经脱水缩合反应可发生相转移的分子集合体及其相转移方法

文档序号:1111786阅读:644来源:国知局

专利名称::经脱水缩合反应可发生相转移的分子集合体及其相转移方法
技术领域
:本发明涉及通过水界面的脱水缩合反应可以发生相转移的分子集合体及其相转移方法。更详细地说,本发明涉及诱发脂质体等水界面分子集合体的融合或分裂的方法。
背景技术
:为了引起分子集合状态的变化,通常来说要改变表面活性剂的浓度或温度。在胶束等平衡体系中,如果添加不同种类的表面活性剂,则快速地发生状态变化。另一方面,在以脂质体为代表的双分子膜小泡之类的分散体系中,由于构成它们的脂质处于比较稳定的状态,因此其移动非常緩慢。为了诱发这些集合体的融合或分裂,通常来说要引起界面的物理状态变化。此时,对所使用的脂质或反应条件等的依赖性很高,多有限制。例如,由磷脂酰丝氨酸等构成的脂质体由于Ca"的添加而诱发膜融合等的相转移(Duzgunes等、Biochemistry,1987年,26巻,8435-8442页)。认为其原因在于,由于Ca^而发生了电荷的中和、脂质间的交联、脱水缩合等,膜变得不稳定。但是,该方法并不能适用于仅由中性磷脂质构成的脂质体。另外,报告指出,通过在含有磷脂酰丝氨酸的脂质体中添加高浓度的聚乙二醇,会发生膜融合(Lentz等、Biochemistry,1992年,31巻,2643-2653页和Yang等、BiophysicalJournal,1997年,73巻,277-282页)。这是由于膜的自由水消失、膜变得不稳定所导致的。进而,还提出了利用病毒的膜融合法(Blume她al等、ChemistryandPhysicsofLipids,2002年,116巻,39-55页)。该方法中,在膜的外侧上必需病毒的受体。还报告了介由电脉冲的物理刺激的膜融合谦发法(Sugar等、BiophysicalChemistry,1987年,26巻,321页)或者利用在接触的脂质体上照射UV光的膜融合法(Kulin等、Langmuir,2003年,19巻,8206-8210页)。还有通过添加蛋白质或肽,引起由于pH依赖性的质子化所导致的高级结构的变化,从而诱发膜融合的方法(Kim等、Biochemistry,1986年,25巻,7867-7874页)。这些各种融合方法均是以形成分子集合体的脂质的物理状态变化为基础,在融合前阶段必须产生凝集。即,当单独分散时,分子集合体的脂质处于完全未活化的状态。另一方面,有关于以化学反应为基础的相转移,例如融合和分裂的报告(Takakura等、ChemistryLetters,2002年,404-405页和Toyota等、ChemistryLetters,2004年,33巻,1442-1443页)。具体地说,通过小泡的双分子膜中的脱水缩合所导致的亚胺形成及其水解反应,小泡的形态发生变化,由此发生膜融合和分裂。例如,如果在由具有疏水性反应性基团(醛基)的双亲性脂质形成的小泡的分散液中加入具有亲水性反应性基团(氨基)的双亲性脂质的胶束分散液,则由于双分子膜中的反应性基团之间的可逆性脱水缩合反应,产生亚胺,小泡变大(Takakura等、前述)。另外,对应于这些具有各反应性基团的脂质和脱水缩合的双亲性脂质的存在比,可以观察到小泡的可逆形态变化(Toyota等、前述)。但是,这些方法中,不能控制小泡的双分子膜状态。还有通过使用了酶的生物学手法改变脂质结构,从而引起融合的方法。具体地说,通过使用磷脂酶C水解磷脂酰胆碱或磷脂酰乙醇胺(Nieva,J.隱L.等、Biochemistry,1989年,28巻,7364-7367页),或者使用鞘磷脂酶水解鞘磷脂(大木和夫、生物物理、2004年,44巻,161-165页),将构成小泡的双分子膜的磷脂质的磷酸基除去,分别生成二酰基甘油或神经酰胺的方法。分子的形状均由倒锥形向极性头部的分子面积小的圆柱型变化(临界填充参数变化)、曲率改变,发生融合。作为生物学研究,报道了当引起膜的融合或分裂时,将单链的磷脂质酰化向双链磷脂质转变的酶的活性提高(Schmidt,A.等、Nature,1999年,401巻,133-141页)。即,提示在神经末稍的突触上再次形成突触小泡时,必需溶血磷脂酸(LPA)酰基转移酶。该酶将酰基转移至键合有磷酸的单酰基甘油(单链的磷脂质)的LPA上,向双链磷脂质转变。由于是在发生膜变化时进行该反应,因此说明这种酶的化学反应所导致的膜曲率变化是很重要的。
