三唑(HOBt,2.9mmol)悬浮在二氯甲烷(15mL)中;后来的EDAC的加入提供了澄清的溶液,它在室温下搅拌30分钟。然后经由套管将所述溶液用溶解在DCM(15mL)中的双BOC-胍基丁胺(0.56g,2.9mmol)处理。将所述反应混合物搅拌5小时然后用水(50mL)骤冷。用DCM(3×15mL)萃取所述水层。将合并的有机层用盐水(50mL)清洗,通过MgSO4干燥,过滤并在减压下浓缩,将粗产物直接采用到下一步。
NH2-D-Phe-双-Boc-胍基丁胺(A-4)
将粗FMOC保护的氨基酰胺溶解在DMF(20mL)中然后用哌啶(2.9mL,10当量)处理,在室温下将所述反应搅拌8h然后在减压下除去溶剂。通过柱色谱(硅胶15∶1;CHCl3∶TEA)纯化后获得产物而提供收率为69%的纯的氨基酰胺(0.95g,1.99mmol)。
戊二酸酰胺-D-Phe-胍基丁胺(A-6)
将氨基酰胺(0.544g,1.14mmol)溶解在DCM(10mL)中然后用戊二酸酐(0.269g,2.36mmol)处理;将所述反应混合物过夜搅拌,然后除去所述溶剂。将粗混合物溶解在DCM∶TFA的1∶1混合物(10mL)中并搅拌2h。然后用反相HPLC(MeCN∶水∶TFA;35∶65∶0.5至50∶50∶0.5,经过20min,用冷冻干燥除去溶剂)将所述粗产物纯化而提供所需的作为TFA盐的产物(206mg)。
方法A2 4-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯基乙基氨基甲酰基)丁酸
向N-FMOC-L-苯丙氨酸A-1(0.50g,1.4mmol)在二氯甲烷中的溶液(14mL)加入1-羟基苯并三唑(0.19g,1.4mmol),然后用EDAC·HCl(0.27g,1.42mmol)处理。所述反应混合物提供了澄清的溶液,在室温下搅拌30min。将所述溶液冷却到0℃然后用N,N′-二-叔-丁氧羰基胍基丁胺A-2(0.47g,1.4mmol)处理。将所述反应混合物加热到室温并搅拌6小时。用水(25mL)骤冷所述反应,然后用DCM(3×7mL)萃取所述水层。将合并的有机层用盐水(25mL)清洗,通过MgSO4干燥,过滤并在减压下浓缩而提供A-3。将所述粗A-3直接采用到下一步。将中间体A-3溶解在DCM(10mL)中然后用哌啶(1.4mL,14.1mmol)处理,将所述反应混合物在室温下搅拌5h然后在减压下除去所述溶剂。在用柱色谱(硅胶20∶1;CHCl3∶TEA)纯化后获得了纯的胺A-4(0.5g,1.05mmol)。将所述纯胺A-4溶解在DCM(10mL)中然后用戊二酸酐(0.15g,1.3mmol)处理,将所述反应混合物过夜搅拌,然后除去所述溶剂。将粗产物A-5溶解在DCM∶TFA的1∶1混合物(5mL∶5 mL)中并搅拌4h。在减压下除去所述溶剂并加入乙醚,将所述乙醚混合物在-20℃保存过夜,然后从白色固体A-6倾析出所述乙醚。将粗产物溶解在水(2mL)中然后用NaHCO3处理(发生冒泡)并用反相HPLC纯化(乙腈∶水)。通过冷冻干燥仪除去所述溶剂而提供所需的产物(75mg)。;1H-NMR(DMSO-d6)δ1.35-2.25(系列的m,11H),2.70(dd,J=10.8,13.6Hz,1H),2.85-3.00(m,2H),3.05-3.20(m,2H),3.25-3.40(m,1H),4.35-4.45(m,1H),7.06(br s,1H),7.10-7.30(m,7H),8.20(d,J=8.8Hz,1H),8.26(d,J=4.8Hz,1H);EIMS392.5(MH)+。分析结果(C19H29N5O4·0.28CF3COOH·0.65 H2O)C,H,N。
4-((S)-1-(4-胍基丁基氨基甲酰基)-2-(4-(苯基)苯基)乙基氨基甲酰基)丁酸
向N-FMOC-L-联苯丙氨酸A-1(0.21g,0.46mmol)在二氯甲烷中的溶液(4mL)中加入1-羟基苯并三唑(0.064g,0.48mmol)接着用EDAC·HCl(0.109g,0.57mmol)处理。将所述混合物在室温下搅拌30min然后加入N,N’-二-叔-丁氧羰基胍基丁胺A-2(0.47g,1.4mmol)并将混合物搅拌过夜。用水(20mL)骤冷所述反应,然后用DCM(3×10mL)萃取所述水层。将合并的有机层用盐水(20mL)清洗,通过MgSO4干燥,过滤并在减压下浓缩。将粗产物A-3直接采用到下一步。将产物A-3溶解在DCM(2.8mL)中然后用哌啶(0.4mL,4.0mmol)处理,将所述反应混合物在室温下搅拌4h然后在减压下除去所述溶剂而提供A-4。将粗胺A-4溶解在DCM(7.5mL)中然后用戊二酸酐(0.11g,0.99mmol)处理,将所述反应混合物过夜搅拌而提供中间体A-5,然后用TFA(1.3mL)处理并搅拌过夜。在减压下除去所述溶剂并用反相HPLC(乙腈∶水∶TFA)纯化所述粗产物A-6。通过冷冻干燥仪除去所述溶剂而提供所需的产物(70mg)。EIMS468.6(MH)+。4-((R)-1-(4-胍基丁基氨基甲酰基)-2-(4-(苯基)苯基)乙基氨基甲酰基)丁酸
从N-FMOC-D-联苯丙氨酸(0.21g,0.46mmol)出发,根据一般程序方法A2提供所需产物(57mg)。EIMS468.6(MH)+。

利用方法A1或A2合成的化合物的实例包括 利用方法A合成的

方法B
方法B1 Boc-D-Bip-(4-氨基丁酸苄酯)(B-3)
将Boc-D-Bip(4,4)苯丙氨酸(0.682g,2.0mmol)溶解在DCM(20mL)中然后加入三乙胺(0.84mL)接着是PyBOP(1.14g,2.2mmol)。将所述反应混合物搅拌10min然后加入4-氨基丁酸苄酯的pTsOH盐(0.77g,2.1mmol)。将反应混合物搅拌4h然后用水(40mL)骤冷反应。用DCM(3×20mL)萃取水层。将合并的有机层用饱和碳酸氢钠水溶液(80mL)、水(80mL)和盐水(80mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。用柱色谱法(硅胶,DCM至DCM∶MeOH 45∶1)纯化所述粗混合物而以90%的收率提供所需产物(0.92g,1.8mmol)。
NH2-D-Bip-(4-氨基丁酸苄酯)(B-4)
在冰浴中冷却含Boc保护的氨基酰胺(0.92g,1.8mmol)的烧瓶然后加入TFA(4.5mL)。将所述反应混合物加热到室温并搅拌1h,然后在减压下除去过量的TFA而提供残余物。将乙醚加入到所述粗残余物中然后在-20℃过夜保存,将所述混合物超声波处理而提供所需的作为白色固体(TFA盐)的产物(0.76g),通过过滤将其收集。
双-Cbz-5-胍基戊酸酰胺-D-Bip-(4-氨基丁酸苄酯)(B-6)
将双-Cbz-5-胍基戊酸(0.735g,1.72mmol)溶解在THF(3mL)中然后加入CDI(0.279,1.72mmol);几分钟后可以看见冒泡。在冒泡停止后将所述反应混合物另外搅拌20min。将前述的TFA氨基酰胺盐(0.76g,1.44mmol)加入到所述反应混合物并且在几分钟后所述溶液变澄清。将反应混合物搅拌直到形成的沉淀使进一步的搅拌不能进行为止。通过过滤收集固体,用醚和水漂洗。将产物(1.16g,1.4mmol)放置在高真空而除去残留的溶剂。
5-胍基戊酸酰胺-D-Bip-(4-氨基丁酸)(B-7)
将终产物前体(1.16g,1.40mmol)悬浮在DMF(7mL)中然后加入10% Pd/C(0.175mg)接着加入甲磺酸(0.095mL)。将搅拌的悬浮液放置在氢气氛(气球)下并搅拌20h。通过过滤除去所述固体并除去溶剂。通过反相HPLC(MeCN∶水 5∶95至85∶15,经过15min,通过冷冻干燥除去溶剂)纯化粗产物而提供所需产物(0.30g)。
方法B2 4-[(R)-3-联苯基-4-基-2-(5-胍基-戊酰基氨基)-丙酰基氨基]-丁酸
向N-Boc-D-联苯丙氨酸B-1(0.68g,2.0mmol)在DCM中的溶液(20mL)中加入三乙胺(0.84mL,6.0mmol)接着加入PyBOP,将得到的混合物搅拌10min。将反应混合物用4-氨基丁酸苄酯·对-甲苯磺酸B-2(0.77g,2.1mmol)处理所述反应混合物并搅拌4h。将反应用水(40mL)骤冷,并用DCM(3×20mL)萃取水层。将合并的有机层用饱和碳酸氢钠水溶液(80mL)、水(80mL)和盐水(80mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。用快速色谱法(flash chromatography)(DCM∶MeOH)纯化粗产物B-3。在圆底烧瓶中用冰浴冷却所述固体B-3(0.92g),然后用TFA(4.5mL)处理并搅拌1h。除去过量的TFA并用乙醚研制所述残余物。将固体B-4在-20℃过夜保存然后用过滤收集。不用进一步纯化,将所述TFA盐B-4用在下一步骤中。将5-N,N’-二苄氧基羰基胍基戊酸B-5(0.75g,1.76mmol)在THF中的溶液(3mL)用N,N’-羰二咪唑(0.29g,1.76mmol)处理并搅拌30min(直到停止冒泡)。向所述搅拌的溶液加入前面制造的B-4,将混合物搅拌2h直到不能再搅拌为止。用过滤收集所述固体B-6并用乙醚漂洗涤,然后不进一步纯化而用在下一步骤中。将固体B-6溶解在DMF(5.9mL)中并放置在氮气氛下,然后加入10%Pd/C,接着加入甲磺酸(0.085mL,1.23mmol)。将所述混合物放置在氢气氛下并搅拌过夜。然后将所述氢气氛用氮气替换并且用过滤除去所述固体。在减压下除去溶剂并用反相HPLC(乙腈∶水)纯化粗产物B-7。用冷冻干燥除去所述溶剂而提供所需产物(214mg)。MP分解的269℃;1H-NMR(DMSO-d6)δ1.30-1.70(系列的m,6H),1.85-1.95(m,1H),2.02(t,J=6.6Hz,2H),2.15-2.25(m,1H),2.77(dd,J=10.2,13.8Hz,1H),2.85-3.35(系列的m,5H),4.35-4.45(m,1H),7.06(br s,1H),7.25-7.4(m,3H),7.44(t,J=8.0Hz,2H),7.55(d,J=8.4Hz,2H),7.64(d,J=8.4Hz)8.18(t,J=5.0Hz,1H),8.26(d,J=8.8Hz,1H),9.93(br s,1H);EIMS468.7(MH)+。分析结果(C25H33N5O4·2.0H2O)C,H,N。
4-[(S)-3-联苯基-4-基-2-(5-胍基-戊酰基氨基)-丙酰氨基]-丁酸
从N-Boc-L-联苯丙氨酸(0.68g,2.0mmol)出发,根据一般程序方法B提供所需产物(303mg)。1H-NMR(DMSO-d6)δ1.30-1.70(系列的m,6H),1.85-1.95(m,1H),2.02(t,J=6.6Hz,2H),2.15-2.25(m,1H),2.77(dd,J=10.2,13.8Hz,1H),2.85-3.35(系列的m,5H),4.35-4.45(m,1H),7.06(br s,1H),7.25-7.4(m,3H),7.44(t,J=8.0Hz,2H),7.55(d,J=8.4Hz,2H),7.64(d,J=8.4Hz)8.18(t,J=5.0Hz,1H),8.26(d,J=8.8Hz,1H),9.81(br s,1H);EIMS468.7(MH)+。分析结果(C25H33N5O4·1.8H2O)C,H,N。
4-[(R)-3-苯基-2-(5-胍基-戊酰基氨基)-丙酰基氨基)-丁酸
从N-Boc-D-苯丙氨酸(0.53g,2.0mmol)出发,根据一般程序方法B提供所需产物(152mg)。1H-NMR(DMSO-d6)δ1.25-1.65(系列的m,6H),1.85-2.00(m,1H),2.03(t,J=7.0Hz,2H),2.10-2.20(m,1H),2.72(dd,J=10.0,13.6Hz,1H),2.85-3.25(系列的m,6H),4.33-4.43(m,1H),7.10-7.30(m,7H),8.11(t,J=5.2Hz,1H),8.16(d,J=8.8Hz,1H),9.17(br s,1H);EIMS392.5(MH)+。分析结果(C19H29N5O4·0.5MeSO3H·0.5H2O)C,H,N。
4-[(S)-3-苯基-2-(5-胍基-戊酰基氨基)-丙酰基氨基)-丁酸
从N-Boc-L-苯丙氨酸(0.53g,2.0mmol)出发,根据一般程序方法B提供所需产物(140mg)。1H-NMR(DMSO-d6)δ1.25-1.65(系列的m,6H),1.95-2.15(m,4H),2.03(t,J=7.0Hz,2H),2.10-2.20(m,1H),2.72(dd,J=10.0,13.6Hz,1H),2.90-3.15(系列的m,6H),4.35-4.50(m,1H),7.10-7.30(m,5H),7.50(br s,1H),8.07(t,J=5.4Hz,1H),8.13(d,J=8.4Hz,1H),8.60(br s,1H);EIMS392.5(MH)+。分析结果(C19H29N5O4·0.55MeSO3H.0.5H2O)C,H,N。

利用方法B合成的化合物的实例包括 利用方法B合成的
方法C
方法C 4-(2-(4-胍基丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)丁二酸
