专利名称:集成脉搏血氧饱和度传感器的制作方法
技术领域:
本发明涉及患者脉搏血氧饱和度(pulse oximetry)的测量,即涉及患者血液中的氧气量的测量。
SpO2是脉搏血氧饱和度的缩写,这是医学领域普遍使用的一种方法,该方法利用光来测量动脉血液中的氧气含量。通常,SpO2传感器包括穿过组织发出红光和红外光的发光二极管(LED)。大多数传感器在较窄的肢体处使用,诸如手指、脚趾或者耳朵。测量位置处的血骨和组织吸收大量的入射光,但是有足够的可用于测量的光横穿过组织。通常,与所述发光源相对的光敏检测器,诸如光电二极管,接收穿过肢体的光。
传感器测量检测器接收到的红光和红外光的量,并计算所吸收的每种波长的量。被组织、骨骼以及静脉血液所吸收的光的量在短时间周期内不会急剧改变。由于肢体的自然搏动,因此动脉血液量在短时间周期内会改变,但是由于动脉血液量是在短时间周期内改变的唯一变量,因此可以将其与其它部分隔离开来。
检测器接收到的光的量表明血液内与血红蛋白结合的氧的量。氧合血红蛋白(HbO2)吸收的红外光比红光多。脱氧血红蛋白(Hb)吸收的红光比红外光多。通过比较接收到的红光和红外光的量,仪器就可以计算出血液中的SpO2读数。
由于重叠了有用信号的周围环境光源的数值,因此需要对来自两个LED的光进行调制和解调。目前,标准脉搏血氧饱和度传感器包括无源光电二极管,所述无源光电二极管与LED一起封装至手指夹(finger clip)或类似外壳中。然后通常通过较长的高阻抗电缆连接系统,在远离实际传感器的印刷电路板上典型地执行光源的调制/解调以及信号的放大滤波和处理。
在这样的系统中固有地存在多种缺点。目前的通常设计耗费高、消耗大量功率且比较笨重。目前通常使用的小卫星(picosat)板消耗200mW的功率,仅仅该板就具有30cm3的容积,并且在没有传感器的情况下就耗费大约110美元。由于功率消耗原因和尺寸/重量原因,使用无线也是不切实际的。另外,成本问题也使得其作为个人健康保健型产品变得不切实际。
除了尺寸/成本的限制,放大器和光电二极管的分离迫使该系统经过高阻抗的长电缆流动至前置放大器的光电电流很小。由于需要屏蔽和串扰问题,该设置使事情复杂化。
本发明设计了一种新型的改良脉搏血氧饱和度监测系统,该系统与能够有线和无线通信的单元结合使用,该系统克服了上述的尺寸、成本和外购问题以及其它问题。
根据本发明的一个方面,提供了一种医学脉搏血氧饱和度传感器。托架外壳容纳了第一和第二发光二极管,其中一个发射红色频谱的光,另一个发射红外频谱的光。在所发射的光已经穿过受检者的血液充氧部分之后,光电二极管检测来自第一和第二发光二极管的覆盖光(incumbent light)。产生电信号。处理电路将所述信号处理为脉搏血氧饱和度值,所述处理电路集成地形成在安装于托架外壳中的集成半导体部件芯片上。
根据本发明的另一方面,提供了一种制造脉搏血氧饱和度传感器的方法。将至少第一和第二发光二极管嵌入在托架外壳中。将集成电路与所述发光二极管相对嵌入在外壳中,使得二极管发射的光在照射在集成电路上之前必须通过受检者解剖体组织的部分。所述集成电路包括至少一个光电二极管,用于检测来自所述至少两个发光二极管的光信号,并用于产生指示所述光信号的信号。所述电路还包括用于对来自光电二极管的信号进行放大的放大器。所述电路还包括用于对来自光电二极管的信号进行数字化的数字转换元件。此外,所述电路还包括用于将数字信号处理成脉搏血氧饱和度值的处理单元。
根据本发明的另一方面,提供了一种测量血氧的方法。从安装在托架外壳中的第一LED发射红光的脉冲,所述外壳适合于舒适地装配在充氧血液通过量较高的受检者解剖体组织的部分周围。还从安装在所述托架外壳中的第二LED发射红外光的脉冲。使用安装在托架外壳中的光电二极管接收已横穿人体的血液充氧部分的来自所述LED的光。所述光电二极管产生电信号。使用处理电路将所述电信号处理为血液血氧饱和度值,所述处理电路集成地形成在安装于托架外壳中的半导体芯片上。
本发明的一个优点在于其尺寸小。