发明内容本发明的目的在于提供通过形成分子集合体的脂质的化学变化,能够使其物理性质或形态改变、调节膜融合等相转移的时机等的方法。本发明的诱发双分子膜小泡相转移的方法的基础在于在含有具有胺或羧酸盐的极性头部的表面活性剂的分子集合体(脂质体)中,化学地进行它们的脱水缩合反应,从而改变脂质的临界填充参数,结果脂质体的双分子膜的曲率发生改变,发生由此产生的扭曲。本发明提供双分子膜小泡,该双分子膜小泡含有以下物质作为膜的构成成分U)碳原子数6~20的脂肪酸盐;(b)具有碳原子数6~20的脂肪链的醇或胺化合物;(c)可以形成双分子膜的人工合成脂质或磷脂质。在某实施方式中,上述(b)醇或胺化合物为下式I所示的二元醇。R1—NH—CH2—CH(OH)-CH20H(I)(式中,Ri为碳原子数620的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基)。更优选的实施方式中,上述双分子膜小泡还含有(d)下述式II所示的叔胺作为上述膜的构成成分,/N-R4(II)(式中,R2、113和114中的l个或2个为甲基,剩余的R2、RS和I^各自独立,为-CH2COOCnH2n小國CnH2n+i或誦C6H4-p國CnH2^,其中n为6~20的整数,-CnH2n+i为直链状)。在1个实施方式中,上述(a)脂肪酸盐和上述(b)醇或胺化合物的摩尔比为1:1。另一个实施方式中,上述(a)脂肪酸盐和(b)醇或胺化合物以及上述(c)能够形成双分子膜的人工合成脂质或磷脂质的摩尔比为某个实施方式中,上述(C)能够形成双分子膜的人工合成脂质或磷脂质为磷脂质。本发明还提供诱发双分子膜小泡的相转移的方法,该方法包括调制双分子膜小泡的工序,即该双分子膜小泡含有U)碳原子数6~20的脂肪酸盐,(b)具有碳原子数6~20的脂肪链的醇或胺化合物和(c)可以形成双分子膜的人工合成脂质或磷脂质作为膜的构成成分的工序;以及在该双分子膜小泡中添加脱水缩合剂或脱水缩合剂前体的工序。在一个实施方式中,上述(b)醇或胺化合物为下式I所示的二元醇,上述脱水缩合剂前体为下式III所示的氰尿酸衍生物。R1—NH—CH广CH(OH)-CH2OH(I)(式中,Rt为碳原子数620的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基)。更优选的实施方式中,上述双分子膜小泡还含有(d)下述式II所示的叔胺作为上述膜的构成成分。<formula>formulaseeoriginaldocumentpage8</formula>(式中,R2、RS和R"中的l个或2个为曱基,剩余的R2、RS和R"各自独立,为-CH2COOCnH2n+b-CnH2nW或-C6H4-p-CnH2^,其中n为6~20的整数,-CnH2n+i为直链状)。<formula>formulaseeoriginaldocumentpage8</formula>(III)(式中,rS和I^各自独立,为甲基、乙基、碳原子数2~5的羟烷基,-(CH2CH20)mR7(这里,m为l120的整数,R7为氢原子、曱基、乙基或丙基)、-(CH2CH2NR8)mH(这里,m为l120的整数,118为碳原子数2-5的烷基、N,N-二烷基氨基乙基、或者-CH2CH2N+(CH3)3)、-CH2CH2S03-、-CH2CH2N+(CH3)3、或碳原子数6~20的烷基,但R5和116不同时为碳原子数6~20的烷基,X为卣原子)。某个实施方式中,上述式III中的R5和R6的至少一者为甲基或乙基。在l个实施方式中,上述式II中的n为12~16。通过本发明的方法,可以利用脱水缩合反应使形成含有双分子膜小泡的分子集合体的脂质发生化学变化,改变其物理性质或形态,调节膜融合等相转移的时机。即,可以在双分子膜小泡中诱发分子集合体的相转移(融合或分裂)。因此,能够提供活化状态或准稳定状态的小泡。另外,本发明的双分子膜小泡由于诱发这种相转移而能够优选使用。图1为用于说明本发明原理的模式图。图2为从NBD-PE向Rh-PE的荧光能量转移的荧光谱图。图3为显示在MLV中产生的假神经酰胺收率的经时变化的曲线图。图4为显示SUV的膜结合所导致的F值经时变化的曲线图。图5为显示利用荧光稀释法的SUV膜融合所导致的F值经时变化的曲线图。图6为添加CDMT之前的SUV的电子显微镜照片。图7为添加CDMT之后的SUV(GUV)的电子显微镜照片。图8为仅添加甲醇后的SUV电子显微镜照片。具体实施例方式本发明中,通过脱水缩合剂使导入到小泡双分子膜中的适当双亲性物质发生脱水缩合反应,可以改变双分子膜的状态。根据图1说明本发明的原理。在一般的表面活性剂中,如图中的倒三角形所示,具有电荷的胺或羧酸盐是极性头部很大的倒锥型表面活性剂。它们脱水缩合而得的神经酰胺由于在该反应前后,双亲性物质的酰基链(或烷基链)的数量和极性头部的电荷或官能团的种类发生变化,例如电荷消失导致极性头部变小,因此成为图中长方形所示的圆柱或锥型的脂质。因而,如果在含有这些胺和羧酸盐的分子集合体(脂质体等)中进行这些化合物的脱水缩合反应,则由于临界填充参数的增加和膜间排斥力的降低,发生膜曲率的变化等,为了緩和上述现象,膜最终发生融合。具体地说,可以举出由鞘氨醇合成神经酰胺。但是,由于难以大量获得鞘氨醇,因此优选使用如图所示的二元醇作为类似化合物,利用其缩合合成假神经酰胺,从而确认上述原理。本发明的方法对于通过脱水缩合能够形成神经酰胺类似物质的基质可以广泛地应用。作为这种基质,可以举出双亲性的多种脂肪酸盐或者伯和仲胺类。