专利名称:葡萄糖传感器校准系统和/或方法
技术领域:
本文公开的主题涉及葡萄糖传感器的校准,例如用于葡萄糖监测系统。
背景技术:
多年来,通过获取体液样本来测定身体特征。例如,糖尿病患者通常对血液葡萄糖水平进行测定。传统的血液葡萄糖测定采用疼痛的扎手指的方法,使用刺血针取少量血液样本。这导致了由刺血针所带来的不适,因为刺血针接触皮下组织中的神经。针刺的疼痛和由多次针刺所带来的累积不适是患者为什么不遵守用于测定一段时间内身体特征变化的医疗测试方案的主要原因。虽然已提出了非侵入性系统或正在研究非侵入性系统,但是迄今为止还未使有效的并且提供精确结果的非侵入系统商业化。此外,所有这些系统都被设计成提供离散点的数据,而不提供连续数据以表示测试时间之间的特征的变化。已研制了多种植入式电化学传感器用于检测和/或定量患者血液中特定的药剂或组合物。例如,正在研制葡萄糖传感器用于获得糖尿病患者身体中的血液葡萄糖水平的指示。这些读数在监测和/或调整治疗方案方面有用,所述治疗方案包括将胰岛素有规律地施用于患者。因此,血液葡萄糖读数改善了具有半自动外部型药物注入泵的药物治疗,如通常在美国专利第4,562,751号、第4,678,408号和第4,685,903号中所描述的,或改善具有自动可植入式药物注入泵的药物治疗,如通常在美国专利第4,573,994号中所描述的。 典型的薄膜传感器在共同受让的美国专利第5,390,671号、第5,391,250号、第5,482,473 号和第5,586,553号中描述。还参见美国专利第5,299,571号。
发明内容
简单来说,一种实施方式涉及获取由传感器产生的电子信号样品的方法、系统和/ 或装置,所述样品具有与血液葡萄糖浓度的测量值有关的样品值,根据与所述样品值有关的血液葡萄糖参考样品的函数独立地加权至少一些所述样品值,以及至少部分基于所述独立地加权的样品估算样品值与所述血液葡萄糖浓度的关系。在另一实施方式中,估算所述关系包括至少部分基于所述加权的样品和相关血液葡萄糖参考值的线性回归估算所述样品值与所述血液葡萄糖浓度之间的线性关系。在此, 例如,这样估算所述线性关系还可包括至少部分基于所述加权的样品和相关血液葡萄糖参考值计算线性回归灵敏度比;至少部分基于所述计算的线性回归灵敏度比选择补偿值; 以及至少部分基于所述选择的补偿值、所述加权的样品和所述相关血液葡萄糖参考值计算修正的线性回归灵敏度比。在另一特定的实施方式中,血液葡萄糖参考样品的函数至少部分基于作为相关血液葡萄糖参考样品的函数的所述样品值的统计学分布的测量值。在此,例如,所述统计学分布的测量值可包括作为所述相关血液葡萄糖参考样品的函数的所述样品值的方差和/或方差的近似值。可选地,所述函数包括所述样品值的所述统计学分布的测量值的倒数。在又一可选的实施方式中,所述方法包括估算所述样品值的统计学分布的测量值与血液葡萄糖浓度的线性关系;以及至少部分基于所述线性关系获得所述函数。在另一特定的实施方式中,独立地加权所述至少一些所述样品值还包括基于近来如何获得所述样品来加权所述样品。在另一特定的实施方式中,所述方法包括至少部分基于所述估算的关系的变化来检测所述传感器的失效。在另一特定的实施方式中,所述方法包括至少部分基于所述估算的关系校准用于测量血液葡萄糖浓度的所述传感器的测量值。在另一特定的实施方式中,独立地加权所述至少一些样品值包括根据与所述加权的样品有关的血液葡萄糖参考值的递减函数加权所述至少一些样品值。特定的实施方式可涉及含有存储介质的物品,所述存储介质包括存储于其上的机械可读指令,如果所述指令由计算平台执行的话,所述指令指导所述计算平台能够执行根据一种或一种以上上述特定实施方式的上述方法的至少一部分。在其他特定实施方式中, 传感器适用于产生一种或一种以上响应体内血液葡萄糖浓度的信号,而计算平台适用于基于由所述传感器产生的一种或一种以上信号执行根据一种或一种以上上述特定实施方式的上述方法。