另一优点在于检测元件和信号调节邻近,这给出了更好的噪声性能并消除了昂贵的布线。
另一优点在于,在不同半导体过程中的专用功能分离,这导致了系统所有部件的最高整体性能。
另一优点在于传感器的所有子系统的独立可测试性。
另一优点在于可以以更高产量制造更小更专用的子系统。
另一优点在于处理过程中自动化水平增加。
另一优点在于低成本。
另一优点在于传感器的直接重量显著降低。
另一优点在于功耗降低。
阅读和理解了下面对优选实施例的详细描述后,本领域普通技术人员将更加明白本发明的其它一些优点和益处。
本发明可以是各种部件及部件布置形式,以及各种步骤与步骤布置的形式。附图仅仅用于说明优选实施例的目的,而不应理解为是对本发明的限制。
图1是手指单元中采用集成处理的有线医学脉搏血氧饱和度传感器的优选实施图;图2是图1的医学脉搏血氧饱和度传感器的无线实施例的优选实施图;图3是图1和图2所示脉搏血氧饱和度传感器的集成电路的电路图;图4描述了图3所示电路的替代实施例。
参考图1,示出了优选的医学脉搏血氧饱和度传感器10。通常,传感器10适合于装配在受检者的手指上,但是应当理解,传感器10可以容易地适合于容纳替代的位置,所述替代的位置具有较好的血液充氧通过量且具有足够的光透明度,诸如脚趾或者耳垂。传感器10包括外壳12,所述外壳12舒适地装配在所讨论的解剖体组织周围,使得传感器10不会从所述解剖体组织滑落,但是又不会很不舒服而阻止了此处的血液循环。
优选的传感器包括发光阵列14,在所述实施例中,所述发光阵列14包括两个发光二极管16,18。二极管16在被激励时发射来自电磁频谱的可见红色波长的光,而二极管18在被激励时发射来自电磁频谱的红外部分的光。应当理解的是,多个附加的波长可以结合图1所示的两种类型的光使用或者替代图1所示的两种类型的光。在根据本申请的脉搏血氧饱和度传感器的优选实施例中,可以使用多至10种或者更多不同波长。
继续参考图1,沿着从发光二极管16,18穿过所绘出的手指的箭头,有光电接收器阵列20。该阵列优选地包括能够被至少红色和红外频谱激励的光电二极管,但是如前面所述说明的,与许多更多波长的兼容性也是优选的。紧挨着光电接收器阵列20,优选地在普通的CMOS芯片21上,存在优选的脉搏血氧饱和度传感器10的信号处理电子设备22。为了清晰起见,在图1中将所述信号处理电子设备22描述为光电接收器阵列20的扩展,应当理解的是所述信号处理电子设备22可以位于与光电接收器阵列20相邻的任何位置,但是最优选的是与光电接收器阵列20集成在一起。优选地将光电二极管与下面将详细描述的电子部件22集成地形成在相同CMOS芯片上。然而,应当考虑到,光电二极管可以与所述CMOS芯片21分离地形成,结合至所述CMOS芯片21或者与其电连接。数据传输电缆24附装至外壳12,以将分析得到的脉搏血氧饱和度数据输送至通常的显示或者记录装置,并为脉搏血氧饱和度传感器的部件提供功率。由于已经对数据进行了处理,并优选地进行了数字化以及放大,因此传输电缆不需要屏蔽并且可以具有低阻抗。
现在参考图2,描述了脉搏血氧饱和度传感器10的无线实施例。应当理解的是,适用于图1的功能性论述同样适用于图2,因为相似的指示标记指示了相似的部件。当然,最显著的不同是具有板上电源、无线发送器/接收器,而没有连接功率/数据传输电缆。从功能性上讲,图1描述的脉搏血氧饱和度传感器在操作上与图2描述的无线实施例非常相似。
无线发送器30将分析得到的脉搏血氧饱和度数据从CMOS芯片21传输至远程控制台以供查看。由于发送器是功率和处理有效的规格并且由于优选更短范围的传输,因此优选地发送器为蓝牙型发送器。发送器优选地是比较短的范围,并且优选地传输至受检者房间内的控制台,并且未到达医疗设施其它部分中的类似单元的控制台。在适当的场合,还可考虑功率更大且范围更长的发送器,诸如RF实施例。优选地,发送器/接收器是与信号处理电子设备22分离的芯片,与集成在电子芯片21内部相反。可选地,无线发送器30为用于从专用主机系统接收后处理和控制指令等的收发器。这样的消息或者指示器可以是电池状态监测消息、开/关命令、加密代码、处理指令等。在优选的实施例中,发送器30靠近集成处理电子设备22定位,但是应当理解,发送器还可以集成至容纳了信号处理电子设备22的CMOS芯片21,或者定位在传感器组件更加遥远的部分。