向N-FMOC-2-氨基1,2-二氢化茚-2-羧酸C-1(0.20g,0.50mmol)在二氯甲烷中的悬浮液(5mL)加入EDAC·HCl(0.10g,0.52mmol),经过30min所述混合物变澄清。将溶液用N,N’-二-叔-丁氧羰基胍基丁胺C-2(0.174g,0.53mmol)处理并搅拌3h。将所述溶液用水(15mL)骤冷然后用DCM(3×5mL)萃取水层。将合并的有机层用水(15mL)和盐水(15mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物C-3直接采用到下一步骤。将固体C-3溶解在DCM(4mL)中然后用4-(氨基甲基)哌啶,4-AMP,(0.54g,4.7mmol)处理,将所述反应混合物在室温下搅拌过夜然后用氯仿(9mL)稀释。将所述有机层用磷酸盐缓冲液pH5.5(3×15mL)、水(15ml)、盐水(15mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物C-4直接采用到下一步骤。将胺C-4(0.172g,0.47mmol)溶解在DCM(2.5mL)中然后用戊二酸酐(0.14g,1.2mmol)处理并在室温下搅拌4.5h。在减压下除去溶剂而提供残余物C-5,然后将其用TFA处理。将所述混合物搅拌2h然后将过量的TFA在减压下除去。将所述粗产物C-6溶解在DMF和水中,并用NaHCO3(0.10g,发生冒泡)处理。用反相HPLC(乙腈∶水)纯化粗产物C-6并且然后用冷冻干燥除去溶剂而提供所需的产物(46mg)。1H-NMR(DMSO-d6)1.45-1.75(系列的m,6H),2.00(t,J=7.0Hz,2H),2.10(t,J=6.6Hz,2H),3.00-3.15(m,4H),3.20(d,J=16.4Hz,2H),3.43(d,J=16.8Hz,2H),7.0-7.2(m,6H),8.21(s,1H);EIMS404.5(MH)+。分析结果(C201H29N5O4·0.5CF3COOH H2O·0.5H2O)C,H,N。
方法D
方法D 3-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丙酸
在0℃向N-FMOC-L-苯丙氨酸D-1(0.387g,1.0mmol)在二氯甲烷中的悬浮液(5mL)加入三乙胺(0.15mL,1.1mmol),所述混合物变澄清并且然后用TBTU(0.32g,1.0mmol)处理。将所述反应进行加热到室温并搅拌1.5h。将溶液用N,N’-二-叔-丁氧羰基胍基丁胺D-2(0.330g,1.0mmol)处理并搅拌1h 20min。将所述溶液用水(10mL)骤冷然后用DCM(3×5mL)萃取水层。将合并的有机层用水(15mL)和盐水(15mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物D-3直接采用到下一步骤。将固体D-3溶解在DCM(10mL)中然后用4-(氨基甲基)哌啶(1.2g,10.5mmol)处理,将所述反应混合物在室温下搅拌2h然后用氯仿(20mL)稀释。将所述有机层用盐水(2×30mL)、磷酸盐缓冲液pH5.5(3×30mL)、盐水(30ml)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物D-4直接采用到下一步骤。将胺D-4(0.228g,0.48mmol)悬浮在THF(1.5mL)中然后用丁二酸酐(0.055g,0.48mmol)处理并在室温下搅拌1.0h。在减压下除去溶剂而提供胶状残余物D-5。将所述残余物D-5溶解在DCM(2mL)中、冷却到0℃然后将用TFA(2mL)处理。将所述混合物搅拌3h并然后在减压下除去溶剂。将所述粗产物D-6溶解在水(2mL)中,并用NaHCO3(0.055g,发生冒泡)处理。用反相HPLC(乙腈∶水)纯化粗产物D-6并且然后用冷冻干燥除去溶剂而提供所需的产物(57mg)。1H-NMR(DMSO-d6)δ1.40-1.68(系列的m,4H),1.75-1.85(m,1H),2.05-2.40(系列的m,3H),2.72(dd,J=10.8,14.0Hz,1H),2.95-3.25(系列的m,5H),4.23-4.35(m,1H),7.03(br s,2H),7.15-7.30(m,5H),7.90(t,J=4.6Hz,1H),8.20(d,J=8.4Hz,1H);EIMS378.5(MH)+。分析结果(C18H27N5O4·0.07CF3COOH·2.10H2O)C,H,N。
4-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-2,2-二甲基丁酸
遵循一般程序方法D从N-FMOC-L-苯丙氨酸出发利用2,2-二甲基戊二酸酐作为环酸酐产生所需化合物(40mg)。1H-NMR(DMSO-d6)δ0.96(s,6H),1.30-2.15(系列的m,8H),2.73(dd,J=9.6,13.6Hz,1H),2.90-3.35(系列的m,6H),4.30-4.45(m,1H),7.03(br s,2H),7.10-7.35(m,7H),7.81(br s,1H),8.09(d,J=8.8Hz,1H),9.41(br s,1H);EIMS420.5(MH)+。分析结果(C21H33N5O4·0.47CF3COOH·0.2H2O)C,H,N. 3-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-2,2-二甲基丙酸
遵循一般程序方法D从N-FMOC-L-苯丙氨酸出发利用2,2-二甲基戊二酸酐作为环酸酐产生所需化合物(54mg)。1H-NMR(DMSO-d6)δ1.01(s,3H),1.15(s,3H),1.40-1.65(m,4H),1.74(d,J=13.6Hz,1H),2.37(d,J=13.6Hz,1H),2.71(dd,J=10.6,13.8Hz,1H),2.90-3.25(m,5H),4.20-4.21(m,1H),7.01(br s,2H),7.12-7.28(m,5H),8.09(d,,J=8.4Hz,2H),9.7(br s,1H);EIMS406.5(MH)+。分析结果(C20H31N5O4·0.2CF3COOH·1.0H2O)C,H,N。
3-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-二甲基丙酸
遵循一般程序方法D从N-FMOC-L-苯丙氨酸出发利用2,2-二甲基戊二酸酐作为环酸酐产生所需化合物(30mg)。1H-NMR(DMSO-d6)δ0.80(s,3H),0.84(s,3H),1.40-1.70(m,4H),2.04(d,J=14.8Hz,1H),2.56(d,J=14.8Hz,1H),2.83(dd,J=12.0,13.6Hz,1H),2.90-3.35(系列的m,5H),4.3-4.4(m,1H),6.90(s,2H),7.1-7.3(m,5H),7.56(d,J=8.8Hz,2H),8.28(s,1H),10.19(br s,1H);EIMS406.5(MH)+。分析结果(C20H31N5O4·0.2CF3COOH·1.0H2O)C,H,N。
方法E
方法E 3-((R)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-2,2-二甲基丙酸
在0℃向N-FMOC-D-苯丙氨酸五氟苯基酯E-1(0.556g,1.0mmol)在THF中的溶液(5mL)加入三乙胺(0.14mL,1.0mmol)接着是N,N’-二-叔-丁氧羰基胍基丁胺E-2(0.330g,1.0mmol)并搅拌30min。将所述反应进行升温到室温并搅拌4h。将所述反应用水(15mL)骤冷然后用DCM(3×10mL)萃取水层。将合并的有机层用水(30mL)和盐水(30mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩而提供固体E-3。将固体悬浮在己烷中,冷却到-20℃然后用过滤收集。将产物E-3直接采用到下一步骤。将固体E-3溶解在DCM(8mL)中然后用4-(氨基甲基)哌啶(1.2g,10.5mmol)处理,将所述反应混合物在室温下搅拌1h然后用氯仿(17mL)稀释。将所述有机层用盐水(35mL)、磷酸盐缓冲液pH5.5(3×30mL)、盐水(24ml)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将胺E-4(0.35g,0.73mmol)悬浮在THF(1.0mL)中然后用2,2-二甲基丁二酸酐(0.118g,0.92mmol)处理并在室温下搅拌1.5h。在减压下除去溶剂而提供不进一步纯化而直接采用到下一步的白色残余物E-5。将所述残余物溶解在异丙醇(5mL)中。将混合物在冰浴中冷却并且然后将HCl气体鼓泡通过所述溶液5min,接着在同样的温度下搅拌另外的45min。将混合物升温到室温并搅拌15min,然后在减压下除去溶剂。将粗产物E-6溶解在水(2.5mL)中,并用NaHCO3(0.065g,发生冒泡)处理。用反相HPLC(乙腈∶水)纯化粗产物E-6并且然后用冷冻干燥除去溶剂而提供所需的产物(56mg)。1H-NMR(DMSO-d6)δ1.00(s,3H),1.13(s,3H),1.40-1.65(m,4H),1.78(d,J=13.6Hz,1H),2.37(d,J=13.6Hz,1H),2.71(dd,J=10.6,13.8Hz,1H),2.90-3.25(m,5H),4.20-4.21(m,1H),7.06(br s,2H),7.12-7.28(m,5H),8.05-8.14(m,2H);EIMS406.5(MH)+。分析结果(C20H31N5O4·2.0H2O)C,H,N。
4-((R)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丁酸
在0℃向N-FMOC-D-苯丙氨酸五氟苯基酯E-1(0.56g,1.0mmol)在THF中的溶液(4.5mL)加入三乙胺(0.14mL,1.0mmol)接着用N,N’-二-叔-丁氧羰基胍基丁胺E-2(0.343g,1.0mmol)处理。将反应混合物在0℃下搅拌1h,然后将所述反应用水(15mL)骤冷。用DCM(3×10mL)萃取水层。将合并的有机层用水(25mL)、盐水(25mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将残余物E-3用乙醚沉淀然后除去所述乙醚,并用己烷研制残留的固体。用过滤收集所述固体并且不进一步纯化直接用在下一步中。将固体E-3溶解在DCM(10mL)中然后用4-(氨基甲基)哌啶(1.0g,8.8mmol)处理,将所述反应混合物在室温下搅拌1h然后用氯仿(18mL)稀释。将所述有机层用盐水(30mL)、磷酸盐缓冲液pH 5.5(3×30mL)、盐水(30ml)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将一部分粗产物E-4直接采用到下一步骤。将粗胺E-4(0.22g,0.46mmol)溶解在THF(2.5mL)中然后用戊二酸酐(0.11g,0.99mmol)处理并在室温下搅拌2h。在减压下除去溶剂而提供玻璃质残余物E-5。用乙醚将残余物超声波处理而提供在-20℃过夜保存的固体。除去所述乙醚并且然后将固体E-5溶解在DCM(2mL)中,冷却到0℃并用TFA处理。将混合物升温到室温并搅拌1h。在减压下除去溶剂并且将得到的残余物E-6溶解在水(2.5mL)中,然后用NaHCO3(发生冒泡)处理。用反相HPLC(乙腈∶水)纯化粗产物D-6并且然后用冷冻干燥仪除去溶剂而提供所需的产物(81mg)。1H-NMR(DMSO-d6)δ1.35-2.25(系列的m,11H),2.70(dd,J=10.8,13.6Hz,1H),2.85-3.00(m,2H),3.05-3.20(m,2H),3.25-3.40(m,1H),4.35-4.45(m,1H),7.10-7.30(m,7H),8.15-8.25(m,2H),9.57(br s,1H);EIMS392.5(MH)+。分析结果(C19H29N5O4·2.0H2O)C,H,N。
3-((R)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丙酸
遵循一般程序方法E从N-FMOC-D-苯丙氨酸五氟苯基酯出发利用丁二酸酐作为环酸酐产生90mg的所需化合物。1H-NMR(DMSO-d6)δ1.40-1.85(系列的m,5H),2.05-2.40(系列的m,3H),2.71(dd,J=11.6,14.0Hz,1H),2.95-3.35(系列的m,6H),4.20-4.35(m,1H),6.95(br s,2H),7.10-7.30(m,5H),7.89(t,J=4.4Hz,1H),8.22(d,J=8.4Hz,1H),10.0(s,1H);EIMS378.5(MH)+。分析结果(C18H27N5O4·0.11CF3COOH·1.44H2O)C,H,N。
4-((R)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-2,2-二甲基丁酸
遵循一般程序方法E从N-FMOC-D-苯丙氨酸五氟苯基酯出发利用2,2-二甲基戊二酸酐作为环酸酐产生所需化合物(72mg)。MP 169℃;1H-NMR(DMSO-d6)δ0.939(s,3H),0.942(s,3H),1.25-2.15(系列的m,8H),2.73(dd,J=9.6,13.6Hz,1H),2.85-3.35(系列的m,6H),4.30-4.45(m,1H),7.03(br s,2H),7.0-7.3(m,8H),7.74(s,1H),8.09(d,J=8.8Hz,1H),10.02(s,1H);EIMS420.5(MH)+。分析结果(C21H33N5O4·2.0H2O)C,H,N。
4-((R)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-3.3-二甲基丁酸
遵循一般程序方法E从N-FMOC-D-苯丙氨酸五氟苯基酯出发利用3,3-二甲基戊二酸酐作为环酸酐产生所需化合物(46mg)。1H-NMR(DMSO-d6)δ0.85(s,3H),0.99(s,3H),1.35-1.65(m,4H),1.93(s,2H),2.02(d,J=12.8,1H),2.13(d,J=12.8Hz,1H),2.70-3.20(系列的m,5H),2.56(d,J=14.8Hz,1H),2.83(dd,J=12.0,13.6Hz,1H),2.90-3.35(系列的m,5H),4.40(dd,J=7.8,13.8Hz,1H),7.0(br s,2H),7.1-7.3(m,5H),8.10(d,J=4.8Hz,1H),9.23(d,J=8.0Hz,1H),10.1(br s,1H);EIMS420.5(MH)+。分析结果(C21H33N5O4·0.25CF3COOH·2.04H2O)C,H,N。
4-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-四亚甲基丁酸