特别是,为了维持作为产物的假神经酰胺的双亲性,优选至少在羧酸或胺或者醇化合物的任一个的极性头部周围具有与进行脱水缩合反应的羧基或氨基或者羟基不同的亲水性官能团。作为该亲水性官能团,优选羟基或糖等中性基团,还可以是作为普通表面活性剂极性头部的季铵离子、磷酸离子、磺酸离子、硫酸离子等离子。以下更加详细地说明本发明。本发明如上所述提供能够产生相转移的双分子膜小泡以及其相转移方法。本发明中,"相转移"并非限定于双分子膜小泡的膜的相转移。例如,还包括双分子膜小泡膜融合或膜分裂、由双分子膜小泡向平面双分子膜或胶束的转变、由胶束向双分子膜小泡的转变等各种分子集合相的形态变化。本发明的双分子膜小泡含有以下物质作为膜的构成成分(a)碳原子数6~20的脂肪酸盐;(b)具有碳原子数6~20的脂肪链的醇或胺化合物;(c)可以形成双分子膜的人工合成脂质或磷脂质。上述(a)碳原子数6~20的脂肪酸盐只要是具有聚集在水界面的能力的双亲性脂肪酸盐则没有特别限定。作为这种脂肪酸盐,优选为具有长链烷基之类脂溶性基团的脂肪酸盐,更优选为碳原子数约为10~20的直链、支链或环状的脂肪酸盐。具体地说,可以举出羊蜡酸(癸酸)、十一烷酸、月桂酸(十二烷酸)、肉豆蔻酸、棕榈酸、棕榈油酸、硬脂酸、油酸、反油酸、岩芽酸、亚油酸、a-亚油酸、,亚油酸、二十烷酸、二十碳三烯酸、花生四烯酸等的盐。作为这些盐,通常可以举出钠盐、钾盐等。根据需要,还可以在这些化合物的羧基的周围或附近具有上述那样的亲水性官能团。上述(b)具有碳原子数6~20的脂肪链的醇或胺化合物只要是具有能够与上述(a)脂肪酸盐的羧基发生脱水缩合的基团(例如羟基或氨基)、且具有聚集在水界面的能力的双亲性化合物,则没有特别限定。优选具有长链烷基之类的脂溶性基团,更加优选在能够脱水缩合的基团的周围或附近具有上述那样的亲水性官能团。需要说明的是,上述(a)脂肪酸盐在除了进行脱水缩合反应的羧基以外没有更多的亲水性官能团时,该(b)化合物更优选在极性头部周围进一步具有亲水性官能团。作为这种化合物的优选例子,可以举出下式I所示的二元醇。在该二元醇中,胺部分是能够脱水缩合的基团,醇部分相当于亲水性官能团。R1—NH—CH2—CH(OH)-CH2OH(I)(式中,Ri为碳原子数620的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基)。在上述式I所示的(b)二元醇中,当Ri为碳原子数620的烷基时,该烷基可以是直链状、支链状或环状.优选碳原子数约为10~20的直链状。作为这种烷基,可以举出正癸基、正十二烷基(月桂基)、正十六烷基、正十八烷基等.当1^为碳原子数6~20的烯基时,该烯基可以是直链状、支链状或环状.优选碳原子数约为10~20的直链状.作为这种烯基,可以举出l-癸烯、l-十二烯、9-十六烯、9-十八烯等。当1^为碳原子数6~20的炔基时,该炔基可以是直链状、支链状或环状。优选碳原子数约为10~20的直链状。作为这种炔基,可以举出1-癸炔、l-十二炔、9-十六炔、9-十八炔等。上述(c)能够形成双分子膜的人工合成脂质或磷脂质只要是能够形成双分子膜的化合物,则没有特别限定。作为人工合成脂质,可以举出长链二烷基化合物、单烷基表面活性剂、三链型表面活性剂等。例如在《脂质体》、野岛庄七等编、南江堂、1988年、302-309页中有所示例。通常来说,优选在同一分子内具有C12~C15的2根长链状烷基和亲水性官能团(阳离子性、阴离子性、非离子性等)的化合物,代表地可以举出C12~C15的二烷基铵盐。磷脂质没有特别限定,可以是甘油脂质或鞘磷脂质的任一种。作为这种磷脂质,可以举出磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰甘油、鞘磷脂等。优选磷脂酰胆碱。本发明的双分子膜小泡根据需要还含有(d)下式II所示的叔胺作为膜的构成成分。<formula>formulaseeoriginaldocumentpage12</formula>(式中,R2、113和114中的l个或2个为曱基,剩余的R2、113和114各自独立,为國CH2COOCnH2nw、画CnH加+i或誦C6H4誦p-Cja加+h其中n为6~20的整数,-CnH2n+i为直链状)。在可以作为上述式II所示(d)叔胺的R2、R3和R4的-CH2COOCnH2n+1、CnH2n+i或-C6H4-p誦CnH2n+i中,n为6~20的整数,-CnH2n+i为直链状。作为它们的取代基,例如可以举出正辛氧基羰基亚甲基、正癸氧基羰基亚曱基、正十二烷氧基羰基亚甲基、正十六烷氧基羰基亚甲基;正己基、正庚基、正辛基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基;对-(正己基)亚苯基、对-(正辛基)亚苯基、对-(正癸基)亚苯基、对-(正十二烷基)亚苯基、对-(正十四烷基)亚苯基、对-(正十六烷基)亚苯基、对-(正十八烷基)亚苯基等。如果考虑向本发明的双分子膜小泡的导入容易性,优选上述式II的R2、113和114中的n为8~18,更优选为12~16。