无线实施例包括板上电源外壳32,在所述电源外壳中定位电源,优选地是电池34。电池34优选地是锂离子电池。电池34是无线脉搏血氧饱和度实施例中最笨重的部件,因此期望在电池寿命和体积之间的平衡。在医院的环境中,可以想到的是,可以接受1/2天或者一天的电池寿命。可再充电电池可以周期性地在方便的室内电池充电器上进行再充电,所述电池充电器被设计成接收未使用的脉搏血氧饱和度传感器。然而,如果期望更长的电池寿命,对于诸如家庭应用或者扩展的住院应用,更大的电池(诸如AA或AAA电池)也是允许的。另外,还可以考虑诸如太阳能电池的其它电源、其它电荷存储设备、电感耦合等。
现在参考图3,更加详细地描述处理电子设备22。处理电子设备22的所有部件均集成至单个CMOS芯片21上。集成的设计使得尺寸、成本、传感器的直接重量显著降低,使得功耗降低,并且由于缩小了电源进一步使得其它部件和参数降低。所公开的实施例将包括解调、滤波和预处理的SpO2传感器以及LED控制和驱动器的制造成本降低至与光电二极管和手指安装组件的目前成本相当。
集成的第一部件是光电接收器阵列20。如前所述,光电接收器阵列从红色发光二极管16和红外发光二极管18接收光数据。这些信号立即通过附装的光电前置放大器40进行放大。由于在光电二极管和放大器之间没有电缆穿过,因此在光信号经历显著衰减或得到显著的背景噪声之前执行了放大。放大的信号由采样/保持42进行采样并保持,直到已经采样到每种波长的迭代(iteration)(在优选的实施例中为两种波长,但是实践中可以允许更多种,诸如像前面讨论的10种),包括其中没有发射光的参考(黑暗)通道。对黑暗通道进行采样以提供参考,使得系统可以创建基线,消除任何环境光的作用并将其排除在脉搏血氧饱和度测量之外。然后通过模数转换器44来对单个波长信号单独地进行数字化,并将其传输至集成电子设备22的微处理器46(CPU)。任选地,采样/保持42和数模转换器44可以合并至SigmaDelta(∑Δ)转换器47,将保持与数字化合并为单个步骤。
通过CPU 46对采样流进行数字滤波,并基于检测到的亮度级(light level)根据强度对该采样流进行调整。为辅助CPU调节信号的强度,包含了动态测距仪(rangefinder)48以补偿不同的测量位置(例如手指与耳垂)、LED效率、皮肤颜色/色调等。将来自测距仪48的信息反馈至前置放大器40,以在所检测LED发光的下一次迭代中使用。
定时电路50协调测距仪48、LED16、18的发光以及经过采样42、A/D转换器44和CPU46的数据的处理和保持。在优选的实施例中,定时电路50以1KHz数量级的迭代(例如,每毫秒)协调来自二极管16、18的交替脉冲(alternating burst)和黑暗通道。选择这个值以使其大大超过大多环境光源(例如,荧光)的频率,并且以此方式,这个值可以小至大约250Hz。切换速度越低,那么光发射之间的停顿越长,从而避免LED16、18过早烧坏。由定时电路50引导的CPU46与用于LED16、18精确发光的LED控制器52协调一致。在接收到检测的光的迭代后,CPU46将检测到的光信号译成脉搏血氧饱和度测量值。然后将更新的脉搏血氧饱和度测量值通过电缆24(根据图1)或者通过发送器30(根据图2)从CPU46传输至适当的显示器。
在替代实施例中,如图4所示,考虑使用电流至电压转换器54来代替采样/保持42和ADC44组合。该替代实施例可以用于模拟调制方案,诸如频率或相位复用LED调制。
同样可替代的是,可以添加多个并行的采样/保持42和ADC44,以放宽单个ADC44处理通道上的要求。在这种概念下,同样可以使用模拟或者硬连线的数字滤波器和调制。
