体内结构和流动成像的制作方法

文档序号:1223472阅读:192来源:国知局
专利名称:体内结构和流动成像的制作方法
技术领域
本发明的实施例一般地涉及生物医学成像的领域,具体地涉及与 光学相干断层造影和光学血管造影成像相关联的方法、设备和系统。
背景技术
体内生物组织和脉管系统的三维映射由于生物组织的高度散射和 吸收性质而成为挑战性的事情。当前的一些方法具有较慢的扫描速度, 使得体内三维成像变得很困难。其它一些具有较快扫描速度的技术由 于它们不能在不产生重叠图像的情况下深度地扫描生物组织因而还存 在缺陷,这些技术要求使用创伤性步骤来扫描感兴趣的组织。例如, 在某些情况下,烦骨必须被去除或被充分地变薄以便扫描大脑深处的 脉管系统。此外,旨在更深成像的技术一般不能提供对具有移动物质 (例如,血流)的组织的深度成像。因此,用于对结构和/或组织移动 比如血流进行有效成像的方法具有相当大的临床重要性


通过以下的详细描述并结合附图,会容易理解本发明的实施例。 在附图的各图中是通过举例而不是通过限制来说明本发明的实施例。 图1示意性说明了利用现有技术方法成像的眼睛的前面部分的图
像;
图2示意性说明了利用现有技术方法成像的眼睛的前面部分的3A和3B说明了利用依据现有技术方法的成像方法的结构图像; 图3C和3D说明了利用依据本发明的不同实施例的成像方法的结 构图像;
图4说明了依据本发明的不同实施例的成像设备;
图5说明了依据本发明的不同实施例的三维数据立方体/体积;
图6说明了依据本发明的不同实施例的体内成像方法的一个实施
例;
图7说明了依据本发明的不同实施例的体内成像方法的另一个实 施例;
图8说明了依据本发明的不同实施例的体内图像; 图9说明了依据本发明的不同实施例的体内图像; 图IO说明了依据本发明的不同实施例的体内成像方法的另一个实 施例;
图ll说明了依据本发明的不同实施例的体内成像方法的另一个实 施例;
图12A说明了利用依据本发明的不同实施例的成像方法所获取的 鼠脑的B扫描;图12B说明了由零延迟线分成两个相等空间的图12A 的成像结果,结构信息在底部区域而流动信息在顶部区域;图12C说 明了图12B在顶部区域与底部区域折叠并且合并(fuse)以产生包括
鼠脑的结构信息和流动信息在内的血管造影图像时的图像;
图13A说明了扫描的鼠脑体积内的脑血管流的2D x-y投影视图, 图13B说明了图13A的鼠脑的完整3D视图14A和14B说明了利用依据本发明的不同实施例的方法成像的 鼠脑分别在右颈动脉被阻塞之前和之后的血液灌注的投影视图;图14C 说明了皮肤剥开后的鼠脑,图14D说明了颅骨去除后的鼠脑以便与所 成像的结果对比;
图15A和15B说明了所获取的两个3D数据立方体作为依据本发明 的不同实施例的成像方法的结果;
图16A和16B ^L明了利用依据本发明的不同实施例的仿体 (phantom)的实验结果;图16A示出了当毛细管中的流矢量到光轴上 的投影是朝着探测束入射方向时的成像结果,图16B示出了相同的结 果但毛细管中的流动#皮反向;图17 (画面A、 B、 C和D)说明了依据本发明的不同实施例通过 对含有完好无损的头盖骨的鼠脑内部的光学血管造影成像而获取的微 血管流图;图17A提供了直接强度x-y投影图,其中可能无法推断出 定向流动信息;图17B提供了通过将代表投影到指向入射束方向的光 轴上的速度矢量的流动图像与背向入射束方向的流动图像合并而获取 的双向流动投影图;图17C提供了 3D体积渲染的双向流动图像以及微 结构图像(如图所示以三个侧面为边界),其可以用来推断3D空间中 的流动方向,其中图17D给出了坐标定义;
图18说明了依据本发明的不同实施例的用于定向流动映射的数字 方法;
图19示意性说明了依据本发明的不同实施例的用于定向流动映射 的数字滤波方法的一个实施例;
图20示意性说明了依据本发明的不同实施例的矩形状数字滤波方
法的一个实施例;
图21说明了依据本发明的不同实施例的体内成像系统的一个实施 例j 和
图2 2说明了用于依据本发明的不同实施例的体内成像的 一 件制品 (manufacture)的一个实施例。
具体实施例方式
在以下的详细描述中,参照附图,这些附图形成部分描述并且在 附图中举例示出了可以实践该发明的实施例。要理解的是,可以采用 其它实施例并且可以在不偏离本发明范围的情况下进行结构或逻辑的 变化。因此,以下的详细描述不应以限制的意义来理解,并且依据本 发明实施例的范围由所附的权利要求以及它们的等效物来限定。
可以按照可以有助于理解本发明的实施例的方式把各种操作描述 为依次的多个离散操作;然而,描述的次序不应当解释为意味着这些 操作是次序相关的。
本描述可能使用基于透视的描述,比如上/下、后/前以及顶部/底 部。这样的描述仅仅用来便于讨论而不打算约束本发明的实施例的应 用。
本描述可能使用短语"在一个实施例中"或"在若干实施例中",这些短语每个都可以指代相同或不同实施例中的一个或多个。而且, 如关于本发明实施例所用的术语"包含"、"包括"、"具有"等等 是同义的。
以"A/B,,形式的短语意指"A或B"。以"A和/或B,,形式的短 语意指"(A) 、 (B)或(A和B)"。以"A、 B和C中的至少一个" 形式的短语意指"(A)、 (B) 、 (C)、 (A和B)、 (A和C)、 (B 和C )或(A、 B和C ),,。以"(A ) B,,形式的短语意指('(B )或(AB ),', 即A是任选的。
在本发明的不同实施例中,提供了用于生物医学成像的方法、设 备和系统。在本发明的示例性实施例中,计算系统可以被赋予所公开 的多件制品和/或系统中的一个或多个元件并且可以用来执行如本文 所公开的一种或多种方法。
在不同的实施例中,可以利用基于光谱干涉的检测的光学相干断 层造影(0CT)(结构)和光学血管造影(0AG)(结构和流动)成像 来获取样品的结构和/或流动信息。这样的成像可以是两维(2D)的或 三维(3D)的,这取决于应用。相对于现有技术方法,结构成像可以 具有扩展的深度范围,而流动成像可以被实时地执行。如本文公开的 结构成像和流动成像中的一者或两者可以用于产生2D或3D图像。
图1说明了由各种现有技术的谱域OCT方法所得到的图像的绘图。 如图所示,所描绘的图像具有眼睛的前房,其中右边部分是实像2而 左边部分是镜像4。在这个示例中,实像2是在正傅立叶(Fourier) 空间中小于零延迟(在这个示例中在右边)的距离。然而,如果待被 成像的物体的表面(在这个示例中该物体是眼睛的前房)是在负傅立 叶空间中大于零延迟线(在这个示例中在左边),则可能发生如图2 所示的重叠问题,其中实像6与镜像8重叠。在不同的实施例中,该 物体一般必须被定位在正傅立叶空间中小于零延迟线的某个位置上以 避免重叠。然而通过这样做,留给横截面图像的深度范围(即,信息 采集范围)被缩小。例如,在一些实施例中,深度范围被缩小了多达 一半。