对于上述式II的R2、议3和R4,如果考虑本发明方法的脱水缩合反应性,则R2、113和114中的l个或2个为甲基,剩余的R2、W和R4为具有碳原子数6~20的直链烷基的基团。更优选R2、113和114中的2个为曱基。当R2、113和114全部为具有碳原子数6~20的直链烷基的基团时,反应效率不好,因此不优选。含有上述式II所示的叔胺作为双分子膜小泡的膜构成成分时,优选使用作为脱水缩合剂前体的、以下详述的、式III所示的氰尿酸衍生物o本发明的双分子膜小泡中的上述(a)~(d)的比例只要是能够形成小泡,则没有特别限定。作为脱水缩合反应基质的(a)脂肪酸盐和(b)醇或胺化合物优选为约1:1的摩尔比。更优选(a)脂肪酸盐与(b)醇或胺化合物与(c)人工合成脂质或磷脂质的摩尔比为约1:1:1。(d)叔胺通常相对于l摩尔(a)脂肪酸盐以0.01~1.0摩尔、优选0.1~0.5摩尔的比例含有。上述(a)~(d)可以分别单独使用,还可以混合2种以上〗吏用。本发明的双分子膜小泡还可以根据需要含有具有其他界面聚集性的化合物或者虽然没有界面聚集性但可以含有在双分子膜中的化合物.例如,如下所述,可以举出用于观察膜融合的荧光物质等。本发明的双分子膜小泡可以是多层小泡(MLV:通常0.2~5pm大小)或者单层膜小泡(SUV:100nm以下;LUV和REV:100~1000nm;GUV:1000nm以上)的任何一种,它们可以通过本领域技术人员使用的普通方法制造。例如,MLV可以如下制造将上述(a)~(d)分别溶解在适当的有机溶剂(例如曱醇、氯仿等)中,在容器中混合,蒸馏除去有机溶剂。接着,使形成在内壁上的薄膜干燥后,加入适当的水溶液(例如磷酸緩冲液、Tris-HCl緩冲液、碳酸緩冲液等),通过约30秒钟左右的超声波照射使其膨润。进而,利用涡流混合机等进行搅拌振荡,剥去薄膜,从而可以以混悬液的状态获得MLV.SUV例如可以通过进一步以高功率强力地照射超声波(例如冰冻下约20分钟)而作为SUV的分散液获得(超声波处理法)。或者还可以通过在相转移温度以上的温度下利用微注射器注入溶解在乙醇中的脂质的乙醇注入法、或者通过将MLV放入在弗氏压碎器中进行挤出的弗氏压碎法等来调制SUV。LUV可以通过瞇注入法、表面活性剂法、Ca^融合法、冷冻-溶解法等本领域技术人员通常使用的方法调制。REV可以通过反相蒸发法获得。GUV例如可以通过使曱基葡萄糖甙和脂质的乙醇溶液相对于多量的緩冲液进行透析而获得。诱发本发明的双分子膜小泡相转移(例如膜融合)的方法包括以下工序调制上述双分子膜小泡的工序;以及在该双分子膜小泡中添加脱水缩合剂或脱水缩合剂前体的工序。作为在上述方法中使用的脱水缩合剂,可以举出水溶性的脱水缩合剂或界面聚集性的脱水缩合剂或脱水缩合剂前体。作为水溶性的脱水缩合剂,例如可以举出下述式IV所示的季铵盐(参照WO00/53544和Kunishima等、Tetrahedron,2001年,57巻,1551-1558页)。具体地说,可以举出4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉盐酸盐(DMT-MM)。<formula>formulaseeoriginaldocumentpage14</formula>(IV)(这里,E为具有l个或2个叔胺基的l价或2价诱发基团;n在E具有1个叔胺基时为1、在E具有2个叔胺基时为2;116和111()各自独立,表示碳原子数1~4的烷基、或者碳原子数6~8的芳基;a为l或2、在n为1时为1;Z一"表示(n/a)价的抗衡阴离子)。作为表面聚集性的脱水缩合剂,可以举出下式V所示的1,3,5-三噪型化合物。<formula>formulaseeoriginaldocumentpage14</formula>(V)(式中,115和116各自独立,为甲基、乙基、碳原子数2~5的羟烷基、-(CH2CH20)mR7(其中,m为l120的整数,R7为氢原子、曱基、乙基或丙基)、-(CH2CH2NR8)mH(其中,m为l"-120的整数,118为碳原子数2~5的烷基、N,N-二烷基氨基乙基或國CH2CH2N+(CH3)3)、國CH2CH2S03'、-0^20^^+((:83)3或碳原子数为6~20的烷基,r5和R6不同时为碳原子数6~20的烷基;R2、R3和R4中的1个或2个为甲基,剩余的R2、W和R4各自独立,々-CH2COO-CnH2n+1、-(:3211+1或-C6H4-p-CnH2n+1,其中n为6-20的整数,-CnH2n+1为直链状;X-为卣化物离子)。该式V所示的化合物通过在适当的溶剂中混合下式III所示的氰尿酸衍生物和下式II所示的叔胺而获得。