同样可替代的是,可以考虑根据红色和红外频谱中至少之一,将从发光二极管接收到的红色和红外信号转换成体积描述波形(plethysmographic waveform)。
已经参考优选实施例对本发明进行了描述。在阅读和理解了前面的详细描述之后,其他人将会想到许多变型和替代。应当认为本发明包括所有这些变型和替代,只要它们落在所附权利要求书或者其等效的范围之内。
权利要求
1.一种医学脉搏血氧饱和度传感器(10),包括托架外壳(12),适合于舒适地装配至充氧血液通过量较高的受检者解剖体组织的部分周围;安装在所述外壳(12)内的第一发光二极管(16),用于发射红色波长电磁频谱中的光;安装在所述外壳(12)内的第二发光二极管(18),用于发射红外波长电磁频谱中的光;至少一个光电二极管(20),用于在所发射的光已经穿过受检者的血液充氧部分后,检测来自第一和第二发光二极管(16,18)的覆盖光,并产生指示所述光的电信号;处理电路(22),其集成地形成在安装于所述托架外壳(21)中的集成半导体部件芯片(21)上,所述处理电路(22)用于根据所述波长中的至少之一将所述信号处理成脉搏血氧饱和度值和体积描述波形。
2.根据权利要求1所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括放大器(40),用于放大来自所述至少一个光电二极管(20)的信号。
3.根据权利要求2所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括∑Δ调制器(47),用于对放大的信号进行采样,并将所述信号转换成数字格式。
4.根据权利要求3所述的医学脉搏血氧饱和度传感器(10),还包括电流至电压转换器(54),用于对来自光电二极管(20)的信号进行模拟调制以及进行频率和相位复用LED调制中的其中之一。
5.根据权利要求2所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括可操作地连接至放大器(40)的采样及保持(42),用于采样和保持所述放大的信号。
6.根据权利要求5所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括模数转换器(44),用于对采样和保持的放大信号进行数字化。
7.根据权利要求6所述的医学脉搏血氧饱和度传感器,其中所述半导体芯片(21)的处理电路(22)包括可操作地连接至所述模数转换器(44)的微处理单元(46),用于将数字化的信号处理成脉搏血氧饱和度值,并用于控制所述发光二极管(16,18)的操作。
8.根据权利要求7所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括可操作地连接至所述微处理单元(46)的发光二极管控制部分(52),用于控制来自第一和第二发光二极管(16,18)的光发射。
9.根据权利要求7所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括定时电路(50),用于协调由微处理单元(46)、模数转换器(44)和采样及保持(42)执行的信号处理以及由第一和第二发光二极管(16,18)执行的光发射。
10.根据权利要求2所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)的处理电路(22)包括测距仪(48),用于选择放大范围或放大器(40)。
11.根据权利要求1所述的医学脉搏血氧饱和度传感器(10),还包括附加的发光二极管,所述每个附加的发光二极管发射附加波长的电磁辐射。
12.根据权利要求1所述的医学脉搏血氧饱和度传感器(10),其中所述光电二极管(20)集成地形成在所述半导体芯片(21)中。
13.根据权利要求1所述的医学脉搏血氧饱和度传感器(10),其中所述光电二极管(20)电连接至所述半导体芯片(21)。
14.根据权利要求1所述的医学脉搏血氧饱和度传感器(10),其中所述半导体芯片(21)为CMOS芯片。