根据本发明的不同实施例,可以通过缩小镜面成像来获得全范围 的复数OCT图像。如本文所用的,"全范围"成像指的是傅立叶空间 的全深度内的成像,包括正傅立叶空间和负傅立叶空间。图3A-3D说明了人手指的示例性图像。如图3A和图3B所示,这 些图像显出与利用现有技术方法的图2所代表的图像类似的重叠问题。 然而,图3C和图3D说明了依据本发明的不同实施例产生的示例性图 像。由此可见,图像被基本上形成在傅立叶空间的全深度中。在若干 实施例中,与有时通过实数值函数的变换而获得的仅半个傅立叶空间 中的成像相对比,全傅立叶空间中的这样的成像可以通过复函数的变 换来获得。
根据不同实施例,可以通过用x、 y和X (入有时也被称为z方向, X在波长域中代表z )方向的采样光扫描样品以获取3D光谱干涉图数据 集并且将该3D光谱干涉图数据集从频域转换到时域以获取该样品的至 少一幅图像,来获取OCT图像。如果该样品包括移动成分,则所述至 少一幅图像可以包含第一图像和第二图像,第一图像包括样品的静态 结构信息而第二图像包括样品的移动信息。如果该样品不包括移动成 分,则所述至少一幅图像可以包含样品的全范围结构图像。
图4说明了适合于扩展的深度范围结构成像和流动成像以及2D和 3D血管造影成像的0CT/0AG设备100的示例性实施例。所说明的 0CT/0AG设备100可以包括本领域公知的一些特征,这些特征可能在本 文中不进行过多解释,除非有助于理解本发明的实施例。
如图所示,OCT/OAG设备100可以包括光源10。光源10可以包含
任何适合于本用途的光源,包括但不限于宽带光源或可调谐激光源。 适合的宽带光源可以包括超辐射发光二极管。在一个实施例中,光源 10包括中心波长为842纳米(nm)而半高全宽带宽为"nm的超辐射发
光二极管。在不同的实施例中,光源io可以是具有一个或多个更长波
长的光源,这可以允许更深的成像。在其它不同实施例中,光源10可 以包含可调谐激光源,举例而言比如扫描激光源(swept laser source )。
0CT/0AG设备100可以包括光纤耦合器12以用于把来自光源10 的光分成两束第一束被提供给参考臂14而笫二束被提供给采样臂 16。在不同的实施例中,光纤耦合器12可以包含2 x 2光纤耦合器或 任何适合于本用途的光纤耦合器。
采样臂16可以被配置成将来自光源10的光经由极化控制器24和 探测器26提供给样品28。探测器26可以包括一对用于在x-y方向上扫描样品的x-y检流计扫描仪(未示出)。探测器26还可以包括用于 把光传送到样品28上的适当光学器件(未示出)。在不同的实施例中, 探测器26还可以接收来自样品28的反向散射光。尽管提供给样品28 的光的特性可能取决于特定应用,但是在一些实施例中横向成像分辨 率可能大约是由把光聚焦到样品28上的物镜所确定的16微米(nm), 其中样品28上的光功率大约为1毫瓦(mW)。
参考臂14可以被配置成把来自光源10所提供的光的参考光提供 给检测臂30 (下面加以更全面的讨论),以便与来自样品28的反向散 射光结合而产生光语干涉图。参考臂14可以包括光学器件20以及用 于反射来自光源10的光的反射镜22以提供参考光。光学器件20可以 包括但不限于适合于本用途的各种透镜。
反射镜22可以是固定的或者可以由调制器23调制。调制可以等 效于对在检测臂30处检测的信号的频率调制。已观测到的是,光谱干 涉信号(干涉图)可以被参考臂14中经过调制的反射镜22用恒定的 多普勒(Doppler)频率 。调制,此调制使得分离样品28内的移动成 分和静态成分切实可行。光谱干涉信号然后可以通过对以调制频率 0 调制的信号进行解调来恢复。解调可以利用任何适合的方法来获得, 所述方法包括但不限于数字的或光学的解调方法。光谱干涉信号的调 制和解调可以有利地提高信噪比,导致结构、流动和血管造影成像的 图像质量得到改善。
各种方法可以用来调制反射镜22。例如,在各种实施例中,调制
器23可以是线性压电平移台,反射镜22被安装在该线性压电平移台 上。压电平移台可以被配置成以某个恒定速度在B扫描(即x方向扫 描)上移动反射镜22。在示例性实施例中,反射镜22被安装到由振幅 为50 nm的10 Hz锯齿波形驱动的压电平移台上。然而在其它不同实 施例中,调制器23可以是相位调制装置(例如,电光相位调制器或声 学相位调制器)或其它用于引入适合多普勒频率调制的适合装置。在 不同的实施例中,参考臂中或采样臂中的光程长度(optical path-length)可以被调制,这在以恒定速度前后移动反射镜22时具 有相同或类似的效应。在一个实施例中,可以使用一种伸长光纤的方 法。
在不同的实施例中,干涉图的调制还可以由探测器26提供。在示例性实施例中,探测器26可以;故配置成在相对于轴心点(pivot point) 有偏移量的情况下扫描输入信号。从参考臂14返回的光和从采样臂16返回的光(光谱信号)可以 被重新组合并且通过耦合器12耦合到单模光纤中以便传入检测臂30。 如图所示,检测臂30包含分光计34,该分光计34包括一个或多个不 同光学器件36,这些光学器件包括但不限于一个或多个准直器、 一个 或多个衍射/透射光栅以及一个或多个透镜(未图示)。在示例性实施 例中,光学器件36可以包括30毫米(mm)焦距的准直器、HOO条线 /mm的衍射光栅以及150 mm焦距的消色差聚焦透镜。在不同的实施例 中,分光计34可以具有设计好的例如0. 055 nm的光i普分辨率,导致 在空气中的光范围大约为6.4 mm,即傅立叶空间中的全深度,其中正 频率空间(3. 2 mm)可以用于微结构成像而负频率空间(3. 2 mm)可 以用于流动成像。在一个实施例中,当照相机积分时间被设置为34.1 HS时,可以在2 = +0. 5mm处测量到95dB的信号灵敏度,而该信号灵 敏度在2 = +2.0 mm处降到80 dB。这样的参数是示例性的并且可以依 据本发明的实施例进行各种方式的修改。在采用宽带光源的实施例中,分光计34可以包括被配置成检测光 谱干涉信号的检测器,比如电荷耦合器件(CCD) 38。 CCD38可以包括 线扫描照相机和面扫描照相机中的一个或多个。示例性适合的CCD 38 可以是由2048个像素组成的CCD,每个像素大小为10x10 nm、数字 深度为IO位并且具备29. 2 kHz行频(line rate)。然而对于那些其 中光源10包含可调谐激光而不是宽带光源的实施例,0CT/0AG设备100 可以包括扩散放大器,该扩散放大器包含一个或多个单部件检测器而 不是分光计34。例如,可以使用一个或多个双平衡光电二极管。如图所示,参考臂14、采样臂16和检测臂30分别包括极化控制 器18、24和32。极化控制器18、24和32可以被配置成精细调谐0CT/0AG 设备100中光的极化状态。尽管OCT/OAG设备在本发明的范围内可以 包括比所示的更多或更少的极化控制器,分别在参考臂14、采样臂16 和检测臂30中提供的极化控制器18、24和32可以有利地最大化CCD 38 (或其它适合的检测器)处的光谱干涉边缘对比。