(式中,RS和RG各自独立,为曱基、乙基、碳原子数2~5的羟烷基、-(CH2CH20)mR7(这里,m为l120的整数,117为氢原子、曱基、乙基或丙基)、-(CH2CH2NR8)mH(这里,m为l120的整数,议8为碳原子数2~5的烷基、N,N-二烷基氨基乙基、或者-CH2CH2N+(CH3)3)、CH2CH2S03、-CH2CH2N+(CH3)3、或碳原子数6~20的烷基,但R5和116不同时为碳原子数6~20的烷基,X为卣原子),(式中,R2、113和114的定义如上)。特别优选在混合待使其脱水缩合的至少2种化合物的同时,还混合这些氰尿酸衍生物和叔胺。作为脱水缩合剂,可以直接使用上式V所示的1,3,5-三嗪型化合物,但该化合物如上所述优选在调制小泡的同时添加,因此难以调节融合或相转移。因此,优选在预先以含有(d)叔胺化合物作为膜的构成成分的方式调制得到的小泡中添加作为脱水缩合剂前体的氰尿酸衍生物(化合物III)。此时,通过在调制脂质体制后添加氰尿酸衍生物(化合物ni),可以在体系内(脂质体界面)产生脱水缩合剂(化合物V),引起界面的脱水缩合反应。因此,由于适当地进行了目标的融合或相转移,因此更为优选。在上式III中,当115和116为碳原子数2~5的羟烷基时,该羟烷基可以是直链状、支链状或环状,羟基的位置和数量没有特别限定。优选为直链状,且为末端羟基。作为碳原子数2~5的羟烷基,例如可以举出2-羟乙基、3-羟丙基、4-羟丁基、5-羟戊基。在上式III中,当R5和R6为-(CH2CH20)mR7时,m为1~120的整数、优选为1~50的整数。iT为氢原子、甲基、乙基或丙基。此时,115和116的部分平均分子量优选约为455000(相当于m为1~120)、更优选约为45~2000(相当于m为1~50)。在上式III中,当R5和R6》-(CH2CH2NR8)mH时,m为1~120的整数、优选为1~50的整数。r8为乙基或N,N-二烷基氨基乙基,该烷基的碳原子数为2~5。此时,W和116的部分平均分子量优选约为45~5000(相当于m为1~120)、更优选约为45~2000(相当于m为1~50)。在上式III中,当115和116为碳原子数6~20的烷基时,该烷基可以是直链状、支链状或环状,优选为直链状。作为115和116的碳原子数6~20的烷基,可以举出正己基、正戊基、正辛基、正壬基、正癸基、正十二烷基、正十六烷基等。对于上式iii的rs和r6,如果考虑该氰尿酸衍生物在水界面上的停留容易性,优选1150-和1160-部分具有亲水性。随着上述R2、W和W的组合的不同而不同,优选115和W的至少一者为甲基或乙基,更优选两者均为甲基。当115和116同时为碳原子数6~20的烷基时,该氰尿酸衍生物的疏水性变强,难以聚集在水界面上,因此不优选。作为这种氰尿酸衍生物,例如可以举出2-氯-4,6-二甲氧基-1,3,5-三溱(CDMT)。如上所述,为了使脱水缩合反应发生,从在双分子膜小泡的界面上的聚集性良好、且在界面上能够产生脱水缩合剂的方面出发,对于含有(d)叔胺作为双分子膜小泡的膜构成成分的小泡,特别优选使用作为脱水缩合剂前体的氰尿酸衍生物(化合物ni)。在该工序中,上述脱水缩合剂或脱水缩合剂前体相对于(a)脂肪酸盐或(b)醇或胺化合物使用1~100当量、优选使用25~50当量。进行该工序的温度根据目的适当决定,通常在室温下进行。该工序所需要的时间随着小泡的膜构成成分、脱水缩合剂或脱水缩合剂前体的量、该工序的实施温度等各种因素而改变,或者可以通过这些因素调节。在该工序中,当使用氰尿酸衍生物时,如以下路线所示,首先通过添加上式III的氰尿酸衍生物,形成存在于双分子膜小泡的(d)叔胺和脱水缩合剂。接着,膜中的(a)羧酸与(b)胺化合物(二元醇)发生脱水缩合,形成假神经酰胺。因此,如上所述,由于膜的临界填充参数增加和膜间的排斥力降低,发生膜曲率的变化等,产生膜融合等的相转移(参照图1)。<formula>formulaseeoriginaldocumentpage17</formula>作为用于评价和观察膜融合等相转移的方法,可以举出利用电子显微镜进行的观察、所产生的假神经酰胺的定量(例如利用质谙等)、荧光变化的测定等。当为荧光变化的测定时,将由于存在于附近而发生荧光能量转移的化合物作为双分子膜的构成成分导入。作为这种化合物,例如可以举出1,2-二肉豆蔻基-sn-甘油-3-磷酸乙醇胺-N-(7-硝基-2-1,3-苯并喝二唑-4-基)(NBD-PE)和1,2-二肉豆蔻基-sn-甘油-3-磷酸乙醇胺-N-(磺酰基丽丝胺罗丹明B)(Rh-PE)的组合。前者为能量供体,后者为能量受体。如图2所示,如果NBD-PE和Rh-PE相邻存在,则发生荧光能量转移。荧光变化的评价可以使用通过下式获得的荧光变化F。例如,当NBD-PE和Rh-PE分别含有在不同的小泡中时,如果发生它们的融合,则F值增大。相反,含有NBD-PE和Rh-PE两者的小泡与不含它们的小泡融合时,NBD-PE和Rh-PE的距离增加,因此F值减少。