非限制性和非穷举的特征作为参考示于随后的附图中,其中,在各个图中,相同的附图标记指示相同的部件。图1是根据实施方式的举例说明皮下葡萄糖传感器插入设备和葡萄糖监测设备的透视图;图2是沿图1中2—2线示出的传感器设备和葡萄糖监测设备的横截面图;图3是在图1和图2的插入设备中所使用的带槽的插入针的横截面图;图4是沿图3的4-4线示出的横截面图;图5是沿图3的5-5线示出的横截面图;图6是总体上对应于图2的环绕区域6的部分横截面图;图7是沿图2的7-7线示出的横截面图;图至图8c是根据实施方式说明采样值、间隔值和存储器存储值之间的关系的图表;图9是根据实施方式示出剪切界限的图表;图10是根据实施方式后处理器分析葡萄糖监测数据的样品电脑显示图像;图11是根据实施方式说明血液葡萄糖参考读数与葡萄糖监测数据配对的图表;图12是根据实施方式说明单点校准的实例的图表;图13是根据实施方式说明单点校准技术的框图;图14是根据实施方式说明线性回归校准的实例的图表;
图1 是根据实施方式说明校准过程的流程图;图1 是根据实施方式的传感器测量值与参考血液样品的关系图;图15c是根据实施方式的传感器测量值的方差倒数与血液葡萄糖浓度的关系图;图15d是根据实施方式说明传感器测量值与血液葡萄糖浓度的标准偏差的线性最佳拟合的图;图1 是根据实施方式获得待用于传感器样品值的权重的函数的关系图;图16是根据实施方式自身调节校准技术的流程图;图17a和图17b是根据实施方式说明自身调节校准技术的实例的图表;图18a和图18b是根据实施方式说明自身调节校准技术的实例的另一图表。
具体实施例方式整个说明书中所提及的“一种实施方式”或“实施方式”意思是结合实施方式描述的特定的部件、结构或特征被包括在要求保护的主题的至少一种实施方式中。因此,在整个说明书中的不同位置出现词组“在一种实施方式中”或“实施方式”不一定都指相同的实施方式。而且,特定的部件、结构或特征可在一种或一种以上实施方式中结合。例如,对于治疗糖尿病患者而言,用于监测人体内葡萄糖的系统通常使用一种或一种以上葡萄糖传感器来测量血液葡萄糖浓度。例如,这些传感器可适用于产生一种或一种以上具有与这样的血液葡萄糖浓度相关的值(例如,电压和/或电流水平)的电信号。然后,这样的血液葡萄糖浓度的测量可用于诸如监测糖尿病患者的血液葡萄糖浓度之类的许多应用中的任一种。随着时间和/或正常佩戴和使用葡萄糖传感器,由葡萄糖监测血液传感器的产生的信号值和实际上测量的血液葡萄糖浓度之间的这种关系可变化。因此,用血液葡萄糖浓度的参考样品校准这种葡萄糖监测产生的信号能够精确估算葡萄糖传感器产生的信号值与血液葡萄糖浓度之间的关系,使得更加有效地应用葡萄糖传感器以及更好地治疗糖尿病
^^ ο如用于举例说明目的的附图中所示,实施方式涉及葡萄糖监测器的校准方法,所述葡萄糖监测器耦合至设置为一段时间提供记录了来自传感器的葡萄糖水平读数的连续数据的传感器。在一种特定的实施方式中,传感器和监测器提供葡萄糖传感器和葡萄糖监测器用于确定体内和/或使用者的体液中的葡萄糖水平。然而,将会意识到的是,在不背离本发明要求保护的主题的条件下,另外的实施方式可用于确定其他身体特征的水平,包括例如,分析剂或药剂,化合物或组合物,例如,激素、胆固醇,药物浓度,病毒载荷(例如, HIV),细菌水平或类似物。在特定的实施方式中,葡萄糖传感器主要适用于人类皮下组织。 然而,在另外的实施方式中,一种或一种以上传感器可置于其他组织类型中,例如,肌肉、淋巴、器官组织、血管、动脉,等等,并且可用于动物组织以测量身体特征。实施方式可以间歇形式、周期形式、立即响应形式、连续形式或类似形式记录来自传感器的读数。根据实施方式,体液中的血液葡萄糖浓度可基于采样的传感器信号值来测量。如下面所讨论的,在特定的实施方式中还可观察到用于测量血液葡萄糖浓度的这些测量值的精确度可随血液葡萄糖浓度的增加而降低。因此,如下面举例说明的,在估算特定传感器的血液葡萄糖响应方面,在较低的血液葡萄糖浓度下取得的测量值比在较高血液葡萄糖浓度下取得的样品占更大的比重。