遵循一般程序方法E从N-FMOC-L-苯丙氨酸五氟苯基酯出发利用3,3-四亚甲基戊二酸酐作为环酸酐产生所需化合物(64mg)。1H-NMR(DMSO-d6)1.10-1.70(系列的m,12H),1.97(dd,J=11.4,19.8Hz,2H),2.04(d,J=13.6Hz,1H),2.22(d,J=13.6Hz,1H),2.77(dd,J=8.8,13.6Hz,1H),2.80-3.20(系列的m,4H)4.35-4.45(m,1H),6.95(s,2H),7.1-7.3(m,5H),8.26(d,J=5.6Hz,1H),8.77(d,J=8.4Hz,1H),10.0(br s,1H);EIMS446.5(MH)+。分析结果(C23H35N5O4·2.0H2O)C,H,N。
4-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-五亚甲基丁酸
遵循一般程序方法E从N-FMOC-L-苯丙氨酸五氟苯基酯出发利用1,1-环己烷二乙酸酐作为环酸酐产生所需化合物(24mg)。1H-NMR(DMSO-d6)1.10-1.60(系列的m,14H),1.95-2.10(m,3H),2.19(d,J=13.2Hz,1H),2.70-3.15(系列的,5H),4.40(dd,J=7.8,14.2Hz,1H),6.96(s,2H),7.1-7.3(m,5H),8.13(d,J=5.2Hz,1H),9.24(d,J=7.6Hz,1H),10.0(br s,1H);EIMS460.6(MH)+。分析结果(C24H37N5O4·2.0H2O)C,H,N。
4-((S)-1-(4-胍基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-二甲基丁酸
遵循一般程序方法E从N-FMOC-L-苯丙氨酸五氟苯基酯出发利用3,3-二甲基戊二酸酐作为环酸酐产生所需化合物(76mg)。1H-NMR(DMSO-d6)0.85(s,3H),0.99(s,3H),1.35-1.60(m,4H),1.93(s,2H),2.02(d,J=13.2Hz,1H),2.12(d,J=13.2Hz,1H),2.70-3.15(系列的,5H),4.40(dd,J=8.0,14.0Hz,1H),6.95(s,2H),7.1-7.3(m,5H),8.05-8.15(m,1H),9.22(d,J=8.0Hz,1H),10.09(s,1H);EIMS420.5(MH)+。分析结果(C21H33N5O4·1.3H2O)C,H,N。
方法F
方法F 4-((S)-1-(4-(2,3-二-叔-丁氧羰基胍基)丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丁酸
在0℃向N-FMOC-L-苯丙氨酸五氟苯基酯F-1(0.185g,0.33mmol)在THF中的溶液(1.5mL)加入三乙胺(0.05mL,0.36mmol)接着用N,N’-二-叔-丁氧羰基胍基丁胺F-2(0.111g,0.34mmol)处理。将所述反应混合物在0℃搅拌15min,然后将所述反应升温到室温并搅拌2h。将所述溶液用水(5mL)骤冷然后用DCM(3×5mL)萃取水层。将合并的有机层用水(10mL)和盐水(10mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩而提供直接在下一步中使用的中间体F-3。将固体F-3溶解在DCM(3mL)中,然后用4-(氨基甲基)哌啶(0.29g,2.5mmol)处理,将所述反应混合物在室温下搅拌3h然后用氯仿(8mL)稀释。将所述有机层用盐水(2×10mL)、磷酸盐缓冲液pH5.5(3×10mL)、盐水(10mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物F-4直接采用到下一步骤。将胺F-4溶解在THF(1.0mL)中然后用戊二酸酐(0.03g,0.26mmol)处理并在室温下搅拌1h。在减压下除去溶剂而提供粗产物。将粗产物F-5用反相HPLC(乙腈∶水)纯化而提供作为白色固体的所需化合物(17mg)。MP 86℃;1H-NMR(DMSO-d6)1.35-1.45(m,4H),1.38(s,9H),1.47(s,9H),1.50-1.65(m,2H),2.00-2.15(m,4H),2.60-3.35(系列的,7H),4.40-4.45(m,1H),6.95(s,2H),7.1-7.3(m,5H),7.96(t,J=5.6Hz,1H),8.06(d,J=8.4Hz,1H),8.26(t,J=5.4Hz,1H);EIMS592.7(MH)+。分析结果(C29H45N5O8·0.55H2O)C,H,N。

方法G N-(4-(45-二氢-1H-咪唑-2-基氨基)丁基)-2-(4-甲酰-4-甲基戊烷酰氨基)-2,3-二氢-1H-茚-2-甲酰胺
向N-Boc-2-氨基1,2-二氢化茚-2-羧酸G-1(0.55g,2.0mmol)在二氯甲烷中的悬浮液(20mL)加入EDAC·HCl(0.39g,2.0mmol),经过30min所述溶液变澄清。将所述溶液用N-苄氧羰基-1,4-二氨基丁烷氢氯化物G-2(0.52g,2.0mmol)接着是三乙胺(0.28mL,2.0mmol)处理并搅拌过夜。将所述反应用水(60mL)骤冷然后用DCM(3×20mL)萃取水层。将合并的有机层用水(50mL)和盐水(50mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。在不进一步纯化的情况下,将粗产物G-3用在下一步骤中。将固体G-3溶解在乙酸乙酯(10mL)和乙醇(10mL)的混合物中,放置在氮气氛下,然后加入10% Pd/C(0.44g)。将所述混合物放置在氢气(气球)下并搅拌6h。然后用氮气替换氢气氛并且用过滤除去所述固体。在减压下除去所述溶剂并且用己烷∶乙醚超声波处理残余物而提供不用进一步纯化而用在下一步骤中的白色固体G-4。将中间体胺G-4(0.42g,1.2mmol)溶解在用2-甲硫基-2-咪唑啉氢碘化物G-5(0.30g,1.2mmol)处理的乙腈(8.5mL)中并回流3h。在减压下除去所述溶剂然后加入乙醚并再次在减压下除去而提供作为白色泡沫的G-6。将得到的白色泡沫G-6溶解在异丙醇(8mL)中。将得到的溶液在冰浴中冷却然后将HCl气体鼓泡通过所述溶液5min,将混合物另外搅拌15min然后在减压下除去所述溶剂。将残余物G-7溶解在DMF(8.5mL)中然后加入三乙胺(0.18mL,1.29mmol)接着是2,2-二甲基戊二酸酐并且将所述混合物搅拌过夜。在减压下除去所述溶剂并将残余物G-8溶解在水(1mL)中并用NaHCO3(0.2g)处理。用反相HPLC(乙腈∶水)纯化粗产物G-8并且然后在冷冻干燥机上除去溶剂而提供所需的产物(79mg)。1H-NMR(DMSO-d6)δ0.95(s,6H),1.40(br s,4H),1.59(t,J=7.8Hz,2H),2.07(t,J=7.8Hz,2H),3.06(br s,4H),3.13(d,J=16.8Hz,2H),3.43(d,J=16.8Hz,2H),3.54(br s,4H),7.05-7.20(m,4H),7.56(t,J=5.4Hz,1H),7.96(s,1H),8.09(br s,1H),11.0(br s,1H),11.1(br s,1H);EIMS458.5(MH)+。分析结果(C24H35N5O4·2.12H2O)C,H,N。
方法H
方法H N-((R)-1-(4-(4,5-二氢-1H-咪唑-2-基氨基)丁基氨基甲酰基)-2-苯乙基)-4-甲酰基丁酰胺
在0℃下向N-Boc-D-苯丙氨酸H-1(0.27g,1.0mmol)在DCM中的溶液(10mL)加入PyBOP(0.52g,1.0mmol),将得到的混合物搅拌5min然后升温至室温并搅拌另外的30min。将所述溶液用N-苄氧羰基-1,4-二氨基丁烷氢氯化物H-2(0.26g,1.0mmol)接着是三乙胺(0.44mL,3.2mmol)处理并搅拌4h。将所述反应用水(20mL)骤冷然后用DCM(3×10mL)萃取水层。将合并的有机层用水(30mL)、盐水(30mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将残余物用乙醚∶己烷研制并用过滤收集所述固体H-3。将得到的固体H-3溶解在乙酸乙酯(2mL)和乙醇(4mL)的混合物中,放置在氮气氛下,然后加入10% Pd/C(0.10g)。将所述混合物放置在氢气(气球)下并搅拌6h。然后用氮气替换氢气氛并且用过滤除去所述固体。在减压下除去所述溶剂并且用己烷∶乙醚超声波处理残余物而提供白色固体H-4,其通过过滤收集并不用进一步纯化而用在下一步骤中。将中间体胺H-4(0.145g,0.43mmol)溶解在用2-甲硫基-2-咪唑啉氢碘化物H-5(0.10g,0.43mmol)处理的乙腈(3.0mL)中并回流2h。将所述混合物进行冷却到室温并在减压下除去所述溶剂。将残余物用乙醚处理并且然后在减压下除去所述乙醚而提供作为白色泡沫的H-6。将中间体H-6溶解在甲醇(5mL)中并冷却到0℃然后将HCl气体鼓泡通过所述溶液5min。在减压下除去溶剂并且将粗产物H-7直接用在下一步骤中。将残余物H-7溶解在THF(2.5mL)、DMF(3.0mL)和DCM(2mL)的混合物中然后加入三乙胺(0.12mL,0.86mmol),接着是戊二酸酐。将混合物搅拌4h然后在减压下除去所述溶剂。将残余物溶解在水(2mL)和DMSO(数滴)中并且用NaHCO3(0.088g,发生冒泡)处理。用反相HPLC(乙腈∶水)纯化粗产物H-8并且然后用冷冻干燥除去溶剂而提供所需的产物(22mg)。1H-NMR(DMSO-d6)1.25-2.25(系列的m,11H),2.69(dd,J=10.8,13.6Hz,1H),2.85-3.20(系列的m,5H),3.54(s,4H),4.35-4.45(m,1H),7.1-7.3(m,5H),8.09(d,J=4.8Hz,1H),8.19(d,J=8.8Hz,1H),10.8(br s,1H),10.9(br s,1H);EIMS418.5(MH)+。分析结果(C21H31N5O4·2.0H2O)C,H,N。
方法I

方法I 4-(2-(4-氨基丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)丁酸
向N-Boc-2-氨基1,2-二氢化茚-2-羧酸I-1(0.55g,2.0mmol)在二氯甲烷中的悬浮液(20mL)加入EDAC·HCl(0.40g,2.1mmol),经过30min所述溶液变澄清。将所述溶液用N-苄氧羰基-1,4-二氨基丁烷氢氯化物I-2(0.53g,2.0mmol)接着是三乙胺(0.28mL,2.0mmol)处理并搅拌过夜。将所述反应用水(40mL)骤冷然后用DCM(3×15mL)萃取水层。将合并的有机层用水(40mL)和盐水(40mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将得到的残余物用乙酸乙酯∶己烷处理而提供用过滤收集的白色固体I-3,并且不用进一步纯化而用在下一步骤中。将固体I-3溶解在DCM(10mL)中,冷却到0℃并用TFA(10mL)处理。将反应混合物搅拌30min然后升温至室温并搅拌3h,随后将所述溶剂在减压下除去。将残余物溶解在氯仿(30mL)中并且然后将有机溶液用饱和NaHCO3水溶液(20mL)、盐水(20mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物I-4直接采用到下一步骤中。将胺I-4(0.62,1.63mmol)溶解在THF(6.6mL)中然后用戊二酸酐(0.186g,1.63mmol)处理并在室温下搅拌过夜。加入另外的戊二酸酐(0.009g,0.08mmol)和三乙胺(0.05mL,0.34mmol),将混合物搅拌过夜并且然后在减压下除去溶剂。将残余物溶解在DCM(15mL)中并且用1M HCl(15mL)分配。将水层用DCM(2×10mL)萃取。将合并的有机层用水(25mL)、盐水(20mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物I-5直接用在下一步骤中。在氮气氛下将中间体I-5溶解在THF中然后加入10% Pd/C接着是甲醇。将所述混合物放置在氢气氛(气球)下并搅拌过夜。在氮气下放置所述混合物然后用过滤除去所述固体。在减压下除去溶剂。将粗产物1-6用反相HPLC(乙腈∶水)纯化而提供作为白色固体的所需产物(151mg)。MP 132℃;1H-NMR(DMSO-d6)1.40-1.50(m,2H),1.50-1.60(m,2H),1.60-1.70(m,2H),1.98(t,J=6.8Hz,2H),2.08(t,J=6.6Hz,2H),2.71(t,J=7.4Hz,2H),3.07(dd,J=5.4,11.0Hz,2H),3.17(d,J=16.8Hz,2H),3.43(d,J=16.8Hz,2H),7.1-7.2(m,4H),8.17(t,J=5.2Hz,1H),8.30-8.40(m,1H);EIMS362.7(MH)+。分析结果(C19H27N3O4·3.75H2O)C,H,N。
方法J
方法J 4-(2-(4-(2-氰基胍基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)丁酸
将I-8(0.140g,0.39mmol)在异丙醇中的溶液(5mL)用氰基碳亚胺酸二苯酯(diphenyl cyanocarbonimidate)J-1(0.093g,0.39mmol)处理并回流加热3h。将混合物进行冷却到室温并且然后在减压下除去所述溶剂。将粗原料J-2直接采用到下一步骤中。将残余物J-2溶解在乙醇(6mL)中然后冷却到0℃并将氨气鼓泡通过所述溶液。将反应容器密封并且在室温下搅拌所述混合物17h。然后将容器在盖处开口并在减压下除去溶剂。用反相HPLC(乙腈∶水)纯化粗产物J-3而提供作为白色固体的所需化合物(22mg)。MP 105℃;1H-NMR(DMSO-d6)1.38(s,4H),1.60-1.70(m,2H),2.05-2.20(m,4H),2.95-3.08(m,4H),3.13(d,J=16.8Hz,2H),3.44(t,J=16.8Hz,2H),6.75(br s,2H),7.05-7.20(m,5H),7.78(br s,1H),8.20(s,1H);EIMS429.5(MH)+。分析结果(C21H28N6O4·1.00H2O)C,H,N。