荧光变化(F)<formula>formulaseeoriginaldocumentpage18</formula>ao-反应开始时的NBD-PE的荧光强度a产任意时间下的NBD-PE的荧光强度bo-反应开始时的Rh-PE的焚光强度b产任意时间下的Rh-PE的荧光强度利用本发明方法的膜融合等相转移不仅可以在由本发明提供的含有脂肪酸盐和胺作为膜构成成分、且通过脱水缩合能够被活化的不稳定双分子膜小泡之间产生,还可以在这种不稳定双分子膜小泡和未被活化的稳定的双分子膜小泡之间产生。而且,通过不稳定的双分子膜小泡与稳定的双分子膜小泡的量比、脱水缩合剂或脱水缩合剂前体的量等各种因素可以调节相转移。通过本发明的方法,当诱发双分子膜小泡之间的膜融合时,其内容物可以不随膜的融合而漏出(泄漏)地被融合。这样,通过本发明的方法,例如能够诱发细胞和由本发明提供的双分子膜小泡之间的膜融合,还可以进行调节使得在适当的时机将小泡的内容物送入到细胞内。实施例的二元醇1A的合成相同的方法合成(收率33%)。无色结晶熔点78~791C。工HNMR(CDC13)50.88(t,J=6.9Hz,3H),1.23—1.33(迈,18H),1.42—1.51(m,2H),2.54—2.73(m,3H),2.79—2.86(m,1H),3.59—3.65(m,1H〉,3.70—3.77(m,2H);IR(KBr)3323,3272,2916,2847cm-1;元素分析Ci5H33N02:计算值H,12.82;C,69.45.实测值H,12.83;C,69.42。ESI—MSm/z260[(M+l)+,C16H3302N]。二元醇1B相对于以下实施例中使用的緩冲液(5mMNaH2P04,0.15MNaCl,pH7.5)的溶解度约为0.2mM.。。2-23-(N-辛酰基辛基氨基)-1,2-丙二醇(假神经酰胺2A)的合成利用与上述P-1的假神经跣胺2B的合成相同的方法合成(收率52%)。无色油状。丄HNMR(CDC13)SO.88(t,J=7,OHz'3H),O.89(t,J=6.9Hz,3H),1.22—1.37(m,18H)'1.52—1.70(m,4H),2.33(t,J=7.6Hz,2H),3.18—3.36(m,2H),3.39—3'59(m,4H),3.71—3.79(m,1H);IR(neat)3378,2926,2855,1620cm-1;元素分析C19H3g03N:计算值H,11.93;C,69.25.实测值H,12.14;C,69.49。ESI-MSm/z330[(M+l)+,'C19H3B03N]。。IR(KBr)2923,1749cm-1。N,N-二曱基氨基-醋酸-l-辛酯(C8-叔胺)的合成除了使用1-辛醇代替1-十二烷醇之外,与上述[3-l同样地操作,以外。/。的收率获得N,N-二甲基氨基-醋酸-l-辛酯(C8-叔胺)。无色液体。丄HNMR(CDC13)50.88(t,J=6.9Hz,3H),1.24—1.33(m,10H〉,1.57—1.66(m,J=7.2Hz,2H),2.35(s,6H),3.16(s,2H),4.12",J=6.8Hz,2H)。ESI—MSm/z216[(M+1)+,C12H2502N]。IR(KBr)2928,1753cm-1。。IR(KBr)2923,1742cirT1。根据上述实施例6记载的SUV调制方法,通过表5所示的组成调制含有荧光剂的SUV分散液和不含荧光剂的SIJV分散液。表5<table>tableseeoriginaldocumentpage29</column></row><table>*:磷酸緩冲液使用5mMNa2HPO4/0.15MNaCl,pH8.5在室温下混合0.2mL调制好的含有荧光剂的suv分散液和1.8mL不含荧光剂的suv分散液。调制各三个检体。在其中的各2个检体中分别加入10.8|liL(25当量)或21.7pL(50当量)的CDMT(甲醇中300mM),在室温下放置。剩余1个加入21.7pL甲醇作为对照实验,同样地放置,每隔一定时间测定荧光。结果示于图5中。当为该实施例8的荧光稀释法时,与实施例7的混合法不同,F值随着融合的发展而变小。如图5所示,仅加入CDMT时可见荧光减弱,强烈启示诱发膜融合。需要说明的是,在图5所示的曲线图中,在初期状态下加有CDMT的曲线与对照曲线之间可见到差别。但是,这说明添加CDMT2小时后可见很大的荧光变化,在反应开始前的荧光中没有差别。实施例9:伴随着suv融合的粒径变化使用月桂酸钠和油酸钠这2种作为脂肪酸盐进行实验。根据上述实施例6记载的suv调制方法,以表6所示的组成调制suv分散液。<table>tableseeoriginaldocumentpage30</column></row><table>*1:Z平均-平均流体力学直径在3小时左右粒径均显著增大。由粒径的变化,启示在月桂酸中有十多个SUV融合,在油酸中有30~40个左右SUV融合。[实施例10:利用透射型电子显微镜观察SUV1根据上述实施例6记载的suv调制法,以表8所示的组成调制suv分散液。