在不同的实施例中,0CT/0AG设备100可以包括一个或多个用户接 口 40以用于一种或多种用途,这些用途包括显示图像、输入数据、输出数据等等。如上所述,OCT/OAG设备100可以被配置成通过用x、 y和入(z) 方向的采样光扫描样品28以获取3D光语干涉图数据集来建立3D数据 体积集。在示例性实施例中,可以由x扫描仪在横向方向(x方向)上 扫描探测器26而由y扫描仪在竖直方向(y方向)上扫描探测器26。 在这些实施例的各个不同实施例中,x扫描仪可以由振幅等于2.2 mm 的10 Hz锯齿波形驱动,而y扫描仪可以由2. 2 mm的振幅以0. 02 Hz 驱动。如果例如CCD 38被配置成捕获2048个像素的聚焦光谱(A-扫 描)并且在x方向上测量1000个离散点,则在x方向上形成1000 x 2048 个元素的数据矩阵片(B-扫描)。如果例如在y方向上2. 2 mm内测量 500个离散点,则可以建立1000 x 500 x 2048 ( x-y-z )个体元(voxel ) 的最终数据体积(C-扫描),其中傅立叶空间的每半个包含1000 x 500 x 1024 ( x-y-z)个体元。尽管在x-y方向上扫描样品28可以用来形成实数值3D数据体积,但是通常已知的是这个实数值数据体积的傅立叶变换在仅半个傅立叶 空间中产生有用的图像。参照图5,图6和图7示出了用于产生全范围 结构图像的示例性实施例。图5说明了可以形成部分或全部合成图像 的3D数据体积(立方体)。如图所示并且按通常惯例,X方向上的扫 描可以被称为A扫描,并且A扫描可以包含数量为i的像素(或者在 光源为可调谐激光源的情况下包含i个波长调谐步骤)。B扫描可以包 含在x方向上任意数量n的A扫描。在y方向上的一系列2D数据(例 如数量m的B扫描)可以形成3D数据立方体,这可以被称为C扫描。 如本文所指的,x方向包括n列而X方向包括i行。在不同的实施例中并且如图6示意性说明的,可以在(x, X)的 维度上收集原始横截面数据(即,h(X, x))。可以对实数值的横截 面数据沿x维度逐行计算解析函数,以获取原始数据的复数值函数fi (X,x)。在不同的实施例中,该解析函数可以通过希尔伯特(Hibert)变 换来构造。在不同的实施例中,至少部分地通过在x维度上逐列地沿入 维度对fi (X,x)从X空间插值到k空 间(即波数空间,k = 2tcA )以获取fi (k,x),可以获取未失真图像。在这些实施例的各个不同实施例中,此插 值可以在计算复数值函数之前或之后。图7示意性说明了其中插值在 复数值函数计算之前的实施例。在不同的实施例中,全范围复数图像(即横截面x-z图像)H (z, x )可以通过在x维度上逐列地沿k维度执行fi (k,x)的傅立叶变换来获 取。全傅立叶空间图像可以通过取H (z, x)的幅值(即IH (z, x) I ) 来获取,这可以导致可用深度z的加倍(即2z),如图6 (和图7)所 示。在不同的实施例中,可以对y维度上可用的一个或多个h (X, x) 数据集重复前面操作中的任意一个或多个。3D图像可以由一次或多次 重复而产生。在不同的实施例中,参考光谱可以在上面提及的操作之前从干涉 图中减去以便增强最终的图像质量。参考光谱可以通过对所有捕获的 干涉图进行全体平均一即沿x或y方向平均一来获取。在不同的实施例中,可以首先对y维度执行任意一个或多个不同 操作然后对x维度执行任意一个或多个不同操作,反之亦然。例如, 在不同的实施例中,可以在(X, y)的维度上收集原始横截面数据。 然后可以对实数值横截面数据沿y维度逐行计算解析函数,以获取原 始数据的复数值函数fi(人,y)。在不同的实施例中,可以至少部分地通过 在y维度上逐列地沿X维度对fi (人,y)从X空间插值到k空间(即波数空间, k-2兀/X)以获取fi(k,y),获取未失真图像。在这些实施例的各个不同 实施例中,此插值可以在计算解析函数之前或之后。复数OCT图像H (z, y)可以通过在y维度上逐列地沿k维度执行fi(k,y)的傅立叶变换 来获取。全傅立叶空间OCT图像可以通过取H (z, x)的幅值(即IH (z, x) I )来获取,这可以导致可用深度z的加倍(即2z)。在不同 的实施例中,可以对x维度上可用的一个或多个h (X, y)数据集重复 前面操作中的任意一个或多个。在不同的实施例中,3D图像可以由一 次或多次重复而产生。可以依据本发明的不同实施例对物质在结构中的体内移动成像。 例如,可以对血液经血管及其它方式的流动成像。在不同的实施例中, 流动方向的指示也可以被成像。 一般而言,使用先前讨论的任意一种 或多种方法成像非固定的物体可能受瞬时相位变化(多普勒频移)影 响,所述瞬时相位变化可能造成能量泄露到负频率平面(即镜平面) 中。然而,泄露通常被限于局部,即仅发生在移动的地点(例如,存 在血液流动的地方)。其它固定物体(一个或多个)仍然可以根据先前讨论的一种或多种方法来成像。尽管以下的一般讨论不打算限制本发明的实施例的范围,但是这 些讨论可以有助于理解隐含在一些实施例中的不同数学及物理原理。 根据不同实施例, 一种用于对组织中的移动进行成像的方法可以包括 将远离表面进入组织的速度映射到一个图像内以及将朝向表面移出组 织的速度映射到第二图像内。考虑随两个变量-都是时间坐标L和t广 而变化的实数函数,/2) = cos(2《6 + 2;r(/M - /DX + (等式1 )其中f。,fM和f。分别是频率分量而(p是随机相位项。出于本文讨论目的,f。和fM被假设为两个调制频率分量而fn是多普勒频率分量。可以假设在t,和t2之间不相关且当t,变化时t2恒定不变,反之亦然。如果Bedrosian定理成立的话,等式1相对于t2的解析函数能够通过希尔 伯特变换来构造,这表明调制频率fM-fD不与由随机相位波动项q)引起 的信号带宽重叠。在这种条件下,等式1的希尔伯特变换等于其积分 表示。由于函数B(", t2)由频率fM-"调制,并且27if山是恒定的相 位项,所以如果频率fM-f,0则等式1的解析函数能够写成 々",/2) = cos(2;r(/M -/D),2 +2《,,+0) + 7.sin(2;r(/M -/D)/2 +2#。/, +0)(等式2 )其中j = 而如果频率fM-fD<0则等式1能够写成A(Ocos(2;r(/M -/D),2 +2《,+0)-ysin(2;r(/M -/D)/2 +2#0/, +0)(等式3 )从数学的角度来看,等式3是等式2的复共轭。对时间变量t,执 行傅立叶变换(注意t2现在为常数),等式2的频率分量f。位于整个 傅立叶空间中的正空间内,而等式3的频率分量f。位于负空间内。因 而,对结构中物质的移动进行成像是可能的。再参照图4所示的0CT/0AG设备100的示例性实施例,假设安装 在压电台(调制器23)上的参考反射镜22以速度、移动,其中探测束以Vx(标量)的速度在B-扫描(x-扫描)中前进,并且还假设由0CT/0AG 设备100检测到的反射微粒也移动但其投影到探测束方向上的定向速 度为^,那么为简单起见,能够把波长入域中的光谱干涉图表述为<formula>formula see original document page 15</formula>(等式4)这里注意,对速度使用矢量表示,其中朝向入射束的移动为正而 相反的为负。