方法K
方法K 4-((S)-1-(4-氨基丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丁酸
在0℃向N-FMOC-L-苯丙氨酸五氟苯基酯K-1(0.56g,1.0mmol)在THF中的溶液(4.5mL)加入三乙胺(0.14mL,1.0mmol)接着用N-(4-氨基丁基)氨基甲酸叔丁酯K-2(0.195mL,1.0mmol)处理。将反应混合物升温至室温并搅拌3h。将反应用水(15mL)骤冷并用DCM(3×15mL)萃取水层。将合并的有机层用水(50mL)、盐水(50mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将残余物用乙醚沉淀然后除去乙醚并用乙酸乙酯∶己烷研制残留的固体。用过滤收集所述固体K-3并且不用进一步纯化而直接用在下一步骤中。将固体K-3溶解在DCM(11mL)中然后用4-(氨基甲基)哌啶(1.0g,8.8mmol)处理,将反应混合物在室温下搅拌1h然后用氯仿(25mL)稀释。将所述有机层用盐水(2×30mL)、磷酸盐缓冲液pH5.5(3×30mL)、盐水(30mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物K-4直接采用到下一步骤。将胺K-4(0.30g,0.89mmol)溶解在THF(3.5mL)中然后用戊二酸酐(0.11g,0.99mmol)处理并在室温下搅拌3h。通过加入乙醚和乙酸乙酯沉淀产物K-5。将所述固体K-5用过滤收集。将固体K-5悬浮在DCM(3.5mL)中,冷却到0℃并用TFA(3.5mL)处理。将所述混合物在0℃搅拌30min然后升温至室温并搅拌2h。在减压下除去所述溶剂。将粗产物K-6溶解在水(1mL)和DMF(1mL)中并且然后用NaHCO3(0.063g,发生冒泡)处理并且用反相HPLC(乙腈∶水)纯化而提供作为白色固体的所需化合物(12mg)。MP 192-206℃;1H-NMR(DMSO-d6和D2O)1.25-1.60(系列的m,6H),1.92(t,J=7.6Hz,2H),2.00-2.10(m,2H)2.65-2.80(m,3H),2.90-3.05(m,3H),4.31(dd,J=5.6,9.6Hz,1H),7.10-7.30(m,5H);EIMS350.5(MH)+。分析结果(C18H27N3O4·0.55CF3COOH·0.45H2O)C,H,N。
方法L
方法L 4-((R)-1-(4-(2-氰基胍基)丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丁酸
遵循一般程序方法K从N-FMOC-D-苯丙氨酸五氟苯基酯出发提供中间体K-6。将中间体K-6(0.192g,0.55mmol)溶解在异丙醇(8mL)和三乙胺(0.08mL,0.57mmol)中然后加入氰基碳亚胺酸二苯酯L-1(0.13g,0.55mmol)并将搅拌的混合物加热回流。将混合物在回流下搅拌过夜然后升温至室温。将另一部分的氰基碳亚胺酸二苯酯L-1(0.072g,0.30mmol)和三乙胺(0.05mL,0.36mmol)加入到反应混合物并且然后将所述混合物回流加热过夜。将混合物进行冷却到室温并且然后在减压下除去所述溶剂。将粗原料L-2直接采用到下一步骤。将残余物L-2溶解在乙醇(8.5mL)中然后冷却到0℃并且将氨气鼓泡通过所述溶液3min。将反应容器密闭并在室温下将所述反应混合物搅拌22h。然后将所述容器在盖处开孔并在减压下除去溶剂。用反相HPLC(乙腈∶水)纯化粗产物L-3而提供作为白色固体的所需产物(10mg)。MP 63℃;1H-NMR(DMSO-d6)0.9-1.0(m,3H),1.2-1.4(m,5H),1.5-1.7(m,2H),1.9-2.2(m,4H),2.6-2.8(m,1H),2.85-3.15(m,6H),4.3-4.5(m,1H),6.82(br s,2H),7.1-7.3(m,6H),7.95-8.15(m,2H);EIMS417.5(MH)+。分析结果(C20H28N6O4·0.4EtOH·1.20H2O)C,H,N。
方法M
方法M 4-((S)-1-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2-苯乙基氨基甲酰基)丁酸
向N-Boc-L-苯丙氨酸M-1(0.53g,2.0mmol)在二氯甲烷中的溶液(15mL)加入1-羟基苯并三唑(0.27g,2.0mmol)接着是EDAC·HCl(0.39g,2.0mmol),经过30min所述混合物变澄清。将所述溶液用N-苄氧羰基-1,4-二氨基丁烷氢氯化物M-2(0.52g,2.0mmol)接着是三乙胺(0.3mL,2.0mmol)处理并搅拌5h。将所述反应用水(30mL)骤冷然后用DCM(3×10mL)萃取水层。将合并的有机层用水(50mL)、盐水(30mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物M-3用乙酸乙酯∶己烷研制而提供用过滤收集的白色固体。不用进一步纯化而将产物M-3用在下一步骤。将固体M-3溶解在放置在氮气氛下的THF(4.5mL)中,然后加入10% Pd/C(0.084g),接着加入甲醇(8.5mL)。将所述混合物放置在氢气(气球)下并搅拌过夜。然后用氮气替换氢气氛并且用过滤除去所述固体。在减压下除去所述溶剂而提供不用进一步纯化而用在下一步骤中的固体M-4。将中间体M-4(0.285g,0.85mmol)溶解在乙醇(4mL)中然后用2-氯嘧啶M-5(0.196g,1.7mmol)和二异丙基乙胺(0.3mL,1.7mmol)处理。将反应混合物回流22h然后进行冷却到室温。在减压下除去所述溶剂而提供产物M-6。将残余物溶解在DCM(20mL)中并且然后用水(25mL)分配。用DCM(3×15mL)萃取水层。将合并的有机层用水(25mL)和盐水(25mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。不用进一步纯化,将粗产物M-6用在下一步骤中。将固体M-6溶解在DCM(3.5mL)中,冷却到0℃并用TFA(3.5mL)处理。将反应混合物搅拌30min然后升温至室温并搅拌2h,随后在减压下除去溶剂。将粗产物M-7直接采用到下一步骤。将胺M-7溶解在THF(3.5mL)和三乙胺(0.22mL)的混合物中然后用戊二酸酐(0.094g,0.82mmol)处理所述混合物并在室温下搅拌过夜。用反相HPLC(乙腈∶水)纯化粗产物M-8而提供作为白色固体的所需化合物(45mg)。MP186℃;1H-NMR(DMSO-d6)1.30-1.70(系列的m,6H),1.95-2.15(m,4H),2.71(br t,J=11.8Hz,1H),2.85-3.15(m,3H),3.21(br d,J=6.0Hz,2H),4.35-4.50(m,1H),6.45-6.55(m,1H),7.10-7.30(m,6H),7.96(br s,1H),8.05(d,J=8.0Hz,1H),8.23(br d,J=4.4Hz,2H);EIMS428.5(MH)+。分析结果(C22H29N5O4)C,H,N。
4-{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-丁酸
遵循一般程序方法M从N-Boc-L-联苯丙氨酸出发提供作为白色固体的所需化合物(56mg)。MP 228℃;1H-NMR(DMSO-d6)1.35-1.50(m,4H),1.55-1.65(m,2H),2.00-2.15(m,4H),2.77(dd,J=9.6,13.6Hz,1H),2.90-3.15(m,4H),3.21(dd,J=6.6,12.6Hz,2H),4.40-4.55(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.35(m,3H),7.43(t,J=7.6Hz,2H),7.54(d,J=8.4Hz,2H),7.62(d,J=7.2Hz,2H),8.01(t,J=5.4Hz,1H),8.11(d,J=8.4Hz,1H),8.2-8.3(m,2H);EIMS504.3(MH)+。分析结果(C28H33N5O4)C,H,N。
4-{(R)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-丁酸
遵循一般程序方法M从N-Boc-D-联苯丙氨酸出发提供作为白色固体的所需化合物(50mg)。MP 227℃;1H-NMR(DMSO-d6)1.30-1.70(系列的m,6H),2.00-2.15(m,4H),2.77(dd,J=9.6,13.2Hz,1H),2.90-3.15(m,3H),3.21(q,J=6.4Hz,2H),4.40-4.55(m,1H),6.51(t,J=4.8Hz,1H),7.12(t,J=5.8Hz,1H),7.25-7.40(m,3H),7.43(t,J=7.6Hz,2H),7.54(d,J=8.0Hz,2H),7.62(d,J=7.2Hz,2H),8.00(t,J=5.6Hz,1H),8.10(d,J=8.8Hz,1H),8.23(d,J=4.8Hz,2H);EIMS504.3(MH)+。分析结果(C28H33N5O4·0.20H2O)C,H,N。
4-((R)-1-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-2,2-二甲基丁酸
遵循一般程序方法M从N-Boc-D-苯丙氨酸出发提供所需化合物(60mg)。1H-NMR(DMSO-d6)1.01(s,6H),1.30-1.60(m,6H),1.90-2.10(m,2H),2.71(dd,J=9.6,13.6Hz,1H),2.80-3.15(系列的m,3H),3.21(q,J=6.6Hz,2H),4.35-4.45(m,1H),6.51(t,J=4.6Hz,1H),7.05-7.25(m,6H),7.95(t,J=5.6Hz,1H),8.08(d,J=8.4Hz,1H),8.23(d,J=4.8Hz,1H);EIMS456.5(MH)+。分析结果(C24H33N5O4·0.08CF3COOH)C,H,N。
4-((R)-1-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-二甲基丁酸
遵循一般程序方法M从N-Boc-D-苯丙氨酸出发提供所需化合物(64mg)。1H-NMR(DMSO-d6)0.83(s,3H),0.86(s,3H),1.30-1.50(m,4H),2.05-2.20(m,4H),2.71(dd,J=9.8,13.8Hz,1H),2.85-3.15(系列的m,3H),3.21(q,J=6.4Hz,2H),4.40-4.55(m,1H),6.51(t,J=4.6Hz,1H),7.05-7.30(m,6H),7.96(t,J=5.6Hz,1H),8.08(d,J=8.4Hz,1H),8.23(d,J=4.8Hz,1H);EIMS456.5(MH)+。分析结果(C24H33N5O4·0.08CF3COOH·0.02MeCN)C,H,N。
N-{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基}-丁二酸
遵循一般程序方法M从N-Boc-L-联苯丙氨酸出发提供所需化合物(72mg)。MP 200-205℃;1H-NMR(DMSO-d6)1.30-1.60(m,4H),2.20-2.40(m,4H),2.70-3.15(系列的m,4H),3.21(q,J=6.2Hz,2H),4.40-4.50(m,1H),6.51(t,J=4.6Hz,1H),7.12(t,J=5.6Hz,1H),7.29(d,J=8.4Hz,2H),7.34(d,J=7.2Hz,1H),7.44(t,J=7.6Hz,2H),7.55(d,J=8.0Hz,2H),7.63(d,J=7.6Hz,2H),7.93(t,J=5.4Hz,1H),8.15-8.30(m,3H);EIMS490.6(MH)+。分析结果(C27H31N5O4)C,H,N。
4-{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3,3-四亚甲基丁酸
遵循一般程序方法M从N-Boc-L-联苯丙氨酸出发提供所需化合物(72mg)。MP 95-102℃;1H-NMR(DMSO-d6)1.10-1.60(m,12H),2.10-2.40(m,4H),2.76(dd,J=10,13.6Hz,1H),2.90-3.15(m,3H),3.22(q,J=6.4Hz,2H),4.45-4.60(m,1H),6.51(t,J=4.8Hz,1H),7.12(t,J=5.8Hz,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.54(d,J=8.4Hz,2H),7.61(d,J=8.4Hz,2H),7.99(t,J=5.6Hz,1H),8.13(d,J=8.4Hz,1H),8.15-8.30(m,2H);EIMS558.5(MH)+。分析结果(C32H39N5O4·0.25H2O)C,H,N。
4-{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3.3-五亚甲基丁酸
遵循一般程序方法M从N-Boc-L-联苯丙氨酸出发提供所需化合物(97mg)。MP 96-110℃;1H-NMR(DMSO-d6)1.00-1.60(m,14H),2.10-2.40(m,4H),2.76(dd,J=10.4,13.6Hz,1H),2.95-3.15(m,3H),3.22(q,J=6.4Hz,2H),4.50-4.60(m,1H),6.51(t,J=4.8Hz,1H),7.12(t,J=5.6Hz,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.54(d,J=8.4Hz,2H),7.61(d,J=7.6Hz,2H),8.01(t,J=5.6Hz,1H),8.17(d,J=8.4Hz,1H),8.20-8.30(m,2H);EIMS572.8(MH)+。分析结果(C33H41N5O4·0.30H2O)C,H,N。