表8<table>tableseeoriginaldocumentpage31</column></row><table>在5mL磷酸緩冲液(5mMNa2HPO4/0.15MNaCl,pH8.5)中调制取出200pL调制好的suv分散液,加入4.3pL的CDMT(甲醇中300mM),在室温下放置。作为对照实验加入4.3pL甲醇代替CDMT,在室温下放置。将数滴放置后的suv分散液滴加在栽玻片上,利用液氮冷冻,通过本领域技术人员通常进行的冷冻割断法,调制电子显微镜试样(复制品)(使用JEOLJFD-卯IO).利用TEM(JEOLJEM-1010)观察所得试样(加速电压100kv)。电子显微镜照片示于图6~8中,照片中的箭头表示suv。当加入CDMT时,粒径在添加CMDT前为数十~约100nm(图6),添加CDMT后达到lpM以上,而且粒子数显著减少(图7)。这是由于相互接近的数千个suv之间发生融合,形成巨大的guv。另一方面,当仅加入甲醇时,即便经过1天以上,在粒径和分布中也未见变化(图8)。[实施例11:活化suv和惰性suv的融合实验对于作为膜构成成分含有脂肪酸盐和胺、通过脱水缩合而活化的suv(以下称为活化suv)和通常的suv(以下称为惰性suv),通过上述实施例6记载的suv调制方法,以下表9所示组成分别调制含有荧光剂的suv分散记和不含荧光剂的suv分散液。表9<table>tableseeoriginaldocumentpage32</column></row><table>*:磷酸緩冲液使用5mMNa2HPO4/0.15MNaCl,pH8.5根据上述实施例8记载的荧光稀释法,在室温下混合0.2mL调制好的含有荧光剂的SUV分散液和1.8mL不含荧光剂的SUV分散液.在此,SUV的组合有以下4种类含有荧光剂的活化SUV和不含荧光剂的活化SUV的组合(第l轮)、含有荧光剂的惰性SUV和不含荧光剂的活化SUV的组合(第2轮)、含有荧光剂的活化SUV和不含荧光剂的惰性SUV的组合(第3轮)、含有荧光剂的惰性SUV和不含荧光剂的惰性SUV的组合。接着,加入15.2pL(4.55pmol:第1轮的总脂肪酸盐的35当量)CDMT(甲醇中300mM),在室温下放置,通过荧光光度计测定F值的经时变化.结果示于图9中。由图9可知,一方面即便是惰性SUV,F值也显著地变化(第2轮和3)。对于相同的SUV之间的融合来说,理论上没发生荧光变化,因此该F值的减少表明发生活化SUV和惰性SUV的融合。当活化SUV少时(第3轮),F值的变化量小,这是由于通过一次融合SUV的不稳定性被消除、不会进一步融合,荧光剂未被充分地稀释。另一方面,当SUV的卯%为活化SUV时(第2轮),融合多阶段地发生,荧光剂被充分地稀释,因此F值的变化很大。[实施例12:伴随融合的SUV内水相的泄漏研究]当将膜融合用在DDS或基因导入中时,脂质体内容物必须被很好地导入到靶细胞的内部。融合如果伴随着膜的部分崩解时,则大量的内容物会泄露到外部,不能达到该目的,其应用性有限,因此,进行融合时的内容物的泄漏实验。以下所示的钙黄绿素(Calcein)这种荧光色素在高浓度下会自己消光,不会发出突光,但在低浓度下会发出荧光。因此,在本实施例中,利用该性质,进行在内部(内水相)中预先放入有高浓度钙黄绿素的脂质体的融合实验。伴随着融合,如果内容物泄露,则在外水相中呈现出稀释的钙黄绿素的荧光,但如果不发生泄露,则荧光没有变化。SUV的调制根据实施例6所记载的方法进行。在磷酸緩冲液(5mMNaH2P04/Na2HP04,0.15MNaCl,pH8)中放入钙黄绿素(75mM),通过超声波处理制作SUV。通过凝胶过滤(SephadexG-50、在流动相中同样使用磷酸緩冲液)分离SUV,除去存在于外水相中的钙黄绿素,获得SUV分散液。在所得SUV分散液中添加CDMT(50当量)后,在室温下放置,经过一定时间后测定荧光(520nm)(Fs)、之后立即添加TritonX-100(10%、200pL)破坏SUV后,再次测定荧光(Ft)。没有膜融合的对照实验同样使用SUV、不添加CDMT、每隔一定时间测定荧光,最后添加Triton-X100破坏脂质体,测定荧光。根据下式计算泄露率。钙黄绿素钙黄绿素的泄露(%)Fsx1.01-F0x100x1."國F。F0:0小时的荧光强度Fs:各时间的荧光强度FT:添加Triton-XlOO后的焚光强度所得结果示于下表IO中。表IO时间泄露率(%)有融合没有融合(对照)1小时6.51.32小时7.12.03小时8.32.2如表10所示可知,当添加CDMT发生膜融合时,直至融合基本完成的3小时可见泄露率有若干的增加(相对于对照实验的2%,融合时为8%),但焚光强度(Fs)在刚测定后与添加TrionX-lOO时的荧光(Ft)相比非常小,内容物基本没有泄露.产业实用性通过本发明的方法,能够化学地改变利用脱水缩合反应形成分子集合体的脂质,改变其物理性质或形态,调整膜融合等相转移的时机等。即,能够诱发在双分子膜小泡中分子集合体的相转移,可以诱发脂质体等水界面的分子集合体的融合或分裂。另外,本发明的双分子膜小泡可以提供活化状态或准稳定状态的小泡。