项Zs是在横向位置X处反射微粒(例如,红血球)的初始深度位置,而R是反射微粒的速度,这样采样臂16和参考臂14之间 的光程长度差是2(^ + (i7s+、)0,其中tx-x/Vx是探测束在B-扫描中的扫描时间,而因子2说明从样品28散射回到干涉计的采样光的往返行 程。项cp(x, z, X)是与光学不均匀样品的相位有关的随机相位函数。 时间tx-O将是B扫描的起点。因此,B(l/入,x)对于每个l/X值而 言是对x的正弦振荡函数。因而,如果使用以下替换,则等式1和等 式4将是等同的因而,、和R的值可以确定经过希尔伯特变换所构造的等式4的 解析函数是否变成等式2或等式3。该解析函数可以在每个1A沿x轴 经过对B扫描的希尔伯特变换来顺序地构造。在此操作期间,因子 4TUZsA可以为恒定的相位,因为其不会随x改变。如果& = 0,则正速度(、)会在x空间中以正频率调制信号,而负速度会以负频率调制信号。希尔伯特变换把相对x的经调制信号的信息转换为复数A(lA,x),但是现在经希尔伯特编码的信息的任何后续 对2/X的快速傅立叶变换(FFT) FFr^(K,x川2会把正频率分量映射到FFT结果的正频率空间内而把负频率分量映射到FFT结果的负频率空 间内,这样全范围频率空间能够用于成像。这与简单采取/7TW( K,"} 12形成对比,后者将把正频率和负频率都映射到该变换的正频率空间和负频率空间内,导致仅半个空间用于成像。对于移动微粒(例如,血细胞),vs#0。微粒移动可以通过速度 混合^ + ^来修改调制频率,该速度混合类似于信号处理学科中的频率混合。微粒相对于参考反射镜22移动的相反移动可能导致采样臂16和参考臂14之间的光子路程长度差的减小并且降低有效的调制频率。 如果Vs的值足够大,则^ + ^值可能改变其符号。因而,在希尔伯特变换操作和傅立叶变换操作之后,由于微粒移动引起的相应信号可能映 射到与vs = 0时的频率空间相反的频率空间。然而,任何小的不足够强 以改变该值符号的微粒移动可能仍然映射到与vs = 0时的频率空间相同的频率空间。因此,来自经灌注的血细胞和体静态组织的信号可以在FFT的频率空间中被分离,其中由于小组织移动引起的背景噪声在 代表血液灌注图像的空间中得到抑制。因而,在不同的实施例中,能量向负频率平面的泄露可能被用来 对体内物质的流动(或其它的物质移动)实时地成像。图8和图9说 明了流动成像(非固定物质)的实施例。在傅立叶空间的正区域中还 示出了结构(固定物体)的图像。在不同的实施例中并且如图所示, 结构图像可以基本位于正空间中而流动图像基本位于负空间中,流动 图像是其实际位置相对于结构的镜像。在不同的实施例中并且如图9 所示,组合的结构/流动图像可以被分成2幅或更多图像-例如,结构 图像和流动图像。例如,正空间可以代表结构图像而负空间的翻转形 式可以代表流动图像。在一种用于对体内流动(或其它的物质移动)成像的方法的示例 性实施例中,样品位于与零延迟有一定距离AS处并且位于正空间中(如 图8所示)。在这些实施例的各个不同实施例中,使样品远离零延迟 可以防止或减少该样品的固定样子的图像与零延迟交叉并且可能导致 重叠的图像。在不同的实施例中并且如图IO所示,可以在(x,入)的维度上收 集原始横截面数据(即,h (X, x))。可以对实数值横截面数据沿x 维度逐行计算解析函数,以获取原始数据的复数值函数fi(人,x)。在不同 的实施例中,解析函数可以通过希尔伯特变换计算来获取。在不同的 实施例中,可以至少部分地通过在x维度上逐列地沿入维度对fi(人,x)从X 空间插值到k空间(即波数空间,k=27iA)以获取fi(k,x),来获取未 失真的OCT图像。在这些实施例的各个不同实施例中,此插值可以在 计算复数值函数之前或之后。图11示意性说明了其中插值在复数值函 数计算之前的实施例。在不同的实施例中,复数图像(即横截面x-z图像)H (z, x)可 以通过在x维度上逐列地沿k维度执行fi(k,x)的傅立叶变换来获取。全 傅立叶空间图像可以通过取H (z, x)的幅值(即IH (z, x) I )来获 取,这可以导致可用深度z的加倍(即2z),如图10所示。在一个实施例中,IH (z, x) l可以在零延迟线(z- 0)处分离以 形成两幅图像-流动图像和结构图像。在所说明的实施例中,流动图像形成在负空间中(即za)而结构图像形成在正空间中(即z〉0)。 在一个实施例中,由于流动图像可以是其实际位置相对于结构图像的 镜像,所以流动图像可以被翻转以获取真实的流动图像(现在z〉0)。在不同的实施例中,可以对y维度上可用的一个或多个h (X, x) 数据集重复前面操作中的任意一个或多个。3D结构图像和流动图像可 以由一次或多次重复而产生。在不同的实施例中,可以在处理x维度之前处理y维度。例如, 在不同的实施例中,原始横截面数据可以在(入,y)的维度上进行收 集。然后可以对实数值横截面数据沿y维度逐行计算解析函数,以获 取原始数据的复数值函数fi (人,y)。在不同的实施例中,可以至少部 分地通过在y维度上逐列地沿X维度对fi ( X, y )从入空间插值到k空间 (即波数空间,k-2兀/X)以获取fi(k, y),来获取未失真图像。在 这些实施例的各个不同实施例中,此插值可以在计算复数值函数之前 或之后。复数图像H(z, y)可以通过在y维度上逐列地沿k维度执行 fi (k, y)的傅立叶变换来获取。全傅立叶空间图像可以通过取H (z, y)的幅值(即IH (z, y) I )来获取,这可以导致可用深度z的加倍 (即2z)。在不同的实施例中,可以对x维度上可用的一个或多个h (入,y)数据集重复前面操作中的任意一个或多个。在其中获取流动图像和结构图像的实施例中,这些图像可以被熔 合或被以其它方式组合以提供血液(或其它移动物质)可以在结构组 织(例如,经过血管网移动的血液)内如何定向的完整视图。利用先 前讨论的方法的不同实施例,负空间中的流动图像可以被形成、翻转 并且与结构图像熔合以形成单幅血管造影图像。该单幅图像可以允许 在组织内精确定位移动成分。在不同的实施例中,多幅这样的图像可 以被"拼接"以形成更大的图像。在一个实施例中,为了验证OCT/OAG系统能够评价微血管流,执 行了一系列体内实验以获取老鼠的脑血管循环的经颅(transcranial ) 图像,其中头盖骨完好无损。实验方案遵照小啮齿动物保护与处理的 联邦指南并且得到了动物制度管理及使用委员会(InstitutionalAnimal Care and Use Committee)的同意。老鼠被麻醉,然后头上的 皮肤被去除以创建一个用于透过头盖骨进行OCT成像的窗口。图 12A-12C给出了体内结果,其中图12A描绘了代表含有x-人中2D实数值光谱干涉图(2. 