4-{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3,3-二甲基丁酸
遵循一般程序方法M从N-Boc-L-联苯丙氨酸出发提供所需化合物(72mg)。MP 66-89℃;1H-NMR(DMSO-d6)0.84(s,3H),0.87(s,3H),1.30-1.60(m,4H),2.0-2.2(m,4H),2.77(dd,J=10.0,13.6Hz,1H),2.90-3.15(m,3H),3.22(q,J=6.4Hz,2H),4.40-4.60(m,1H),6.53(t,J=4.8Hz,1H),7.15-7.25(m,1H),7.28-7.37(m,3H),7.43(t,J=7.6Hz,2H),7.54(d,J=8.4Hz,2H),7.57-7.65(m,2H),8.00(t,J=5.6Hz,1H),8.10(d,J=8.4Hz,1H),8.27(d,J=4.8Hz,2H);EIMS532.5(MH)+。分析结果(C30H37N5O4·1.00H2O)C,H,N。
4-{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-2,2-二甲基丁酸
遵循一般程序方法M从N-Boc-L-联苯丙氨酸出发提供所需化合物(91mg)。MP 76-101℃;1H-NMR(DMSO-d6)1.01(s,6H),1.30-1.70(系列的m,6H),1.95-2.10(m,2H),2.76(dd,J=9.6,13.6Hz,1H),2.90-3.15(m,3H),3.21(q,J=6.2Hz,2H),4.40-4.50(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.37(m,3H),7.44(t,J=7.6Hz,2H),7.54(d,J=8.4Hz,2H),7.63(d,J=7.2Hz,2H),7.99(t,J=5.6Hz,1H),8.12(d,J=8.4Hz,1H),8.26 (d,J=4.6Hz,2H);EIMS532.5(MH)+。分析结果(C30H37N5O4·0.5H2O)C,H,N。
4-{(R)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3,3-五亚甲基丁酸
遵循一般程序方法M从N-Boc-D-联苯丙氨酸出发提供所需化合物(97mg)。MP 88-105℃;1H-NMR(DMSO-d6)1.00-1.60(系列的m,14H),2.10-2.40(m,4H),2.74(dd,J=10.2,13.8Hz,1H),2.90-3.15(m,3H),3.20(q,J=6.2Hz,2H),4.50-4.60(m,1H),6.49(t,J=4.6Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.35(m,3H),7.42(t,J=7.6Hz,2H),7.53(d,J=8.0Hz,2H),7.60(d,J=7.2Hz,2H),7.99(t,J=5.6Hz,1H),8.15(d,J=8.4Hz,1H),8.20-8.30(m,2H);EIMS572.7(MH)+。分析结果(C33H41N5O4·0.50 H2O)C,H,N。
N-{(R)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基}-丁二酸
遵循一般程序方法M从N-Boc-D-联苯丙氨酸出发提供所需化合物(70mg)。MP 200-207℃;1H-NMR(DMSO-d6)1.30-1.60(m,4H),2.20-2.40(m,4H),2.74(dd,J=9.2,13.6Hz,1H),2.90-3.15(m,3H),3.21(q,J=6.4Hz,2H),4.40-4.50(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.35(m,3H),7.44(t,J=7.6Hz,2H),7.55(d,J=8.4Hz,2H),7.63(d,J=7.2Hz,2H),7.94(t,J=5.6Hz,1H),8.18(d,J=8.4Hz,1H),8.20-8.30(m,2H);EIMS490.6(MH)+.分析结果(C27H31N5O4·0.50H2O)C,H,N。
4-{(R)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3,3-四亚甲基丁酸
遵循一般程序方法M从N-Boc-D-联苯丙氨酸出发提供所需化合物(85mg)。MP 85-98℃;1H-NMR(DMSO-d6)1.10-1.60(系列的m,12H),2.10-2.40(m,4H),2.76(dd,J=10.0,13.6Hz,1H),2.95-3.15(m,3H),3.22(q,J=6.2Hz,2H),4.45-4.60(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.54(d,J=8.0Hz,2H),7.61(d,J=6.8Hz,2H),7.99(t,J=5.6Hz,1H),8.13(d,J=8.4Hz,1H),8.20-8.30(m,2H);EIMS490.6(MH)+。分析结果(C27H31N5O4·0.50 H2O)C,H,N。
4-{(R)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3,3-二甲基丁酸
遵循一般程序方法M从N-Boc-D-联苯丙氨酸出发提供所需化合物(85mg)。MP 77-95℃;1H-NMR(DMSO-d6)0.84(s,3H),0.87(s,3H),1.30-1.60(m,4H),2.00-2.20(m,4H),2.77(dd,J=9.6,13.6Hz,1H),2.90-3.15(m,3H),3.21(q,J=6.4Hz,2H),4.45-4.60(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.40(m,3H),7.43(t,J=7.6Hz,2H),7.54(d,J=8.0Hz,2H),7.61(d,J=7.2Hz,2H),7.99(t,J=5.6Hz,1H),8.12(d,J=8.4Hz,1H),8.20-8.30(m,2H);EIMS532.5(MH)+。分析结果(C30H37N5O4·0.50H2O)C,H,N。
4-(2-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-3,3-四亚甲基丁酸
遵循一般程序方法M从N-Boc-2-氨基1,2-二氢化茚-2-羧酸出发提供所需化合物(85mg)。MP 77-95℃;1H-NMR(DMSO-d6)1.30-1.60(m,12H),2.23(s,2H),2.29(s,2H),3.06(q,J=6.2Hz,2H),3.12(d,J=16.4Hz,2H),3.22(q,J=6.6Hz,2H),3.43(d,J=16.8Hz,2H),6.52(t,J=4.8Hz,1H),7.05-7.20(m,5H),7.64(t,J=5.8Hz,1H),8.20-8.30(m,3H);EIMS532.5(MH)+。分析结果(C30H37N5O4·0.50H2O)C,H,N。
4-(2-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-3,3-二甲基丁酸
遵循一般程序方法M从N-Boc-2-氨基1,2-二氢化茚-2-羧酸出发提供所需化合物(21mg)。MP 70-83℃;1H-NMR(DMSO-d6)0.93(s,6H),1.30-1.60(m,4H),2.07(s,1H),2.11(s,2H),2.16(s,2H),3.06(q,J=6.8Hz,2H),3.13(d,J=16.4Hz,2H),3.22(q,J=6.4Hz,2H),3.43(d,J=16.8Hz,2H),6.52(t,J=4.8Hz,1H),7.05-7.20(m,5H),7.64(t,J=6.0Hz,1H),8.20-8.30(m,3H);EIMS468.6(MH)+。分析结果(C25H33N5O4·1.10H2O)C,H,N。
4-{(R)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-2,2-二甲基丁酸
遵循一般程序方法M从N-Boc-D-联苯丙氨酸出发提供所需化合物(62mg)。MP 85-98℃;1H-NMR(DMSO-d6)1.01(s,6H),1.30-1.70(系列的m,6H),1.90-2.10(m,2H),2.76(dd,J=9.6,13.6Hz,1H),2.90-3.15(m,3H),3.21(q,J=6.2Hz,2H),4.40-4.50(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.54(d,J=8.4Hz,2H),7.62(d,J=8.0Hz,2H),7.98(t,J=5.4Hz,1H),8.12(d,J=8.4Hz,1H),8.26(d,J=4.8Hz,2H);EIMS532.5(MH)+。分析结果(C30H37N5O4·0.75H2O)C,H,N。
4-(2-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-3,3-五亚甲基丁酸
遵循一般程序方法M从N-Boc-2-氨基1,2-二氢化茚-2-羧酸出发提供所需化合物(40mg)。MP 89-98℃;1H-NMR(DMSO-d6)1,20-1.55(m,15H),2.21(s,2H),2.27(s,2H),3.06(q,J=6.4Hz,2H),3.13(d,J=16.4Hz,2H),3.22(q,J=6.4Hz,2H),3.42(d,J=16.8Hz,2H),6.52(t,J=4.6Hz,1H),7.05-7.20(m,5H),7.65(t,J=5.8Hz,1H),8.20-8.30(m,3H);EIMS508.6(MH)+。分析结果(C28H37N5O4·0.80H2O)C,H,N。
方法N
方法N 戊二酸{(S)-2-联苯基-4-基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]乙基)-酰胺(1H-四唑-5基)-酰胺
将M-8(0.203g,0.40mmol)在THF中的悬浮液(3mL)用N,N′-羰二咪唑(0.071g,0.44mmol)处理并加热到60℃保持30min。将所述混合物冷却到室温然后加入DMF(0.5mL),它提供澄清的溶液。将所述溶液加热到60℃保持15min然后进行冷却到室温并用三乙胺(0.063mL,0.45mmol)接着用5-氨基四唑(0.035g,0.40mmol)处理。将所述混合物回流加热5h然后进行冷却到室温。在减压下除去溶剂然后加入10%的柠檬酸并用过滤收集得到的沉淀。用反相HPLC纯化粗产物N-1而提供作为白色固体的所需化合物(23mg)。MP 237℃分解的;1H-NMR(DMSO-d6)1.3-1.5(m,4H),1.65-1.80(m,2H),2.05-2.15(m,2H),2.20-2.40(m,2H),2.77(dd,J=9.6,13.6Hz,1H),2.90-3.15(m,4H),3.21(dd,J=6.4,12.8Hz,2H),4.40-4.55(m,1H),6.51(t,J=4.8Hz,1H),7.11(t,J=5.8Hz,1H),7.25-7.35(m,3H),7.39(t,J=7.4Hz,2H),7.54(d,J=8.0Hz,2H),7.58(d,J=7.2Hz,2H),8.02(t,J=5.6Hz,1H),8.13(d,J=8.4Hz,1H),8.2-8.3(m,2H);EIMS571.5(MH)+.分析结果(C29H34N10O3·0.21柠檬酸)C,H,N。
方法O
方法O (R)-4-(2-(4-(哌啶-2-基氨基)丁基氨基甲酰基3-2,3-二氢-1H-茚-2-基氨基甲酰基)-4-乙酰氨基丁酸
向N-Boc-2-氨基1,2-二氢化茚-2-羧酸O-1(0.56g,2.0mmol)在二氯甲烷中的悬浮液(20mL)加入EDAC·HCl(0.38g,2.0mmol),经过30min所述混合物变澄清。将所述溶液用N-苄氧羰基-1,4-二氨基丁烷氢氯化物O-2(0.52g,2.0mmol)接着用三乙胺(0.3mL,2.0mmol)处理并搅拌过夜。将所述反应用水(30mL)骤冷然后用DCM(3×10mL)萃取水层。将合并的有机层用水(50mL)和盐水(30mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。不用进一步纯化,将粗产物O-3用在下一步骤中。将所述固体O-3溶解在THF(8.8mL)中然后在氮气氛下加入10% Pd/C(0.44g),接着是甲醇(17.5mL)。将所述混合物放置在氢气(气球)下并搅拌过夜。然后用氮气替换氢气氛并用过滤除去所述固体。在减压下除去所述溶剂而提供不用进一步纯化而用在下一步中的白色固体O-4。将所述中间体O-4(0.653g,1.88mmol)溶解在乙醇(8.8mL)然后用2-氯嘧啶O-5(0.42g,3.6mmol)和二异丙基乙胺(0.63mL,3.6mmol)处理。将所述反应混合物回流过夜然后进行冷却到室温。在减压下除去所述溶剂。将残余物溶解在DCM(40mL)中然后用水(50mL)分配。将水层用DCM(3×25mL)萃取。将合并的有机层用水(50mL)和盐水(50mL)洗涤,通过Na2SO4干燥,过滤并减压浓缩。不用进一步纯化,将粗产物O-6用在下一步骤中。将所述固体O-6溶解在DCM(7.5mL)中,冷却到0℃并用TFA(7.5mL)处理。将反应混合物搅拌30min然后升温至室温并搅拌3h,随后将所述溶剂在减压下除去。将所述粗混合物溶解在氯仿(40mL)中并且将所述溶液用饱和NaHCO3水溶液(50mL)分配。用氯仿(2×40mL)萃取水层。将合并的有机层用盐水(60mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物O-7用在下一步骤中。向N-FMOC-D-谷氨酸5-叔-丁酯O-8(0.30g,0.71mmol)在二氯甲烷中的溶液(3.5mL)加入1-羟基苯并三唑(0.095g,0.71mmol)接着是EDAC·HCl(0.14g,0.71mmol),经过30min所述混合物变澄清。