简单来说,在一种特定的实施方式中,可采样由传感器产生的电信号以提供与血液葡萄糖浓度有关的样品值。至少部分基于与测量值有关的血液葡萄糖参考值,不确定值可与测量值中的独立的单个值关联。根据与样品值有关的不确定值的递减函数加权至少一些样品值。然后,样品值与血液葡萄糖浓度的关系可至少部分基于独立地加权的样品值来确定。然而,应当理解的是这仅仅是示范性的实施方式并且要求保护的主题不限于这方面。图1至图7举例说明了葡萄糖监测器系统1用于本文所述的校准方法。根据一种特定的实施方式,葡萄糖监测系统1包括皮下葡萄糖传感器设备10和葡萄糖监测器100。在此,葡萄糖监测器100可以是1999年2月25日提交的、名称为“葡萄糖监测器系统(Glucose Monitor System) ”的美国专利申请第60/121,664号中所描述的类型。在可选的实施方式中,所述葡萄糖监测器是美国专利第7,324,012号中所描述的类型。在一种特定的应用中,葡萄糖监测器100可由使用者佩戴,同时通过导电性电缆 102与粘附于使用者身体的表面安装的葡萄糖传感器设备10连接,葡萄糖监测器100可以是1999年2月25日提交的、名称为“用于葡萄糖监测器的测试塞和电缆(Test Plug and Cable for a Glucose Monitor) ”的美国专利申请第60/121,656号中所描述的类型。在一种实施方式中,传感器接口可被配置成插口形式以接受不同类型的电缆,所述电缆提供葡萄糖监测器100的适应性以与不同类型的皮下葡萄糖传感器和/或位于使用者身体的不同位置的葡萄糖传感器一同工作。然而,在可选的实施方式中,这样的传感器接口可永久地连接至电缆102。在其他可选的实施方式中,特性监测器可连接至一个或一个以上传感器设备以记录来自位于使用者身体上或内的一个或一个以上位置的一个或一个以上身体特征的数据。根据实施方式,葡萄糖传感器设备10可以是1999年2月25日提交的、名称为“葡萄糖传感器设备(Glucose Sensor kt) ”的美国专利申请第60/121,655号中所描述的类型或1997年6月9日提交的、名称为“用于经皮传感器的插入设备(Insertion Set For A Transcutaneous Sensor) ”的美国专利申请第08/871,831号中所描述的类型。葡萄糖传感器12可以是1999年2月25日提交的、名称为“葡萄糖传感器(Glucose Sensor),,的美国专利申请第09/101,218号中所描述的类型或共同受让的美国专利第5,390,671号、第 5,391,250号、第5,482,473号以及第5,586,553号中描述的类型,葡萄糖传感器12与葡萄糖传感器12的电极20—同从葡萄糖传感器设备10延伸进入使用者体内,终止于使用者的皮下组织。还参见美国专利第5,299, 571号。然而,在可选的实施方式中,葡萄糖传感器12 可使用其他类型的传感器,例如,基于化学类的传感器、基于光学类的传感器,等等。在进一步可选的实施方式中,传感器可以是在皮肤外表面上使用的类型或置于使用者的皮层下的类型用于检测身体特征。根据实施方式,葡萄糖监测器100能够记录并存储从葡萄糖传感器12接收到的数据,并且葡萄糖监测器100可包括数据端口(未显示)或无线发送器和/或接收器(也未显示)用于将数据传送至数据处理器200和/或将数据从数据处理器200传送出来,该数据处理器200例如电脑、通信站、特别设计成与葡萄糖监测器一同工作的专用处理器,等等。在特定的实施方式中,葡萄糖监测器100可包括美国专利第7,324,012号中所描述的葡萄糖监测器。