2 mmx 112咖,中心为842 nm )的B扫描的数据集, 而图12B示出了从图12A的原始光谱干涉图中获取的代表3D数据中的 一片的图像,其中整个傅立叶空间被分成两个相等区域。底部区域是 包括老鼠头盖骨和皮层的横截面结构信息的正频率空间,但是血管很 难识别。另一方面,顶部区域是在其中能够看到移动成分(例如,红 血球)的负频率空间。因为正频率空间和负频率空间被正好镜面成像, 所以它们能够被折叠以熔合成单幅图像从而在结构组织内高精度地定 位血管,如图12C可看到的。皮层结构和血液灌注能够被分辨率到穿 过头盖骨约1.5咖的深度,即不能用共焦显微镜获得的穿透深度。如 果使用具有比842 nm更长的波长的光源,则这一深度可以被进一步扩 展。用于分辨血管尺寸的轴向分辨率可以由所用光源的带宽确定。在 本实验中,在生物组织内轴向分辨率大约为6 |Lim,这能够分辨平均大 小约为10 nm的毛细管,而横向分辨率大约为16 nm,这由把光聚焦 到组织内的物镜确定。如本文所讨论的,可以通过逐片(B扫描)地估算光谱干涉图数据、 然后重新组合以生成3D体积数据集(X-y-z),来执行3D成像,从该 3D体积数据集中能够提取关于脉管系统、血流和微结构的高质量信息。 如图13A所示,详细的2D脉管系统映射是通过把3D流动图像从负空 间投影到x-y平面而获取的。定位在负空间中的移动散射成分能够被 折叠以与3D结构图像组合来提供血管如何在结构组织中定向的完整视 图,如图13B所示。在图13A和13B所示的实施例中,成像速度是IO 帧/秒并且整个图像采集时间约为50秒。可以通过采用更高功率的光 源和更高速度的调制器(例如,压电平移台)来减少成像时间。在常 规的个人计算装置上,用于后处理图像的计算时间大约为4.2秒每片, 对于3D全图像而言总计约35分钟。依据本发明的不同实施例的3D中脑血管灌注的可视化与血流的量 化进行组合可能有望用于研究小动物模型中的神经疾病。例如,在小 动物模型比如遗传改变的老鼠中广泛地研究血栓形成的缺血性中风。 因而,在下至毛细管的各个血管的水平详细观察整个大脑皮层内的脑 血管血流现象和规律可能对于更好地理解脑血管疾病的病理生理学和 药理干预的潜在益处是很重要的。为了说明本发明的实施例的重要性, 在颅骨的不同区域上收集多幅3D的鼠脑图像,如图14A-14D所示。图14A示出了颅骨完好无损的老鼠的大脑皮层中的血流。 一条颈动脉的梗 塞不会引起老鼠的脑梗死或神经功能缺损。图14B示出了同一老鼠但 右颈动脉被阻塞5分钟。可以看出,与图14A的图像相比显然不仅仅 是在右大脑半球中减少了皮层中的血流,这符合已知的行为。本发明 范围内的实施例可在数分钟内获得这样高分辨率的大脑皮层成像而无 需染料注射、造影剂或外科颅骨切开术的能力说明了其在理解大脑以 及其它血管网的血液动力学方面的价值。图14C说明了皮肤剥开后的 鼠脑,而图14D说明了颅骨去除后的鼠脑以便与所成像的结果对比。如本文所述的,可以依据不同的实施例对物质流动方向的指示成 像。在一个实施例中,3D OCT被提供为一种在微循环床内对毛细管水 平的局部血液灌注进行成像的方法,其对比度是基于来自移动血细胞 的内生散射信号。本发明的一个实施例利用OCT进行体内定向的血液 灌注映射。这样的实施例可以例如通过当执行3D成像时与0CT横截面 (B)扫描同步地线性平移位于参考臂中的参考反射镜(即,来回移动) 来获得。在一个实施例中,当参考反射镜朝入射束移动时的所有B扫 描的收集会给出远离入射束方向流动的血液灌注,反之亦然。因此, 获取两个3D数据立方体(图15A和15B)。 一个用来计算朝探测束方 向的流动(图15A),而另一个用来计算正远离探测束流动的流动(图 15B)。本发明的一个实施例还提供了定量地评价血液灌注的能力。在若干实施例中,期望的是定向流动被成像并可视化以用于多种 工程及医疗领域,例如用于研究微流体混合器中的复杂流体动力学、 以及用于研究神经现象来理解脑血管疾病中的机制和治疗干预,这些 脑血管疾病包括缺血、出血、血管性痴呆、创伤性脑损伤以及癫痫。本发明的实施例提供了多种用于定向流动成像的方案,包括硬件 方案和数字方案,这将在下面参照图4进行更详细的描述。在一个实施例中,定向流动映射可以通过把参考反射镜22安装到 诸如压电平移台之类的调制器23上来获得。在一个实施例中,这样的 台可以由10 Hz三角波形驱动。对于下面描述的实验,除非另有说明, 给予反射镜22的最大线性平移幅度为21 nm。这在三角波形的上升曲 线时,即在朝着入射参考束方向移动反射镜22时引入1. OkHz的恒定 调制频率,该恒定调制频率被耦合到CCD照相机38所捕获的干涉图中, 而在其它情况下它为-l. 0kHz。由X扫描仪在横向方向(图15A和15B所示的x轴)上扫描探测束,该X扫描仪也由振幅等于2. 2 mm的10 Hz 三角波形驱动,该三角波形可以与用于驱动反射镜22的波形同步。以 振幅为2. 2 mm的0. 02 Hz锯齿波形驱动的Y扫描仪在竖直方向(y轴) 上扫描探测束。以此方式,通过经X-Y扫描仪扫描探测束来收集具有 lOOOx 500 x 2048 (x, y, X )个体元的光谱干涉图的3D数据立方体。 在这种利用上述布置的实施例中,其中照相机积分时间被设置为100 US,要花50秒来获取这样的体积数据立方体,从该体积数据立方体计 算出3D定向流动映射。当反射镜22朝参考束移动时的所有B扫描的 收集会给出该体积数据集,该体积数据集可以被处理以获取代表沿入 射束方向移动的微粒比如血细胞的流动图像,而相反的流动图像可以 从收集自当反射镜22在向后/相反方向移动时的B扫描的数据立方体 来获取。最终的示例性体积图像是500 x 500 x 1024个体元,代表样品 的2. 2 x 2. 2 x 2. 4mm(x,y, z)的物理尺寸。组织样品的平均折射率1. 35 用来定标z方向上的尺寸。在一个实施例中,由于有限的计算机存储 器可用性,体积图像可以被裁剪以去除不含有对成像有用的信息的区 域。探测器扫描、压电台平移、数据采集、数据存储以及它们之间的 信号交换的动作可以由定制软件包一比如用Labvie^^语言编写的软 件一来控制。在0CT/0AG中移动散射物与静态成分的高效分离依赖于运动引起 的多普勒频率,该多普勒频率对于由移动散射成分产生的信号把光谱 干涉图的经希尔伯特变换的解析函数转变成其复共轭形式。因此,在 本文所介绍的结果中,因为调制频率为土1.0kHz,所以如果由移动散 射物引起的多普勒频率在调制频率的相反方向上大于1. 0kHz,则来自 移动成分的光散射信号出现在输出傅立叶平面的负空间中,而与静态 散射成分有关的信号保留在正空间中,即微结构图像等同于常规的OCT 图像。在一个实施例中,这施加了可以由0CT/0AG感测的移动散射物的最小速度,该最小速度可以由下式确定土Vm广T/^I/(2cos(々)) (等式5)其中X是所用光源的平均波长,p是探测束和流动速度矢量之间的角度, 而符号"±"表示变量相对于入射探测束方向的方向。对于本文所讨 论的示例性系统,v^在两个方向上都被估计为~ 0. 