将所述溶液用胺O-7(0.23g,0.71mmol)在DCM(2mL)中经由套管处理并搅拌过夜。将所述反应用水(10mL)骤冷然后用DCM(3×15mL)萃取水层。将合并的有机层用水(20mL)和盐水(20mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗产物O-9用在下一步骤中。将粗原料O-9溶解在DCM(5mL)中然后用哌啶(0.7mL)处理。将所述反应混合物搅拌2h然后在减压下除去所述溶剂。将粗原料O-10溶解在DCM(3mL)中然后用乙酸酐(0.15mL,1.6mmol)处理。将所述混合物搅拌2h然后用另外部分的乙酸酐(0.05mL,0.53mmol)和三乙胺(0.1mL,0.72mmol)处理。将所述混合物搅拌过夜然后用氯仿(7mL)稀释。将有机溶液用饱和NaHCO3水溶液(10mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将得到的残余物用乙醚∶己烷研制并将粗原料O-11直接用在下一步骤中。将中间体O-11溶解在DCM(2mL)中然后冷却到0℃并用TFA(2mL)处理。将反应混合物加热到室温并搅拌1h 15min。在减压下除去所述溶剂而提供粗产物O-12。将粗产物O-12溶解在水(2.5mL)和DMSO(0.5mL)中然后加入NaHCO3直到停止冒泡。将粗产物O-12用反相HPLC(乙腈∶水)纯化而提供所需化合物(41mg)。1H-NMR(DMSO-d6)1.35-1.75(系列的m,6H),1.79(s,3H),1.80-2.00(m,2H),3.00-3.30(系列的m,7H),3.44(d,J=3.2Hz,2H),3.80-3.90(m,1H),6.51(t,J=4.6Hz,1H),7.05-7.25(m,5H),7.86(t,J=5.6Hz,1H),8.24(d,J=4.8Hz,2H),8.66(s,1H);EIMS497.6(MH)+。分析结果(C25H32N6O5·1.0Na·0.1CF3COOH·2.0H2O)C,H,N。
(S)-4-(2-(4-(哌啶-2-基氨基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-4-乙酰氨基丁酸
遵循一般程序方法O利用N-FMOC-L-谷氨酸5-叔-丁酯提供所需化合物(20mg)。MP 75℃;1H-NMR(DMSO-d6)1.35-1.55(m,4H),1.60-1.80(m,2H),1.82(s,3H),2.00-2.25(m,2H),3.05(q,J=6.0Hz,2H),3.10-3.30(m,5H),3.52(d,J=16.8Hz,2H),3.95-4.05(m,1H),6.54(t,J=4.8Hz,1H),7.10-7.30(m,5H),7.53(t,J=5.8Hz,1H),8.18(d,J=6.0Hz,1H),8.26(d,J=4.4Hz,2H),8.51(s,1H);EIMS497.6(MH)+。分析结果(C25H32N6O5·2.0H2O)C,H,N。
方法P
方法P 戊二酸{(S)-2-苯基-1-[4-(嘧啶-2-基氨基)-丁基氨基甲酰基]-乙基}-酰胺(1H-四唑-5基)-酰胺
向4-(1H-四唑-5-基氨基甲酰基)丁酸P-1在DMF(4.2mL)中的溶液加入DIC(0.12mL,0.77mmol)接着是1-羟基苯并三唑(0.10g,0.75mmol)。将所述反应混合物搅拌5min然后用M-7在DMF(4.2mL)中经由套管处理。将所述反应混合物搅拌过夜然后在减压下除去溶剂。将粗产物P-2悬浮在水中然后用1M NaOH(0.8mL)处理,用过滤除去残留的固体。将水溶液酸化并用过滤除去固体。将粗产物P-2用反相HPLC(乙腈∶水)纯化而提供所需化合物(18mg)。1H-NMR(DMSO-d6)δ1.30-1.5(m,4H),1.65-1.75(m,2H),2.00-2.15(m,2H),2.33(t,J=7.4Hz,1H),2.72(dd,J=9.2,13.6Hz,1H),2.85-3.15(m,3H),3.20(q,J=6.6Hz,2H),4.40-4.50(m,1H),6.51(t,J=4.6Hz,1H),7.05-7.25(m,6H),7.97(t,J=5.8Hz,1H),8.07(d,J=8.4Hz,1H),8.23(d,J=4.4Hz,2H);EIMS495.6(MH)+。
方法Q
方法Q (S)-4-(2-(4胍基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-4-乙酰氨基丁酸酰胺
向N-FMOC-L-Nδ-三苯甲基-谷氨酰胺Q-1(0.305g,0.50mmol)在二氯甲烷中的溶液(3mL)加入1-羟基苯并三唑(0.070g,0.5mmol)接着是EDAC·HCl(0.098g,0.5mmol),经过30min所述混合物变澄清。将所述溶液用C-4(0.24g,0.5mmol)在DCM(2mL)中经由套管处理并且将反应混合物搅拌3h。将反应用水(10mL)骤冷然后用DCM(3×5mL)萃取水层。将合并的有机层用水(15mL)和盐水(15mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将所述粗产物Q-2直接用于下一步骤。将所述固体Q-2溶解在DCM(5mL)中然后用4-(氨甲基)哌啶(0.57g,5.0mmol)处理,将所述反应混合物搅拌2h然后用DCM(15mL)稀释。将有机层用盐水(2×15mL)、磷酸盐缓冲液pH5.5(2×15mL)、盐水(25mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩而提供Q-3。将粗原料Q-3溶解在DCM(4mL)中然后用三乙胺(0.11mL,0.79mmol)接着是乙酸酐(0.09mL,0.95mmol)处理。将所述反应混合物搅拌过夜然后用DCM(10mL)稀释。将所述有机溶剂用饱和NaHCO3水溶液(10mL)分配。用DCM(5mL)萃取水层。将合并的有机层用盐水(15mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将所述粗原料Q-4直接用在下一步骤中。将所述中间体Q-4溶解在DCM(4mL)中然后加入三异丙基硅烷。然后将混合物冷却到0℃并用TFA(1mL)处理。将所述反应混合物升温至室温并搅拌3h。在减压下除去所述溶剂而提供Q-5,将其溶解在水、DMF和DMSO中然后加入NaHCO3(32mg,发生冒泡)。将粗产物Q-5用反相HPLC(乙腈∶水)纯化而提供所需化合物(89mg)。1H-NMR(DMSO-d6)1.42(br s,5H),1.60-1.80(m,3H),1.83(s,3H),1.90-2.10(m,2H),3.00-3.60(系列的m,10H),3.90-4.00(m,1H),6.80(br s,3H),7.10-7.40(m,8H),7.49(t,J=5.2Hz,1H),7.59(t,J=5.8Hz,1H),8.21(d,J=5.8Hz,1H),8.56(s,1H);EIMS460.5(MH)+。分析结果(C25H32N6O5·1.04CF3COOH·1.50H2O)C,H,N。
(R)-4-(2-(4-(胍基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-4-乙酰氨基丁酸酰胺
根据一般程序方法Q通过利用N-FMOC-D-Nδ-三苯甲基-谷氨酰胺制备化合物而产生95mg所需化合物。1H-NMR(DMSO-d6)1.42(br s,5H),1.60-1.80(m,2H),1.79(s,1H),1.83(s,3H),1.90-2.10(m,2H),3.00-3.60(系列的m,10H),3.90-4.00(m,1H),6.80(br s,3H),7.10-7.40(m,9H),7.50(t,J=5.4Hz,1H),7.59(t,J=5.6Hz,1H),8.21(d,J=5.6Hz,1H),8.56(s,1H);EIMS460.5(MH)+.分析结果(C25H32N6O5·1.20CF3COOH·0.7H2O)C,H,N。
方法R
方法R 4-((S)-1-(3-(二甲氨基)丙基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-四亚甲基丁酸
在0℃向N-FMOC-L-苯丙氨酸五氟苯基酯R-1(1.11g,2.0mmol)在THF中的溶液(9mL)中加3-二甲氨基-1-丙胺R-2(0.26mL,2.1mmol)。将反应混合物搅拌15min然后升温至室温并搅拌2h。将所述反应用饱和NaHCO3水溶液(25mL)骤冷。用DCM(3×15mL)萃取水层。将合并的有机层用水(50mL)、盐水(50mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。不用进一步纯化,将粗产物R-3用在下一步骤中。将残余物R-3溶解在DCM(20mL)中然后用哌啶(2.0mL,20mmol)处理,将所述反应混合物在室温搅拌2h然后除去溶剂。将一部分粗产物R-4采用到下一步骤。将粗胺R-4(0.1g,0.4mmol)溶解在THF(1.5mL)中然后用3,3-四亚甲基戊二酸酐(0.067g,0.40mmol)处理并搅拌2h然后加入另外部分的3,3-四亚甲基戊二酸酐(0.067g,0.40mmol)并且将混合物搅拌过夜。在减压下除去溶剂并用反相HPLC(乙腈∶水)纯化粗产物R-5。在冷冻干燥机上除去溶剂而提供所需产物(58mg)。1H-NMR(DMSO-d6)0.93(s,6H),1.20-1.60(系列的m,11H),2.12(dd,J=6.6,13.8Hz,2H),2.19(s,6H),2.20-2.40(m,4H),2.72(dd,J=9.8,13.8Hz,1H),2.95-3.15(m,3H),4.28(br s,2H),4.40-4.50(m,1H),7.10-7.30(m,5H),8.04(t,J=5.8Hz,1H),8.26(d,J=8.4Hz,1H);EIMS418.5(MH)+。分析结果(C23H35N3O4·0.75H2O)C,H,N。
4-((S)-1-(3-(二甲氨基)丙基氨基甲酰基)-2-苯乙基氨基甲酰基)-3,3-五亚甲基丁酸
从N-FMOC-L-苯丙氨酸五氟苯基酯出发遵循一般程序方法R利用1,1-环己烷二乙酰乙酸酐作为酸酐产生所需化合物(78mg)。MP59-75℃;1H-NMR(DMSO-d6)1.10-1.60(系列的m,13H),2.0-2.4(系列的m,7H),2.18(s,6H),2.72(dd,J=10.2,13.8Hz,1H),2.90-3.20(m,3H),4.40-4.50(m,1H),7.10-7.30(m,5H),8.03(t,J=5.6Hz,1H),8.28(d,J=8.0Hz,1H);EIMS432.5(MH)+。分析结果(C24H37N3O4·1.75H2O)C,H,N。
方法S
方法S 4-{(R)-2-联苯基-4-基-1-[3-(二甲氨基)-丙基氨基甲酰基]-乙基氨基甲酰基-3,3-四亚甲基丁酸
向N-Cbz-D-联苯丙氨酸S-1(0.375g,1.0mmol)在二氯甲烷中的溶液(10mL)加入1-羟基苯并三唑(0.135g,1.0mmol)接着是EDAC·HCl(0.192g,1.0mmol),经过30min所述混合物变澄清。将所述溶液用3-二甲氨基-1-丙胺S-2(0.13mL,1.0mmol)处理并且将反应混合物搅拌2h。将所述反应用水(20mL)骤冷然后用DCM(3×15mL)萃取水层。将合并的有机层用水(50mL)和盐水(25mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。不用进一步纯化,将所述粗产物S-3用在下一步骤中。将得到的固体S-3溶解在放置于氮气氛下的THF(5.0mL)中然后加入10% Pd/C(0.065g)接着是甲醇(10.0mL)。将所述混合物放置在氢气(气球)下并搅拌过夜。然后用氮气替换氢气氛并用过滤除去固体。在减压下除去溶剂并且不用进一步纯化而将粗产物S-4用在下一步骤中。将粗胺S-4(0.11g,0.33mmol)溶解在THF(1.5mL)中然后用3,3-四亚甲基戊二酸酐(0.061g,0.36mmol)处理并搅拌过夜。在减压下除去所述溶剂并用反相HPLC(乙腈∶水)纯化粗产物S-5。在冷冻干燥机上除去溶剂而提供所需产物(62mg)。

MP 62-73℃;1H-NMR(DMSO-d6)1.20-1.60(系列的m,12H),2.1-2.2(m,2H),2.20(s,6H),2.25-2.40(m,4H),2.77(dd,J=10.0,13.6Hz,1H),3.00-3.15(m,4H),4.45-4.55(m,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.55(d,J=8.4Hz,2H),7.62(d,J=7.2Hz,2H),8.04(t,J=5.6Hz,1H),8.12(d,J=8.4Hz,1H),8.17(d,J=8.4Hz,1H);EIMS494.8(MH)+。分析结果(C29H39N3O4·2.05H2O)C,H,N。
4-{(R)-2-联苯基-4-基-1-[3-(二甲氨基)-丙基氨基甲酰基]-乙基氨基甲酰基}-3,3-亚戊基丁酸
从N-Cbz-D-联苯丙氨酸出发遵循一般程序方法S利用1,1-环己烷二乙酰乙酸酐作为环酸酐产生所需化合物(76mg)。MP 85-95℃;1H-NMR(DMSO-d6)1.10-1.60(系列的m,13H),2.1-4.2(系列的m,7H),2.17(s,6H),2.25-2.40(m,4H),2.77(dd,J=10.0,13.6Hz,1H),3.00-3.15(m,3H),4.45-4.55(m,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.55(d,J=8.4Hz,2H),7.62(d,J=7.2Hz,2H),8.05(t,J=5.4Hz,1H),8.29(d,J=8.0Hz,1H);EIMS508.6(MH)+。分析结果(C30H41N3O4·2.0H2O)C,H,N。