在特定的应用中,葡萄糖监测器系统1可通过将复杂的监测处理电子器件分为葡萄糖监测器100和数据处理器200这两个独立的设备来降低不便性;葡萄糖监测器100连接至葡萄糖传感器设备10,数据处理器200包含软件和程序指令以下载和估算由葡萄糖监测器100记录的数据。此外,多个元件(例如,葡萄糖监测器100和数据处理器200)的使用可有利于更新或替换,因为一个模块或其他可被修改、重新编程或替换而不需要完全替换监测系统1。此外,多个元件的使用可改善制造业的经济效益,因为一些元件可能需要更加频繁地进行替换,对于每个模块、不同的组件环境需求而言尺寸需求可不同,并且可作出改良而不影响其他元件。葡萄糖监测器100可从葡萄糖传感器12获取原始葡萄糖传感器数据并且实时评估这样的传感器数据和/或存储所述数据用于稍后的处理或将所述数据下载至数据处理器200,数据处理器200进而可以分析、显示以及记录接收的数据。数据处理器200可使用记录的来自葡萄糖监测器100的数据以分析和检查血液葡萄糖历史。在特定的实施方式中, 将葡萄糖监测器100置于通信站,所述通信站有利于将数据下载至个人电脑用于向医师演示。软件可用于下载这样的数据、建立数据文件、校准数据并以不同的形式来显示这样的数据,所述不同的形式包括图表、表单、报告、图形、表格、列表和/或类似的形式。在进一步的实施方式中,葡萄糖监测器系统1可用于医院环境和/或类似的环境。在可选的实施方式中,葡萄糖监测器100可包括上述数据处理器200中所包含的软件中的至少一部分。葡萄糖监测器100还可包含能够校准葡萄糖传感器信号、显示实时血液葡萄糖值、显示血液葡萄糖趋势、激活警报等的软件。具有这些附加能力的葡萄糖监测器对于患者而言是有用的,所述患者可获益于实时观察到他们的血液葡萄糖特征,即使当他们没有接近电脑、通信设备和/或专用的独立数据处理器时。如图2所示,数据处理器200可包括适用于显示通过下载从葡萄糖监测器100接收的原始葡萄糖传感器数据的计算结果的显示器214。显示的结果和信息可包括但不限于 特征的趋势信息(例如,葡萄糖的变化速度)、历史数据图、平均特性水平(例如,葡萄糖)、 稳定和校准信息、原始数据、表格(显示与日期、时间、样品编号、相应的血液葡萄糖水平、 报警消息或更多有关的原始数据)和/或类似的结果和信息。可选的实施方式可包括滚动显示原始数据的能力。显示器214还可与数据处理器200、电脑、通信站、特征监测器和/或类似物上的按键(未显示)联合使用以编程或更新数据。葡萄糖监测器100可与其他医疗设备结合以通过公共数据网络和/或遥测数据系统接收其他患者数据。葡萄糖监测器100可与血液葡萄糖计量器结合以直接输入葡萄糖校准参考值或与葡萄糖校准参考值相关联,例如1999年6月17日提交的、名称为“具有特性计量器的特性监测器及其使用方法(Characteristic Monitor With A Characteristic Meter and Method Of Using The Same) ”的美国专利申请第09/334,996号中所描述的。 如根据美国专利第4,562,751号、第4,678,408号和第4,685,903号中的特定实施方式所描述的,葡萄糖监测器100还可与外部型半自动药物注入泵相结合,或如根据美国专利第 4,573,994号中的特定实施方式所描述的,葡萄糖监测器100还可与自动可植入式药物注入泵相结合。葡萄糖监测器100可记录来自注入泵的数据和/或可处理来自葡萄糖传感器 12和注入泵这两者的数据以建立闭环系统,从而至少部分基于葡萄糖传感器测量值控制注入泵。在其他实施方式中,监测其他身体特征并且监测器可用于提供闲环系统中的反馈信息,从而控制药物递送速度。在进一步可选的实施方式中,葡萄糖监测器100可与葡萄糖传感器设备10结合作为单独的单元。葡萄糖传感器可周期性地替换以避免感染、腐蚀酶覆盖并因此使传感器灵敏度衰退、电极的去氧化作用和/或类似情况。在此,使用者可将葡萄糖传感器设备10从电缆 102和葡萄糖监测器100上分离。针14可用于安装另一葡萄糖传感器设备10,然后针14 可被除去。根据特定的实施方式,针14和传感器设备10的进一步的描述可在美国专利第 5,586,553 号、第 6,368,141 号和第 5,951,521 号中发现。使用者可将葡萄糖传感器设备10的连接部M通过电缆102连接至葡萄糖监测器 100,这样葡萄糖传感器12然后可使用持续一段延长的时间段。