42mm/s(亳米/秒)。 在小动脉、小静脉和毛细管中行进的红血球的正常速度从大约0. 5mm/s变化到几十mm/s,因而大多数经灌注的血管可以通过所描述的0AG系 统布置来检测。虽然本文大量讨论了血管和血液灌注的成像,但是本发明的实施 例不限于在这样的环境中成像,而是可以用于在医疗和非医疗场合中 对定向流动进行成像。在一个实施例中,为了验证0CT/0AG系统能够测量双向流动,执 行了一系列利用流动仿体(phantom)的体内实验。该仿体由混合有用 以模拟静态散射成分的2%乳剂的明胶制成,其中内直径为~ 250 nm 的毛细管被浸没并且2%1402微粒溶液在毛细管内以~ 2. 19 mmV分钟 的体积流速率在流动。探测束和该毛细管之间的角度为~ 70°,假设流 动是层状的,则投影到探测束上的毛细管中心的最大流速将为~ 0. 5 mm/秒。为了测量这一流动,通过以10Hz三角波形驱动参考反射镜, 给B扫描上的光谱干涉图引入~ 500Hz调制频率。这意味着当参考反射 镜朝参考束移动(上升曲线)时fM = +500Hz而在其它情况下(下降曲 线)f^-500Hz。图16A和16B说明了根据对这样的流动仿体的测量所 得到的成像结果。在获取图16A和16B时,在三角波形的整个周期期 间连续地获取1000个A扫描,其中前500个扫描来自下降曲线而其它 的来自上升曲线。这些1000个A扫描被保存为一个B扫描以用于进一步的数据处理从而获取图像。因此,依据一个实施例,最终图像的第 一半和第二半代表可以从当分别向前移动参考反射镜和向后移动参考反射镜时捕获的数据中获取的图像。而且,在依据理论框架的实施例 中,这两半图像应当彼此相对于零延迟线对称。这从图16A和16B中 得以证实。图16A是在毛细管中的散射流体向上流动(即流动方向在 光轴上的投影与探测束入射方向相反)时获取的。因而,流动信号仅 可以在第二半个图像的流动成像平面中(即在左上象限中)看见。接 着,毛细管中的流动被反向,并得到图16B的成像。因而,在一个实 施例中且如这些实验所清楚表明的,OCT/OAG成像对方向是敏感的。在 这种情况下流动信号的大小约为管横截面面积的65%,意味着大于0. 2 mm/s的流动速度(假设在毛细管中层状流动)被系统检测到并且与等 式5的预测#>相符。这些实验还证实了在一个实施例中傅立叶空间的 全输出平面可以用于成像目的,因为在该成像中消除了静态分量的镜 像。依据一个实施例,实施了对头盖骨完好无损的活鼠大脑皮层上的 定向微血管血流进行成像的实验。该实验方案遵照小啮齿动物保护与 处理的联邦指南并且得到了动物制度管理及使用委员会的同意。老鼠被麻醉,然后头上的皮肤被去除以创建一个用于透过头盖骨进行OCT 成像的窗口。图17 (画面A、 B、 C和D)给出了体内结果,其中图17A 提供了无定向信息的血管流图的x-y投影图像,而图17B说明了由当 分别向前移动参考反射镜和向后移动参考反射镜时获取的两个投影图 像合并的定向血流图,其中可以识别小动脉和小静脉。更重要的是, 利用定向流图,人们将有机会更详细地评价血管内的流体动力学,特 别是评价血管分枝中的微流湍流(micro-flow turbulence)。图17C 提供了经3D体积渲染的双向流动图像以及微结构图像(如图所示以三 个侧面为边界),其可以用来推断3D空间中的流动方向,其中图17D 给出了坐标定义。尽管非常令人鼓舞的是由0AG感测的流动方向与血管网相对于 OAG探测束方向的3D几何结构强列相关,但是这种相关性使得血液灌 注的解译变得复杂(参见图17B和图17C)。然而这种复杂化存在于基 于多普勒原理的所有测量技术一包括多普勒OCT—中。对下至毛细管水 平的血流方向进行成像的能力在研究包括神经病理学和肿瘤血管形成 在内的多种疾病方面很重要,并且是依据本发明的实施例提供的,尽 管有本文提到的潜在限制。在一个实施例中,用于对定向流动成像的0AG的系统灵敏度可以 很高,接近零流动速度。在实际意义中,流动成像的下限可能由光谱 干涉信号的带宽确定,所述光谱干涉信号由于生物组织的光学不均匀 性而由探测束的横向扫描产生。光谱干涉信号的带宽可以由探测束在 样品上扫描时的采样宽度确定。来自静态分量和移动分量的信号之间 的高效分离还要求调制频率和信号带宽不重叠。因而,在一个实施例 中,可以由0AG系统实际检测到的最小血流速度是光谱干涉信号带宽 的一半。在用图4所描述的系统配置所执行的体内动物实验中,干涉 信号带宽典型地为~ 800Hz。在一个实施例中,利用这样的带宽,这样 的0AG系统的最小流动速度对于体内成像是~ 170 nm/s。然而,这样 的灵敏度足以能够例如在血管的最小单元一毛细管一中对单列行进的 血细胞进行成像。在利用数字成像方案的该发明的替换实施例中,上面讨论的反射镜不需要移动。因而在一个实施例中,图4中的反射镜22可以在3D 成像执行期间静止不动。在一个实施例中,这样的数字方案的实质是 一种处理3D数据体积以产生定向且定量的流动成像的方法。为简明起 见,这里讨论使用2D图像来产生合成的2D图像。此描述也应用于3D 情况。在一个实施例中,仅收集一个如图15所示的3D数据立方体,其 中由检测臂30捕获的光谱干涉信号可以被调制或者可以不被调制。通 过使用信号处理技术和干涉信号的实数值属性,这个3D数据立方体可 以被数字调制并得到处理以产生样品的结构图像和定向流动图像。下面提供用于执行依据一个实施例的数字方法的示例性步骤。在 一个实施例中(参见图18),在任一时刻获得(x, AJ维度上的一个 橫截面数据点h (X, x)。对h (入,x)沿人维度逐列地执行从X空间到 k空间的插值以获取h (k, x)。沿入维度逐列地计算傅立叶变换,从 而产生在z上拥有正空间和负空间的H (z, x)。由H (z, x)形成两 个函数迫使H (z, x)的负空间等于零以形成Hl (z, x),并且迫 使H ( z, x)的正空间等于零以形成H2 (z, x)。沿x维度用已知频 率f。数字地调制Hl (z, x)和H2 (z, x)以获取经调制的信号Hl,(z, x)和H2, (z, x)。在一个实施例中,f。等效于反射镜在硬件 方案中以关系f。-2v/入移动,其中v是反射镜的移动速度。沿z维度 对H1, (z, x)和H2, (z, x)执行傅立叶逆变换,然后只取结果的 实部或虚部以形成hl ( k, x )和h2 ( k, x )。在X维度上沿x维度逐 行地计算解析函数(例如希尔伯特变换)以获取先前操作中的数据的 复数值函数。这个操作导致fil(k, x)和fi2(k, x)。沿k维度执行 fil (k, x)和fi2 (k, x)的傅立叶变换以获取复数OCT图像H1 (z, x) 和H2 (z, x)并取这些结果的幅值。在零延迟线(z=0)处分离IH1(z, x) I和IH2 (z, x) l以形成四幅图像(图18中的四个通道)。 通道1和通道4是代表样品的结构图像的图像。通道2代表指明朝入 射探测束移动的流动的流动图像。