15.根据权利要求14所述的医学脉搏血氧饱和度传感器(10),其中所述CMOS芯片(21)包括放大器(40),用于放大来自所述光电二极管(20)的信号;电流至电压转换器(54),用于对来自光电二极管的信号进行模拟调制以及进行频率和相位复用LED调制中的其中之一;用于对来自光电二极管(20)的信号进行数字化的电路(42,44);微处理单元(46),用于将数字化的分段处理为脉搏血氧饱和度值;可操作地连接至微处理单元(46)的发光二极管控制部分(52),用于控制来自第一和第二发光二极管(16,18)的光发射;定时电路(50),用于协调信号数字化、信号处理以及发光二极管的操作。
16.根据权利要求14所述的医学脉搏血氧饱和度传感器(10),还包括无线发送器(30),用于将计算得到的脉搏血氧饱和度值传输至显示控制台和记录装置中的至少之一;电池(34),用于为脉搏血氧饱和度传感器(10)提供功率。
17.根据权利要求14所述的医学脉搏血氧饱和度传感器(10),还包括电缆(24),用于为脉搏血氧饱和度传感器(10)提供功率,以及将计算得到的脉搏血氧饱和度值传输至显示控制台和记录装置中的至少之一。
18.一种制造脉搏血氧饱和度传感器(10)的方法,包括将至少第一和第二发光二极管(16,18)嵌入至托架外壳(12),所述托架外壳适合于舒适地装配至充氧血液通过量较高的受检者解剖体组织的部分周围;与所述发光二极管(16,18)相对嵌入集成电路(22),使得二极管发射的光在照射在集成电路(22)上之前必须通过受检者解剖体组织的部分,所述集成电路(22)包括至少一个光电二极管(20),用于检测来自所述至少两个发光二极管(16,18)的光信号,并产生指示所述光信号的信号;放大器(40),用于放大来自所述光电二极管(20)的信号;数字转换元件(42,44),用于对来自所述光电二极管(20)的信号进行数字化。微处理单元(46),用于将数字信号处理为脉搏血氧饱和度值。
19.根据权利要求18所述的制造脉搏血氧饱和度传感器(10)的方法,其中所述集成电路(22)形成在单个CMOS衬底(21)上。
20.一种测量血氧的方法,包括从安装在托架外壳(12)中的第一LED(16)发射红光脉冲,所述托架外壳适合于舒适地装配至充氧血液通过量较高的受检者解剖体组织的部分周围;从安装在所述托架外壳(12)中的第二LED(18)发射红外光的脉冲,使用安装在托架外壳(12)中的光电二极管(20)接收来自LED(16,18)的光并产生电信号,所述光已经横穿人体的血液充氧部分;使用处理电路(22)将来自光电二极管(20)的电信号处理成血液血氧饱和度值,所述处理电路集成地形成在安装于托架外壳(12)中的半导体芯片(21)上。
21.根据权利要求20所述的测量血氧的方法,其中所述光电二极管(20)是所述半导体芯片(20)的集成部分。
全文摘要
在医学脉搏血氧饱和度传感器(10)中,布置了至少两个发光二极管(16,18)以发射穿过充氧血液通过量通常较高的受检者解剖体组织部分的红光和红外光。通常所述区域较窄,从而允许光以可接受的衰减通过所述区域,诸如手指或者耳垂。从所述二极管(16,18)发射的光覆盖在由单个CMOS衬底(21)印刷的集成电路(22)上。集成电路(22)包括将检测到的光信号转换成血氧饱和度测量值所需的所有预处理和后处理元件。这些元件包括光电检测器(20)、光电前置放大器(40)、采样器/保持器(42)、模数转换器(44)、微处理器(46)、测距仪(48)、定时控制电路(50)以及LED控制电路(52)。通过将所有的预处理和后处理功能部件集成至托架外壳(12),所述系统变得更加有效、制造成本更小并且对于环境光和X射线辐射更加鲁棒。
文档编号A61B5/00GK101080192SQ200580042954
公开日2007年11月28日 申请日期2005年12月5日 优先权日2004年12月14日
发明者O·祖赫, J·劳特, R·平特, J·穆尔施特夫 申请人:皇家飞利浦电子股份有限公司