起始读数可从葡萄糖传感器设备10和葡萄糖监测器100下载至数据处理器200,以验证葡萄糖传感器10和葡萄糖监测器100的合适的操作。在特定的实施方式中,葡萄糖传感器设备10可在替换之前向葡萄糖监测器100提供数据持续一天至七天。基于安装的质量、清洁度、酶覆盖的耐久性、传感器的去氧化作用、使用者的舒适度等等,葡萄糖传感器12可在使用者的身体中维持较长的时间段或较短的时间段。在安装至身体中之后,葡萄糖传感器12可被初始化以在开始校准处理之前实现操作的稳定状态。在特定的实施方式中,在葡萄糖监测器100中由三节氧化银357电池110 提供的电力可用于加速葡萄糖传感器12的初始化。可选地,可使用其他电源,例如,包括锂、碱金属等在内的不同化学电池以及不同数量的电池、太阳能电池、插入AC插座的DC转换器(提供合适的电绝缘),等等。例如,初始化过程的使用可将稳定葡萄糖传感器12的时间从数小时降低至1小时或更少。一种特定的初始化过程使用两步法。首先,在传感器12的电极20之间使用高电压 (例如,电压为1. 0伏特至1. 1伏特,虽然可使用其他电压)持续1分钟至2分钟(虽然可使用不同的时间段),从而使得传感器12稳定。然后,可将较低的电压(例如,电压为0.5 伏特至0. 6伏特,虽然可使用其他电压)用于剩余的初始化过程(例如,58分钟或更少)。 可使用其他稳定/初始化过程,其采用了不同的电流、电流和电压、不同数目的步骤,等等。 其他实施方式可省略这样的初始化/稳定过程,如果特定的身体特征传感器不需要的话或如果时间不作为因素的话。可选地,特征监测器或数据处理器200可将算法用于传感器数据以确定初始瞬值是否完全消除并且传感器是否处于非常稳定的状态以开始校准。在特定的实施方式中,数据被视为无效直至在数据中设置了传感器初始化事件标记(ESI)以表示完全稳定。在一种特定的实施方式中,在60分钟之后可完全稳定或当使用者使用葡萄糖监测器上的一个或一个以上按键输入传感器初始化标记时完全稳定。完全稳定/初始化之后,可校准葡萄糖监测器100以准确地解释来自新安装的葡萄糖传感器12的读数。以稳定过程开始,葡萄糖监测器100可测量由葡萄糖传感器12产生的连续电流信号(ISIG),该信号与存在于使用者的身体的皮下组织中的葡萄糖浓度相关联。在特定的实施方式中,葡萄糖监测器100可以每10秒钟一次的采样速度采样来自的葡萄糖传感器12 的ISIG,例如,如图8a至图8c所示。采样值的实例在图8a中标记为A-AD。以每分钟一次的间隔率,忽略最高和最低采样值(图8a中显示为圆环采样值A,E,G,I,M,R,V,W,Y和 AB),并且使间隔中的剩余四个采样值平均化以产生间隔值(图8b中显示为值F’,L’,R’,X’和AD’)。以每5分钟一次的葡萄糖监测器存储器存储速度,忽略最高和最低间隔值(图 8b中显示为值L’和X’),并且使剩余的三个间隔值平均化并储存在葡萄糖监测器存储器中作为存储值(图8c中显示为点AD”)。将存储值保留在存储器中并可下载至数据处理器 200。这样的存储值可用于校准葡萄糖监测器100和/或后处理器200并且可用于分析血液葡萄糖水平。基于传感器值可变化的速度(所述速度受传感器的灵敏度、正在测量的身体特征、使用者的身体状态等的影响),必要时可改变采样速度、间隔率和存储器存储速度以捕捉具有足够的分辨率的数据以观察瞬值或数据的其他变化。在其他实施方式中,所有采样值包括在存储器存储值的平均计算值内。在可选的实施方式中,基于信号噪音、传感器稳定性或导致其他不期望的短暂读数的原因,忽略更多或更少的采样值或间隔值。最后,在其他实施方式中,所有采样值和/或间隔值存储在存储器中。剪切界限(clipping limit)可用于限制从一个值至下一个值的信号幅度变化,从而降低外源性数据、外侧数据点或瞬值的影响。在特定的实施方式中,剪切界限可用于间隔值。例如,大于最大剪切界限或小于最小剪切界限的间隔值可被最接近的剪切界限值代替。在可选的实施方式中,剪切界限之外的间隔值可被忽略并且不用于计算随后的存储器存储值。