4-{(R)-2-联苯基-4-基-1-[3-(二甲氨基)-丙基氨基甲酰基]-乙基氨基甲酰基}-3,3-二甲基丁酸
从N-Cbz-D-联苯丙氨酸出发遵循一般程序方法S利用3,3-二甲基戊二酸酐作为酸酐产生所需化合物(50mg)。MP 84-92℃;1H-NMR(DMSO-d6)0.87(s,3H),0.89(s,3H),1.40-1.60(m,2H),2.06(d,J=13.6Hz,2H),7H),2.14(s,6H),2.15-2.35(m,4H),2.78(dd,J=9.6,13.6Hz,1H),2.95-3.10(m,3H),4.45-4.55(m,1H),7.25-7.40(m,3H),7.44(t,J=7.6Hz,2H),7.55(d,J=8.4Hz,2H),7.62(d,J=6.8Hz,2H),8.02(t,J=5.4Hz,1H),8.22(br d,J=8.4Hz,1H);EIMS468.5(MH)+。分析结果(C27H37N3O4·0.25HCl·0.5H2O)C,H,N. 方法T
方法T 4-{(S)-2-苯基-1-[4-(二乙氨基)-丁基氨基甲酰基]-乙基氨基甲酰基}-3,3-四亚甲基丁酸
向N-Cbz-L-苯丙氨酸T-1(0.598g,2.0mmol)在二氯甲烷的溶液(20mL)中加入1-羟基苯并三唑(0.27g,2.0mmol)接着是EDAC·HCl(0.384g,2.0mmol),经过30min所述混合物变澄清。将所述溶液用4-二乙氨基-1-丁胺T-2(0.35mL,2.0mmol)处理并将所述反应混合物搅拌2.5h。将所述反应用水(40mL)骤冷然后用DCM(3×20mL)萃取水层。将合并的有机层用水(100mL)和盐水(50mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。不用进一步纯化,将所述粗产物T-3用在下一步骤中。将得到的固体T-3溶解在放置在氮气氛下的THF(10mL)中然后加入10% Pd/C(0.10g)接着是甲醇(20mL)。将所述混合物放置在氢气(气球)下并搅拌过夜。然后用氮气替换氢气氛并用过滤除去所述固体。在减压下除去溶剂并且不用进一步纯化将所述粗产物用在下一步骤中。将粗胺T-4(0.18g,0.60mmol)溶解在THF(3.0mL)和DMF(0.5mL)中然后用3,3-四亚甲基戊二酸酐(0.10g,0.6mmol)处理并搅拌过夜。在减压下除去所述溶剂并用反相HPLC(乙腈∶水)纯化粗产物T-5。在冷冻干燥机上除去所述溶剂而提供所需产物(32mg)。MP 62-68℃;1H-NMR(DMSO-d6)1.01(t,J=7.2Hz,6H),1.20-1.60(系列的m,13H),2.05-2.30(系列的m,4H),2.45-2.55(m,4H),2.62(q,J=7.2Hz,4H),2.73(dd,J=9.4,13.8Hz,1H),2.90-3.20(系列的m,3H),4.12(brs),4.40-4.50(m,1H),7.10-7.30(m,5H),8.02(t,J=5.6Hz,1H),8.43(d,J=8.4Hz,1H);EIMS460.6(MH)+.分析结果(C26H41N3O4·1.10H2O)C,H,N.s 方法U
方法U (S3-4-(2-(4-(嘧啶-2-基氨基)丁基氨基甲酰基)-2,3-二氢-1H-茚-2-基氨基甲酰基)-4-乙酰氨基丁酸酰胺
向N-FMOC-L-Nδ-三苯甲基-谷氨酰胺U-1(1.12g,1.84mmol)在二氯甲烷中的溶液(11mL)加入1-羟基苯并三唑(0.25g,1.84mmol)接着是EDAC·HCl(0.353g,1.85mmol),经过30min所述混合物变澄清。将所述溶液用胺I-4(0.70g,1.84mmol)在DCM(7mL)中经由套管处理并搅拌过夜。将所述反应用水(25mL)骤冷然后用DCM(3×10mL)萃取水层。将合并的有机层用水(50mL)、盐水(50mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将所述粗产物U-2直接采用到下一步骤。将固体U-2溶解在DCM(20mL)中然后用4-(氨基甲基)哌啶处理(2.1g,18.4mmol),将反应混合物搅拌2h然后用氯仿(40mL)稀释。将有机层用盐水(60mL)、磷酸盐缓冲液pH5.5(3×60mL)、饱和NaHCO3水溶液(60mL)、盐水(60mL)洗涤,通过Na2SO4干燥,过滤并在减压下浓缩。将粗原料U-3溶解在DCM(20mL)中然后用三乙胺(0.53mL,3.8mmol)接着用乙酸酐(0.44mL,4.7mmol)处理。将反应混合物搅拌过夜然后用DCM(10mL)稀释。将有机溶液用饱和NaHCO3水溶液(50mL)分配。用DCM(10mL)萃取水层。将合并的有机层用盐水(50mL)洗涤,通过Na2SO4干燥,过滤并减压浓缩。将粗原料U-4直接用在下一步骤中。将中间体U-4溶解在DCM(10mL)中然后加入三异丙基硅烷(triisoproplysilane)(0.26mL,1.27mmol)。然后将混合物冷却到0℃并用TFA(4mL)处理。将反应混合物升温至室温并搅拌2h。将粗原料用柱色谱法(硅胶,梯度10∶0.5∶0.1至10∶1∶0.2;DCM∶MeOH∶三乙胺)纯化而提供中间体U-5用于下一步骤。将残余物U-5(0.59g,1.07mmol)溶解在放置在氮气氛下的THF(5mL)中然后加入10% Pd/C(0.065g)接着是甲醇(10mL)。将混合物放置在氢气(气球)下并搅拌过夜。然后用氮气替换氢气氛并用过滤除去固体。在减压下除去溶剂而提供不用进一步纯化而用在下一步骤中的固体U-6。将中间体U-6(0.18g,0.42mmol)溶解在乙醇(3mL)中然后用2-氯嘧啶U-7(0.096g,0.84mmol)和二异丙基乙胺(0.15mL,0.86mmol)处理。将反应混合物回流过夜然后进行冷却至室温。在减压下除去溶剂并用反相HPLC(乙腈∶水)纯化粗产物U-8。在冷冻干燥机上除去所述溶剂而提供所需产物(61mg)。MP 76-89℃;1H-NMR(DMSO-d6)1.3-1.6(m,4H),1.6-1.80(m,2H),1.82(s,3H),1.90-2.10(m,2H),3.05(q,J=5.8Hz,2H),3.10-3.30(m,4H),3.53(d,J=16.8Hz,1H),3.90-4.05(m,1H),6.52(t,J=4.8Hz,1H),6.77(br s,1H),7.05-7.30(m,6H),7.53(t,J=5.8Hz,1H),8.15-8.35(m,3H),8.54(s,1H);EIMS496.6(MH)+。分析结果(C25H33N7O4·0.25HCl·0.05EtOH·1.15 H2O)C,H,N。
方法V
方法V (S)-4-(2-(4-(2-氰基胍基)丁基氨基甲酰基)-2,3-二氢-1-茚-2-基氨基甲酰基)-4-乙酰氨基丁酸酰胺
将U-6(0.192g,0.55mmol)溶解在异丙醇(20mL)中然后加入氰基碳亚胺酸二苯酯V-1(0.22g,0.92mmol)并加热回流。将混合物搅拌过夜。将另一部分的氰基碳亚胺酸二苯酯(0.072g,0.30mmol)和三乙胺(0.05mL,0.36mmol)加入到反应混合物并且然后将混合物加热回流1.5h。将混合物进行冷却至室温并然后在减压下除去溶剂。将粗原料V-2直接采用到下一步骤。将残余物V-2溶解在乙醇(20mL)中然后冷却到0℃并将氨气鼓泡通过所述溶液保持1min。将反应容器密封并将混合物在50℃搅拌5h。然后将容器在盖处开孔并在减压下除去溶剂。将粗产物V-3用反相HPLC(乙腈∶水)而提供作为白色固体的所需化合物(27mg)。MP 122-133℃;1H-NMR(DMSO-d6)1.37(br s,4H),1.6-1.80(m,2H),1.83(s,3H),1.90-2.10(m,2H),2.95-3.10(m,4H),3.19(t,J=15.4Hz,2H),3.53(d,J=16.4Hz,1H),3.90-4.05(m,1H),6.52(t,J=4.8Hz,1H),6.78(br s,2H),7.10-7.30(m,5H),7.55(t,J=5.8Hz,1H),8.19(d,J=6.0Hz,1H),8.54(s,1H);EIMS485.5(MH)+。分析结果(C23H32N8O4·0.16CF3COOH·0.5H2O)C,H,N。

在不背离所述范围的情况下,可以对这里描述的实施方案进行许多修改和变更,这对于本领域技术人员是明显的。这里描述的特定实施方案仅通过实例的方式提供。
引用的参考文献(并且通过参考结合于此)
Alam et al.(2001)J.Biol.Chem.276,15641-15649
Anantharamaiah et al.(1985)J.Biol.Chem.260,10248-10255
Anantharamaiah et al.(1987)J.Lipid Res.29,309-318
Anantharamaiah et al.(1990)Arteriosclerosis,10,95-105
Arai et al.(1999)J.BioL Chem.274,2366-2371
Argraves et al.(1997)J.Clin.Invest.100,2170-2181
Austin et al.(1988)JAMA,260,1917-1921
Austin et al.(1990)Circulation,82,495-506
Banka et al.(1994)J.Biol.Chem.269,10288-10297
Barbaras et al.(1987)Biochem.Biophys.Res.Commun.142,63-69
Barter P(2000)Arterioscl.Thromb.Vasc.Biol.20,2029
Bemeis and Krauss (2002)J.Lipid Res.43,1363-1379
Bhatnagar A.(1999)in Lipoproteins and Health Disease,pp.737-752,Arnold,Loudon
Bolibar et al.(2000)Thromb.Haemost.84,955-961
Boren et al.(2001)J.Biol Chem.276,9214-9218
Brouillette and Anantharamaiah(1995)Biochim.Biophys.Acta.1256,103-129
Brunzell JD(1995)in The Meatbolic and Molecular Bases of Inherited Disorders,pp.1913-1932,
McGraw-Hill,Inc.,New York
Buchko et al.(1996)J.Biol.Chem.271,3039-3045
Camejo et al.(1985)Atherosclerosis,55,93-105
Campos et al.(1992)Arteriosclerosis Thrombosis,12,187-193
Canner et al.(1986)JACC,8,1245-1255
Cao et al.(2002)J.Biol.Chem.277,39561-39565
Castelli et al.(1986)JAMA,256,2835-2838
Castro and Fielding(1998)Biochemistry,27,25-29
Chait et al.(1993)Am.J.Med,94,350-356
Chambenoit et al.(2001)J.Biol.Chem.276,9955-9960;
Chang et al.(1997)Annu Rev Biochem.66,613-638
Chapman et al.(1998)Eur Heart J,Suppl AA24-30
Chen and Albers(1985)Biochim Biophys.Acta,836,275-285
Chen et al.(2000)J.Biol.Chem.275,30794-30800
Cohen et al.(1999)Curr Opin Lipidol.10,259-268
Collet et al.(1997)J.Lipid Res.38,634-644
Collet et al.(1999)J.Lipid Res.40,1185-1193
Curtiss and Boisvert(2000)Curr.Opin.Lipidol.11,243-251
Datta et al.(2001)J.Lipid Res.42,1096-1104
Davis et al.(2002)J.Lipid Res.43,533-543
de Graaf et al.(1993)J.Clin.Endocrinol.Metab.76,197-202
Downs et al.(1998)JAMA,279,1615-1622
Duverger et al.(1996)Girculation,94,713-717
Ehnholm et al.(1998)J.Lipid Res.39,1248-1253
Epand et al.(1987)J.Biol.Chem.262,9389-9396
Eriksson et al.(1999)Circulation,100,594-598
Fan et al.(2001)J.Biol.Chem.276,40071-40079
Fidge NH(1999)J.Lipid Rews.40,187-201
Fielding et al.(1994)Biochemistry,33,6981-6985
Fitch WM(1977)Genetics,86,623-644
Fogelman et al.(2003)United States Patent Application Publication,US 2003/0045460 A1
Fōger et al.(1996)Arterioscler Thromb Vasc Biology,16,1430-1436
Foger et al.(1999)J.Biol.Chem.274,36912-36920
Frank and Marcel(2000)J.Lipid Res.41,853-872.