通道3代表指明远离入射探测束移 动的流动的流动图像。在一个实施例中,可以对3D数据立方体中y方向上可用的每个h(入,x)数据集重复上面列举的过程。结果在一个实施例中,可以获取3D结构图像和定向流动图像。在不同的实施例中,可以首先对y维度执行任意一个或多个不同 操作然后对x维度执行任意一个或多个不同操作,反之亦然。在一个实施例中,调制频率f。等效于反射镜在硬件方案中以关系 f。-2v/X移动,其中v是反射镜的移动速度。因此,可以通过逐渐地改 变调制频率f。来执行定量的流动成像。以此方式,可以确定任何流动 速度值。虽然上述的操作是以有序的方式介绍的,但在若干实施例中不存 在执行不同操作的特定次序。在一个实施例中,人们可以修改操作的 次序而仍然获得相同或类似的结果。在一个实施例中,另一定性且定量的流动成像方法使用滤波技术, 所用特定频带的中心位于执行傅立叶逆变换和计算解析函数之间的频 率f。该频率f对应于特定的流动速度值。在若干实施例中,可以被使 用的滤波技术包括矩形函数、高斯函数或者具体设计的通常会在信号 处理学科中遇到的滤波函数。图19示意性说明了用于定向流动映射的数字滤波方法的示例性实 施例。在该实施例中,可以在任一时刻取得(x, AJ维度上的横截面 数据点h(X, x)。对h(X, x)沿X维度逐列地执行从X空间到k空间 的插值以获取h(k, x)。可以沿x维度逐行地计算傅立叶变换,从而 产生在f上具有正频率空间和负频率空间的H (k, f )。可以由H (k, f )形成三个函数乘以第一矩形函数tl (k, f ) 以形成Hl(k, f);乘以第二矩形函数t2 (k, f)以形成H2(k, f); 和乘以第三矩形函数t3 (k, f)以形成H3 (k, f )。可以在k维度上 沿f维度逐行地计算解析函数(例如通过使用傅立叶逆变换)以获取 先前操作中的数据的复数值函数。这个操作可以产生fil (k, x) 、 fi2 (k, x)和fi3 (k, x) 在不同的实施例中,可以沿k维度执行fil (k, x) 、 fi2 (k, x) 和fi3 ( k, x )的傅立叶变换以获取复数OCT图像HI ( z, x ) 、 H2 ( z, x)和H3(z, x)。然后可以获取这些结果的幅值。可以通过在零延迟 线(z=0)处分离IH1 (z, x) I、 IH2 (z, x) I和IH3 U, x) |来形 成六幅图像(通道)。通道1和通道2是代表样品的结构图像的图像。 通道3和通道4是代表无流动方向指示的流动图像的图像。通道5代表指明朝向或远离入射探测束移动的流动的流动图像。通道6代表指 明与通道5的流动相反移动的流动的流动图像。在不同的实施例中,第一矩形函数tl(k, f)可以具有如下形式在不同的实施例中,第三矩形函数t3(k, f)还可以具有如下形式:图20说明了应用矩形滤波函数的示例性实施例,其中一维函数用 于帮助理解。如图所示,三个矩形函数应用于实数干涉图函数h (x), 其是以特定波数k从h (k, x)中提取的。如先前讨论的不同实施例中的任意一个或多个可以被部分或整体 地结合到系统中。图21说明了 OCT系统2100的示例性实施例。在实 施例中,OCT系统2100可以包含0CT设备2110以及与OCT设备2110 耦合的一个或多个处理器2120。处理器2120中的一个或多个可以适于 执行依据本文所公开的不同方法的方法。在不同的实施例中,OCT系统 2100可以包含计算设备,包括例如个人计算机,并且在这些实施例中 的各个不同实施例中,处理器中的一个或多个可以设置在该计算设备 中。依据不同实施例的OCT系统可以适于存储不同信息。例如,OCT系 统可以适于存储用于执行本文所公开的一种或多种方法的参数和/或 指令。在不同的实施例中,OCT系统可以适于允许操作者执行不同的任 务。例如,OCT系统可以适于允许操作者配置和/或发起上面描述的方 法中的各个不同方法。在一些实施例中,OCT系统可以适于生成或使其 生成不同信息的报告,包括例如对样品运行的扫描结果的报告。在包含显示装置的OCT系统的实施例中,数据和/或其它信息可以第二矩形函数t2(k, f)可以具有如下形式:第三矩形函数t3(k, f)可以具有如下形式:被显示给操作者。在若干实施例中,显示装置可以适于(例如,通过 触摸屏、作用于图标、操控诸如操纵杆或按钮之类的输入装置,等等) 接收输入,并且该输入在某些情况下可以被(主动或被动地)传送给 一个或多个处理器。在不同的实施例中,数据和/或信息可以被显示, 并且操作者可以对此响应地输入信息。如先前讨论的不同实施例中的任意一个或多个可以^皮部分或整体地结合到一件制品中。在不同的实施例中且如图22所示,依据本发明 的不同实施例的一件制品2200可以包含存储介质2210以及多个在存 储介质2210中储存的编程指令2220。在这些实施例中的各个不同实施 例中,编程指令2220可以适于对设备编程以使该设备能够执行先前所 讨论的方法中的一种或多种。在不同的实施例中,OCT图像可以提供数据,从这些数据中可以做 出诊断和/或评价.在若干实施例中,这样的确定可能涉及生物组织结 构、脉管系统和/或微循环。例如,在一些实施例中,生物组织的3D 体内成像以及对经过其中各个血管的血流量化可以用于理解许多疾病 发展及治疗背后的机制,包括例如缺血、变性、损伤、癲痫以及各种 其它神经疾病。在另一些实施例中,本文所公开的OCT图像和技术可 以用于识别癌症、肿瘤、痴呆以及眼科疾病/状况(包括例如青光眼、 糖尿病视网膜病、年龄相关的斑变性)。更进一步,在不同的实施例 中,如本文所公开的OCT技术可以用于内窺镜成像以及其它内科应用。 前面的诊断和/或评价的示意性实施例是示例性的因而本发明的实施 例不限于所讨论的这些实施例。尽管本文为了描述优选实施例已说明和描述了特定实施例,但是 本领域技术人员会明白为获得相同目的而设计的各种各样的替代和/ 或等效实施例或实施方式可以替换所示出并描述的实施例而不偏离本 发明的范围。本领域技术人员会容易明白依据本发明的实施例可以用 各种各样的方式来实施。本申请旨在覆盖本文所讨论的实施例的任何 修改或变型。因此,显然意图是依据本发明的实施例仅受权利要求书 和其等效物的限制。
权利要求
1.一种成像方法,包括用来自光源的入射束扫描样品;检测来自样品的一个或多个光谱干涉信号;通过当在横截面方向扫描样品(B扫描)时线性平移参考反射镜来调制所述一个或多个光谱干涉信号;和从经过调制的一个或多个光谱干涉信号中获取所述样品的至少一幅图像,所述至少一幅图像包括所述样品的全范围结构图像以及所述样品的分离的结构/流动图像中的选定一幅。
2. 如权利要求1所述的方法,其中所述调制包括以恒定频率调制 所述一个或多个光谱干涉信号。
3. 如权利要求1所述的方法,其中所述获取至少一幅图像包括 分离所述样品的结构信息和该样品的流动信息;和 获取第一图像和第二图像,该第一图像包括结构信息而该第二图像包括流动信息。
4. 如权利要求1所述的方法,其中所述扫描包括用入射束在x方 向和X方向上扫描所述样品以获取第一二维(2D)光谱干涉图数据集, 所述x方向包括一列或多列而所述X方向包括一行或多行。