进而,在脂质体等的膜融合时,其内容物也可能融合。因此,本发明的方法和双分子膜小泡在利用脱水缩合反应的有机合成化学或界面化学的领域、或者利用脂质体等小泡的领域等的研究中有用。另外,作为用于研究关于细胞或细胞内小器官的形成、分解、分裂或融合等生物的形态变化的模型体系,对于阐明伴随着内吞作用或胞吐作用的生物学机制、或者基因治疗或药物传递系统等的治疗医学的开发也有用。权利要求1.一种双分子膜小泡,其中,含有如下物质作为膜构成成分(a)碳原子数6~20的脂肪酸盐;(b)具有碳原子数6~20的脂肪链的醇或胺化合物;(c)能够形成双分子膜的人工合成脂质或磷脂质。2.权利要求l所述的双分子膜小泡,其中,所述(b)醇或胺化合物为下式I所示的二元醇,<formula>formulaseeoriginaldocumentpage2</formula>(I)式中,Rt为碳原子数620的烷基、碳原子数6~20的晞基、或者碳原子数6~20的炔基。3.权利要求1或2所述的双分子膜小泡,其中,还含有(d)下式II所示的叔胺作为上述膜构成成分,<formula>formulaseeoriginaldocumentpage2</formula>式中,R2、RS和R"中的l个或2个为甲基,剩余的R2、113和114各自独立,为國CH2COOCnH2n+b-CnH2n+1或-C6H4画p-CnH2^,其中n为6~2o的整数,-<:1^211+1为直链状。4.权利要求1~3任一项所述的双分子膜小泡,其中,所述(a)脂肪酸盐和所述(b)醇或胺化合物的摩尔比为1:1。5.权利要求1~4任一项所述的双分子膜小泡。其中,所述(a)脂肪酸盐和所述(b)醇或胺化合物和所述(c)能够形成双分子膜的人工合成脂质或磷脂质的摩尔比为1:1:1。6.权利要求1~5任一项所述的双分子膜小泡,其中,所述(c)能够形成双分子膜的人工合成脂质或磷脂质为磷脂质。7.—种诱发双分子膜小泡的相转移的方法,其包括以下工序调制双分子膜小泡的工序,该双分子膜小泡含有如下物质作为膜构成成分(a)碳原子数6~20的脂肪酸盐;(b)具有碳原子数6~20的脂肪链的醇或胺化合物;(c)能够形成双分子膜的人工合成脂质或磷脂质;以及在该双分子膜小泡中添加脱水缩合剂或脱水缩合剂前体的工序。8.权利要求7所述的方法,其中,所述(b)醇或胺化合物为下式I所示的二元醇,R,一NH—CH2-CH(OH)—CH2OH(I)式中,1^为碳原子数6~20的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基。9.权利要求7或8所述的方法,其中,所述双分子膜小泡还含有(d)下式II所示的叔胺作为所述膜构成成分,且所述脱水缩合剂前体为下式III所示的氰尿酸衍生物,<formula>formulaseeoriginaldocumentpage3</formula>式中,R2、113和114中的l个或2个为曱基,剩余的R2、113和114各自独立,》-CH2COOCnH2n+1、漏CnH2n+i或國C6H4-p國CnH2n+h其中n为6~20的整数,-(^11211+1为直链状;<formula>formulaseeoriginaldocumentpage3</formula>(III)式中,R5和I^分别独立,为甲基、乙基、碳原子数2~5的羟烷基、-(CH2CH20)mR7(这里,m为l-120的整数,if为氢原子、曱基、乙基或丙基)、-(CH2CH2NR8)mH(这里,m为l120的整数,118为碳原子数2~5的烷基、N,N-二烷基氨基乙基、或者-CH2CH2N+(CH3)3)、-CH2CH2S03-、-CH2CH2N+(CH3)3、或碳原子数6-20的烷基,但R5和116不同时为碳原子数6~20的烷基,X为卣原子。10.权利要求9所述的方法,其中,所述式III中的RS和I^的至少一个为曱基或乙基。11.权利要求9或IO所述的方法,其中,所述式II中的n为12~16。全文摘要本发明提供能够产生相转移的双分子膜小泡,该双分子膜小泡含有如下物质作为膜的构成成分(a)碳原子数6~20的脂肪酸盐;(b)具有碳原子数6~20的脂肪链的醇或胺化合物;(c)能够形成双分子膜的人工合成脂质或磷脂质。优选的是,该双分子膜小泡还含有(d)叔胺作为膜的构成成分。本发明还提供诱发双分子膜小泡的相转移的方法,该方法包括向所述双分子膜小泡中添加界面聚集性脱水缩合剂和脱水缩合剂前体的工序。根据本发明,通过形成分子集合体的脂质的化学变化,使其物理性质或形态改变,能够调制膜融合等相转移的时机。另外,例如在膜融合时,双分子膜小泡内的内容物也不会泄漏,可以被融合。文档编号A61K47/18GK101111306SQ20058004744公开日2008年1月23日申请日期2005年12月12日优先权日2005年1月28日发明者国岛崇隆申请人:独立行政法人科学技术振兴机构
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1