Frick et al.(1987)N.England J.Medicine,317,1237-1245
Fuskushima et al.(1980)J.Biol.Chem.255,10651-10657
Gamble et al.(1978)J.Lipid Res.16,1068-1070
Garber et al.(1992)Arteriosclerosis and Thrombosis,12,886-894
Garber et al.(2001)J.Lipid Res.42,545-552
Garcia et al.(1996)Biochemistry,35,13064-13071
Genest et al.(1991)Am J Cardiol.67,1185-1189
Genest et al.(1992)Circulation,85,2025-2033
Genest et al.(1999)J.Invest.Med.47,31-42
Gibbons et al.(1995)Am.J.Med.99,378-385
Gillotte et al.(1999)J.Biol.Chem.274,2021-2028
Glomset JA(1968)J.Lipid Res.9,155-167
Goldberg I.(1996)J.Lipid Res.37,693-707
Golder-Novoselsky et al.(1995)Biochim.Biophys.Acta,1254,217-220
Goldstein and Brown(1974)J.Biol.Chem.249,5153-5162
Gordon et al.(1989)N Engl.J.Med.321,1311-1315
Gotto AM(2001)Circulation,103,2213
Griffin et al.(1994)Atherosclerosis,106,241-253
Groen et al.(2001)J.Clin.Invest.108,843-850
Hajjar and Haberland(1997)J.Biol.Chem.272,22975-22978
Hara and Yokoyama(1991)J.Biol.Chem.266,3080-3086
Hedrick et al.(2001)J.Lipid Res.42,563-570
Huang et al.(1995)Arterioscler.Thromb.Vasc.Biology,15,1412-1418
Huang et al.(1997)Arterioscler.Thromb.Vasc.Biol.17,2010-2015
Hulley et al.(1998)JAMA,280,605-613
Huuskonen and Ehnholm(2000)Curr.Opin.Lipidol.11,285-289
Huuskonen et al.(2000)Atherosclerosis,151,451-461
Ikewaki et al.(1993)J.Clin.Invest.92,1650-1658
Ikewaki et al.(1995)Arterioscler.Thromb.Vasc.Biology,15,306-312
Ishigami et al.(1994)J.Biochem.(Tokyo)116,257-262
Jaakkola et al.(1993)Coron.Artery Dis.4,379-385
Jauhianen et al.(1993)J.Biol.Chem.268,4032-4036
Jiang et al.(1996)J.Clin Invest.98,2373-2380
Jiang et al.(1999)J.Clin.Invest.103,907-914
Jonas A(1991)Biochim.Biophys,Acta,1084,205-220
Jones et al.(1998)Am.J.Cardiol.81,582-587
Kaiser and Kězdy(1983)Proc.Natl.Acad.Sci.USA,80,1137-1140
Kanellis et al.(1980)J.Biol.Chem.255,11464-11472
Kawano et al.(2000)J.Biol.Chem.275,29477-29481
Kozarsky et al.(2000)Arterioscler.Thromb.Vasc.Biology,20,721-727
Krauss and Burke(1981)J.Lipid Res.23,97-104
Krieger M.(1998)Proc.Natl.Acad.Sci.USA.95,4077-4080
La Belle and Krauss(1990)J Lipid Res.,31,1577-1588
Lindholm et al.(1998)Biochemistry,37,4863-4868
Liu and Krieger(2002)J.Biol.Chem.277,34125-34135
Lund-Katz et al.(1993)In″PeptidesChemistry and Biology″(R.Haughten,ed.)ESCOM Press,
Leiden,The Netherlands
Lusa et al.(1996)Biochem.J.313,275-282
Main et al.(1996)Biochim Biophys Acta,29,17-24
Marotti et al.(1993)Nature,364,73-75
Martin-Jadraque et al.(1996)Arch.Intern.Med.156,1081-1088
Marzal-Casacuberta et al.(1996)J.Biol.Chem.271,6720-6728
Matsumoto et al.(1997)J.Biol.Chem.272,16778-16782
McLachlan AD(1977)Nature,267,465-466
McLean et al.(1991)Biochemistry,30,31-37
McManus et al.(2000)J.Biol.Chem.275,5043-5051
Mendez et al.(1994)J.Clin.Invest.94,1698-1705
Meng et al.(1995)J.Biol.Chem.270,8588-8596
Merkel et al.(2002)J.Lipid Res.43,1997-2006
Miccoli et al.(1997)J.Lipid Res.38,1242-1253
Miettinen et al.(1997)Arterioscler.Thromb.Vasc.Biology,17,3021-3032
Miller et al.(1987)Am Heart J.113,589-597
Milner et al.(1991)Biochim Biophys Acta,26,1082,71-78
Mishra et al.(1994)J.Biol.Chem.269,7185-7191
Mishra et al.(1995)J.Biol.Chem.270,1602-1611
Mishra et al.(1998)Biochemistry,37,10313-10324
Morton RE(1999)Curr Opin Lipidol.10,321-327
Nagano et al.(2002)J.Lipid Res.43,1011-1018
Naito HK(1985)Ann.NY Acad.Sci,454,230-238
Nakagawa et al.(1985)J.Am.Chem.Soc.107,7087-7092
Ohnishi and Yokoyama(1993)Biochemistry,32(19),5029-5035
Oka et al.(2000)Clin.Chem.46,1357-1364
Oka et al.(2000)J.Lipid Res.41,1651-1657
Oka et al.(2002)J.Lipid Res.43,1236-1243
Okamoto et al.(2000)Nature,13,406(6792)203-7
Oram and Lawn(2001)J.Lipid Res.42,1173-1179
Oram and Yokoyama(1997)J Lipid Res.37,2473-2491
Packard and Shepherd(1997)Arteriosclerosis,Thromb,Vasc.Biology,17,3542-3556
Palgunachari et al.(1996)Arterioscler.Thromb.Vasc.Biol.16,328-338
Plump et al.(1997)Prc.Natl Acad.Sci.USA,91,9607-9611
Ponsin et al.(1986a)J.Biol.Chem.261,9202-9205
Ponsin et al.(1986b)J.Clin.Invest.77,559-567
Pownall et al.(1980)Proc.Natl.Acad.Sci.USA,77(6),3154-3158
Pownall et al.(1985)Biochim.Biophys.Acta,833,456-462
Puchois et al.(1987)Atherosclerosis,68,35-40
Pussinen et al.(1997)J.Lipid Res.38,12-21
Pussinen et al.(1998)J.Lipid Res.39,152-161
Qin et al.(2000)J.Lipid Res.41,269-276
Ramsamy et al.(2000)J.Biol.Chem.275,33480-33486
Remaley et al.(1997)Arterioscler Thromb.Vasc.Biology,17,1813-1821
Reschly et al.(2002)J.Biol.Chem.277,9645-9654
Riemens et al.(1998)Atherosclerosis,140,71-79
Riemens et al.(1999)J.Lipid Res.40,1459-1466
Rinninger et al.(1998)J.Lipid Res.39,1335-1348
Ross R.(1993)Nature,362,801-809
Rothblat et al.(1999)J.Lipid Res.40,781-796
Rubin et al.(1991)Nature,353,265-267
Rubins,et al.(1999)N.Engl.J.Med.341,410-418
Santamarina-Fojo and Dugi(1994)Curr.Opin.Lipidol.5,117-125
Santamarina-Fojo et al.(2000)Curr.Opin.Lipidol.11,267-275
Schissel et al.(1996)J.Clin.Invest.98,1455-1464
Second Report of the Expert Panel(1994)Circulation,89,1329-1445
Segrest et al.(1983)Journal Biol Chem.258,2290-2295
Segrest et al.(1994)Advances in Protein Chem.45,303-369
Segrest et al.(2001)J.Lipid Res.42,1346-1367
Segrest JP(1974)FEBS Lett.38,247-253
Settasation et al.(2000)J.Biol.Chem.276,26898-26905
Shaefer EJ(1994)Eur.J.Clin.Invest.24,441-443
Shatara et al.(2000)Can.J.Physiol.Pharmacol.78,367-371
Shepherd et al.(1995)N.Engl.J.Med.333,1301-1307
Sorci-Thomas et al.(1990)J.Biol.Chem.265,2665-2670
Sorci-Thomas et al.(2000)J.Biol.Chem.275,12156-12163
Sparks et al.(1992)J.Biol.Chem.267,25839-25847
Sparrow et al.(1981)In″PeptidesSynthesis-Structure-Function,″Roch and Gross,Eds.,Pierce
Chem.Co.,Rockford,IL.253-256
Sparrow et al.(2002)J.Biol.Chem.277,10021-10027
Srinivas et al.(1990)Virology,176,48-57
Stein and Stein(1999)Atherosclerosis,144,285-303
Steiner et al.(1987)Circulation,75,124-130
Steinmetz and Utermann(1985)J.Biol.Chem.260,2258-2264
Sviridov et al.(1996)Biochemistry,35,189-196
Sviridov et al.(2000)J.Biol.Chem.275,19707-19712
Sviridov et al.(2000)J.Lipid Res.41,1872-1882
Swinkels et al.(1989)Arteriosclerosis,9,604-613
Tall and Wang(2000)J.Clin.Invest.106,1205-1207
Tall et al.(2000)Arterioscler.Thromb.Vasc.Biol.20,1185-1188
Tall et al.(2001)J.Clin.Invest.108,1273-1275
Tall et al.(2001)J.Clin.Invest.108,1273-1275
Tangirala et al.(1999)Circulation,100,1816-1822
Temel et al.(2002)J.Biol.Chem.277,26565-26572
The BIP study group(2000)Circulation,102,21-27
The International Task Force for Prevention of Coronary Heart Disease
(1998)Nutr Metab Cardiovasc Dis.8,205-271
Thuahnai et al.(2001)J.Biol.Chem.276,43801-43808
Tribble et al.(1992)Atherosclerosis,93,189-199
Trigatti et al.(1999)Proc.Natl.Acad.Sci.USA,96,9322-9327
Tu et al.(1993)J.Biol.Chem.268,23098-23105
Utermann et al.(1984)Eur.J.Biochem.144,325-331
Vakkilainen et al.(2002)J.Lipid Res.43,598-603
van Eck et al.(2002)Proc.Natl.Acad.Sci.U.S.A.,99,6298-6303
Venkatachalapathi et al.(1993)Proteins,15,349-359
von Eckardstein A.(1996)Curr Opin Lpidol.7,308-319
von Eckardstein and Assmann(2000)Curr Opin Lipidol.11,627-637
von Eckardstein et al.(1995)Arterioscler.Thromb.Vasc.Biol.15,690-701
von Eckardstein et al.(1996)Biochim.Biophys.Acta,1301,255-262
von Eckardstein et al.(2001)Arterioscl.Thromb.Vasc.Biol.21,13
Webb et al.(2002)J.Lipid Res.43,1890-1898
Whayne et al.(1981)Atherosclerosis,39,411-424
Yamashita et al.(1991)Metabolism,40,756-763
Yamazaki et al.(1983)J.Biol.Chem.258,5847-5853
Zhong et al.(1994)Peptide Research,7(2)99-106
(1984)JAMA,251,365-37权利要求
2.一种反向胆固醇转运的介质,包含下列结构
其中A、B、和C可以处于任何顺序,并且其中
A包含氨基酸或其类似物,其包含酸性团或其生物电子等排体(bioisostere);
B包含氨基酸或其类似物,其包含亲脂基;和
C包含氨基酸或其类似物,其包含碱性基或其生物电子等排体;
其中已经将α氨基或α羧基中的至少之一从它们各自的氨基或羧基末端氨基酸或其类似物上除去。
3.根据权利要求1的介质,其中如果不被除去,所述α氨基用选自由下列各项组成的组的保护基加帽乙酰基、苯乙酰基、苯甲酰基、新戊酰基(pivolyl)、9-芴基甲氧基羰基、2-萘酸(2-napthylic acid)、烟酸、其中n为1至20的CH3-(CH2)n-CO-、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基。
4.根据权利要求1的介质,其中如果不被除去,所述α羧基用选自由下列各项组成的组的保护基加帽胺如其中R=H的RNH、二-叔-丁基-4-羟基-苯基、萘基、取代的萘基、FMOC、联苯基、取代的苯基、取代的杂环、烷基、芳基、取代的芳基、环烷基、稠合环烷基、饱和杂芳基、和取代的饱和杂芳基。
5.根据权利要求1的介质,其中所述酸性团的生物电子等排体选自下列各项组成的组
6.根据权利要求1的介质,其中所述碱性基的生物电子等排体选自下列各项组成的组
7.根据权利要求1的介质,其中所述介质是半剥裸的(half-denuded)并且具有下列结构
其中X选自由下列各项组成的组
其中X1是
其中X2是F、Cl、Br、I、C0-6烷基、OCH3、CF3、或OCF3;
其中X3是Cl、C0-6烷基、OCH3;和
其中n是1或2。
8.根据权利要求1的介质,其中所述介质是半剥裸的并且选自下列各项组成的组戊二酸-BIP-R-NH2、戊二酸-bip-r-NH2、Ac-E-BIP-胍基丁胺、Ac-e-bip-胍基丁胺、Ac-R-BIP-GABA、Ac-r-bip-GABA、4-胍基丁酸-BIP-E-NH2、4-胍基丁酸-bip-e-NH2、戊二酸-BIP-K-NH2、和戊二酸-bip-k-NH2。
9.根据权利要求1的介质,其中所述介质是半剥裸的并且选自下列各项组成的组2,2-二甲基戊二酸-f-r-NH2、2,2-二甲基戊二酸-F-R-NH2、戊二酸-F-R-NH2、戊二酸-f-r-NH2、丁二酸-bip-r-NH2、丁二酸-BIP-R-NH2、丁二酸-F-R-NH2、丁二酸-f-r-NH2、2,2-二甲基戊二酸-bip-r-NH2、2,2-二甲基戊二酸-BIP-R-NH2、二甲基丁二酸-bip-r-NH2、二甲基丁二酸-BIP-R-NH2、戊二酸-F-K-NH2、丁二酸-F-K-NH2、丁二酸-f-k-NH2、2,2-二甲基戊二酸-F-K-NH2、2,2-二甲基戊二酸-f-k-NH2、二甲基丁二酸-f-k-NH2、二甲基丁二酸-F-K-NH2、二甲基丁二酸-Aic-r-NH2、2,2-二甲基戊二酸-Aic-r-NH2、戊二酸-Aic-r-NH2、丁二酸-Aic-r-NH2、戊二酸-Aic-R-NH2、四唑(tetrazol)酰胺戊二酸-BIP-R-NH2、3,3-二甲基戊二酸-Aic-R-NH2、二甲基丁二酸-Aic-R-NH2、和2,2-二甲基戊二酸-Aic-R-NH2。
10.根据权利要求1的介质,其中所述介质是完全剥裸的并且选自下列各项组成的组
11.一种反向胆固醇转运介质,其包含选自由下列各项组成的组的化合物戊二酸-bip-r、E-BIP-胍基丁胺、(4-氨基甲酰基丁基)胍-BIP-E、戊二酸-bip-k、(4-氨基甲酰基丁基)胍-bip-GABA、(4-氨基甲酰基丁基)胍-BIP-GABA、戊二酸-Aic-胍基丁胺、(4-氨基甲酰基丁基)胍-苯丙氨酸-GABA、4,4-二甲基戊二酸-苯丙氨酸-胍基丁胺、Dimet.戊二酸-F-R、戊二酸-F-R、戊二酸-f-r、丁二酸-bip-r、丁二酸-BIP-R、丁二酸-f-r、Dimet.戊二酸-bip-r、Dimet.戊二酸-BIP-R、Dimet.丁二酸-BIP-R、丁二酸-phe-k、Dimet.丁二酸-phe-k、Dimet.丁二酸-Phe-K、3,3-二甲基戊二酸-phe-胍基丁胺、Dimet.丁二酸-Aic-r、戊二酸-f-(桥亚乙基)胍基丁胺、戊二酸-Aic-r、丁二酸-Aic-r、戊二酸-Aic-R、(1H-四唑-5-5-基)戊二酰胺-BIP-R、2,2-二甲基丁二酸-Phe-胍基丁胺、Dimet.丁二酸-Aic-R、3,3-螺环戊基戊二酸-Phe-胍基丁胺、3,3-二甲基戊二酸-F-胍基丁胺、戊二酸-Phe-胍基丁胺(Bis-Boc)、戊二酸-f-氰基胍基丁胺、戊二酸(四唑酰胺)-BIP-胍基丁胺(嘧啶)、丁二酸-BIP-胍基丁胺(嘧啶)、3,3-螺环己基戊二酸-bip-胍基丁胺(嘧啶)、3,3-二甲基戊二酸-bip-胍基丁胺(嘧啶)、3,3-螺环戊基戊二酸-Aic-胍基丁胺(嘧啶)、3,3-二甲基戊二酸-Aic-胍基丁胺(嘧啶)、3,3-螺环戊基戊二酸-Phe-3-(二甲基氨基)丁烷、4,4-二甲基戊二酸-bip-胍基丁胺(嘧啶)、和3,3-螺环戊基戊二酸-bip-3-(二甲基氨基)丙烷,其中任何未衍生化的氨基和/或羧基末端的氨基酸用保护基加帽。
12.所述化合物Dimet.丁二酸-phe-k,其中k还包含保护基。
13.所述化合物Dimet.戊二酸-F-R,其中R还包含保护基。
14.所述化合物戊二酸-F-R,其中R还包含保护基。
全文摘要
本发明提供适合于增加哺乳动物中反向胆固醇转运的组合物。所述组合物适合于口服递送,并且在治疗和/或预防高胆固醇血症,动脉粥样硬化和相关心血管疾病中是有用的。
文档编号A61K38/04GK1984928SQ20058001866
公开日2007年6月20日 申请日期2005年6月9日 优先权日2004年6月9日
发明者J·C·索卡, V·C·瓦萨, I·尼库林, K·阿利萨拉 申请人:阿文尼尔药品公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1