5. 如权利要求4所述的方法,其中所述获取至少一幅图像包括 沿x方向并且在第一 2D数据集的X方向上逐行地计算离散的解析函数,以获取第一 2D数据集的复数值函数;和在x方向上逐列地把第一 2D数据集的复数值函数从谱域转换到时 域,以获取所述样品的所述至少一幅图像。
6. 如权利要求5所述的方法,其中所述计算离散的解析函数包括 对第一 2D数据集进行希尔伯特变换。
7. 如权利要求5所述的方法,其中所述转换第一 2D数据集的复数 值函数包括对第一 2D数据集的复数值函数进行傅立叶变换。
8. 如权利要求4所述的方法,还包括用入射束在x方向和入方向上 沿y方向扫描所述样品以获取第二 2D光谱干涉图数据集,所述第一 2D 数据集和第二 2D数据集形成三维光谱干涉图数据集。
9. 如权利要求1所述的方法,其中所述获取至少一幅图像包括获取所述样品的分离的结构/流动图像,且其中所述样品的流动图像指明 样品的流动方向。
10. 如权利要求9所述的方法,其中当参考反射镜朝入射束移动时 所述样品的所有B扫描的收集会给出远离入射束方向的流动。
11. 如权利要求9所述的方法,其中当反射镜远离入射束移动时样 品的所有B扫描的收集会给出朝入射束方向的流动。
12. —种成^(象方法,包括用来自光源的入射束扫描流动样品; 检测来自该流动样品的一个或多个光谱干涉信号; 数字调制来自该流动样品的所述一个或多个光谱干涉信号,以获 取指明该流动样品的流动方向的图像。
13. 如权利要求12所述的方法,其中数字调制包括 在任一时刻从流动样品中获取(x, X)维度上的横截面数据点h(X, x);对h(X, x)沿X维度逐列地执行从X空间到k空间的插值以获取h (k, x);沿入维度逐列地计算傅立叶变换,产生在z上拥有正空间和负空间 的H (z, x);由H (z, x)形成两个函数迫使H (z, x)的负空间等于零以形 成H1 (z, x),并且迫使H(z, x)的正空间等于零以形成H2 (z, x);沿x维度用频率f。数字地调制Hl (z, x)和H2 (z, x)以获取调 制的信号H1,(z, x)和H2,(z, x);沿z维度对Hl, (z, x)和H2, (z, x)执行傅立叶逆变换,并 且只取结果的实部或虚部以形成hl (k, x)和h2 (k, x);在入维度上沿x维度逐行地计算解析函数以获取来自傅立叶逆变换 操作的数据的复数值函数,从而产生fil (k, x)和fi2 (k, x);沿k维度执行fil(k, x)和fi2(k, x)的傅立叶变换以获取复数 光学图像H1 (z, x)和H2 (z, x)并获取结果的幅值;以及在零延迟线(z=0)处分离IH1 (z, x) I和IH2 (z, x) l以形成 所述流动样品的四幅图像。
14. 如权利要求13所述的方法,其中所述四幅图像中的两幅代表 所述流动样品的结构图像。
15. 如权利要求13所述的方法,其中所述四幅图像中的一幅代表 指明朝入射探测束移动的流动的流动图像。
16. 如权利要求13所述的方法,其中所述四幅图像中的一幅代表 指明远离入射探测束移动的流动的流动图像。
17. 如权利要求12所述的方法,其中数字调制包括 在任一时刻从流动样品中获取(x,入)方向上的横截面数据点h(入,x);对h (X, x)沿人方向逐列地执行从人空间到k空间的插值以获取h (k, x);沿x维度逐行地计算傅立叶变换,从而产生在f上具有正频率空 间和负频率空间的H (k, f )。通过以下步骤由H(k, f)形成三个函数乘以第一矩形函数tl (k, f)以形成H1 (k, f); 乘以第二矩形函数t2 (k, f)以形成H2 (k, f);和 乘以第三矩形函数t3 (k, f)以形成H3 (k, f); 在k方向上沿f方向逐行地计算解析函数以获取三个函数的复数 值函数,从而产生fil (k, x) 、 fi2 (k, x)和fi3 (k, x);沿k方向执行fil (k, x) 、 fi2 (k, x)和fi3 (k, x)的傅立叶变 换以获取复数光学图像H1 (z, x) 、 H2 (z, x)和H3 (z, x)并获取这些图像的幅值;以及在零延迟线(z = 0)处分离IH1 (z, x) I、 IH2 (z, x) I和IH3 (z, x) l以形成流动样品的六幅图像。
18. 如权利要求17所述的方法,其中所述六幅图像中的两幅代表 所述流动样品的结构图像。
19. 如权利要求17所述的方法,其中所述六幅图像中的两幅代表 无流动方向指示的样品的流动图像。
20. 如权利要求17所述的方法,其中所述六幅图像中的一幅代表 指明朝入射探测束移动的流动的流动图像。
21. 如权利要求17所述的方法,其中所述六幅图像中的一幅代表 指明远离入射探测束移动的流动的流动图像。
22. —种用于体内成像的系统,包括 光学相干断层造影设备;和一个或多个处理器,该一个或多个处理器与该设备耦合并适于使该设备用来自光源的入射束扫描样品; 检测来自该样品的一个或多个光谱干涉信号; 通过当在横截面方向扫描该样品时线性平移参考反射镜来调 制所述一个或多个光谱干涉信号;和从经过调制的一个或多个光谱干涉信号中获取所述样品的至 少一幅图像,所述至少一幅图像包括所述样品的全范围结构图像 以及所述样品的分离的结构/流动图像中的选定一幅。
23. 如权利要求22所述的系统,其中所述光学相干断层造影设备 包括参考臂,该参考臂包括安装在用于调制所述一个或多个光谱干涉 信号的调制装置上的反射镜。
24. 如权利要求22所述的系统,其中所述一个或多个处理器适于 使得该设备用入射束在x方向和X方向上扫描所述样品以获取第一二维(2D)光谱干涉图数据集,所述x方向包括一列或多列而所述X方向包 括一行或多行。
25. 如权利要求24所述的系统,其中所述一个或多个处理器适于 使得该设备通过以下步骤获取至少 一幅图像沿x方向并且在第一 2D数据集的X方向上逐行地计算离散的解析 函数,以获取第一 2D数据集的复数值函数;和在x方向上逐列地把笫一 2D数据集的复数值函数从谱域转换到时 域,以获取所述样品的所述至少一幅图像。
全文摘要
本发明的实施例包括但不限于用于光学干涉成像的方法和系统。光学干涉成像的方法可以包括用来自光源的入射束扫描样品;检测来自样品的一个或多个光谱干涉信号;通过当在横截面方向扫描样品时线性平移参考反射镜来调制所述一个或多个光谱干涉信号;和从经过调制的一个或多个光谱干涉信号中获取样品的至少一幅图像,所述至少一幅图像包括样品的全范围结构图像以及样品的分离的结构/流动图像中的选定一幅。
文档编号A61B3/12GK101626719SQ200780042617
公开日2010年1月13日 申请日期2007年9月18日 优先权日2006年9月26日
发明者王瑞康 申请人:俄勒冈健康与科学大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1