在特定的实施方式中,剪切界限之外的间隔值的检测可认为是校准取消事件。 在进一步特定的实施方式中,如果超过一个值被认为是剪切界限之外的值,可识别为校准取消事件。(校准取消事件在下面讨论)。在特定的实施方式中,在每个数据点之后可变更剪切界限。在此,至少部分基于从先前的间隔值至当前的间隔值改变的可接受的量可将剪切界限设置为一定水平,其受传感器灵敏度、信号噪音、信号漂移和/或类似的因素的影响。在特定的实施方式中,基于先前的间隔值的大小,剪切界限可计算为当前间隔。例如,就先前间隔值为O至15纳安 (Nano-Amp),但不包括15纳安而言,剪切界限可在先前间隔值附近设置为正负0. 5纳安。就先前间隔值为15纳安至25纳安,但不包括25纳安而言,剪切界限可在先前间隔值附近设置为先前间隔值的正负3%。就先前间隔值为25纳安至50纳安,但不包括50纳安而言,剪切界限可设置为先前间隔值的正负2%。就先前间隔值为50纳安或更大而言,剪切界限可设置为先前间隔值的正负1%。在可选的实施方式中,可使用不同的剪切界限并且要求保护的主题不限于这个方面。图9示出了根据特定的实施方式的剪切界限的实例,其中,与间隔N-I相关的先前间隔值500的大小为13. 0纳安,其小于15. 0纳安。因此,目前间隔值506的最大剪切界限 502设置为13. 5纳安,其比先前间隔值500大0. 5纳安。最小剪切界限504设置为12. 5纳安,其比先前间隔值500小0. 5纳安。与间隔N相关的当前间隔值506在最大剪切界限502 至最小剪切界限504之间,因此是可接受的。在图9所示的另一实例中,与间隔M有关的当前间隔值508为25. 0纳安,其在剪切界限514之外,因此会被剪去。与间隔M-I有关的先前间隔值510为26. 0纳安,其包括在上述从25. 0纳安至50. 0纳安,但不包括50. 0纳安的范围内。因此,剪切界限为+/_2%。 最大剪切界限512比先前间隔值510大2%,如下所述26. 0+26. 0*0. 02 = 26. 5 纳安。类似地,最小剪切界限514比先前间隔值510小2%,如下所述26. 0-26. 0*0. 02 = 22. 5 纳安。
因为,当前间隔值508为25. 0纳安,小于25. 5纳安的最小剪切界限514,其会被剪去,并且会使用25. 5纳安来代替25. 0纳安以计算存储器存储值。为了进一步举例说明,图 8显示出通过平均化采样值N至Q来计算得到的间隔值R’在由先前间隔值L’所产生的剪切界限412和414之外。因此,在这个特定的实例中,间隔值R’的大小不用于计算存储器值AD”,而使用R”来代替R’,R”为最小剪切界限414的大小。在其他实施方式中,基于上述传感器特征,剪切界限可以为更小的纳安值或更大的纳安值或先前间隔值的更小或更大的百分比。可选地,剪切界限可计算为每个先前间隔值的相同的正负百分数变化。其他算法可使用若干间隔值来外推下一个间隔值并且将剪切界限设置为比下一个预期的间隔值高和低几个百分比。在进一步可选的实施方式中,剪切可用于采样值、间隔值、存储值、计算的葡萄糖值、测量的特征的估算值或这些值的任何组
I=I O在特定的实施方式中,将间隔值与200纳安的范围外界限相比较。如果三个连续的间隔值等于或超出了范围外界限,可认为传感器灵敏度太高,并且激活警报以告知使用者需要重新校准或需要替换传感器。在可选的实施方式中,基于传感器灵敏度的范围、传感器期望的工作寿命、可接受的测量值范围和/或类似因素,范围外界限可设置为更高或更低的值。在特定的实施方式中,范围外界限可用于采样值。在其他实施方式中,范围外界限被用于存储器存储值。在特定的实施方式中,不稳定的信号警报界限可设置为检测存储器存储值从一个至另一个的很大的变化。类似于上述间隔值的剪切界限可建立信号警报界限,但是允许值发生较大变化,因为存储器存储值之间比间隔值之间的时间更长。一旦不稳定信号警报被激活,就可进行葡萄糖传感器12的重新校准或替换。实质上,在特定的实施方式中,这样的警报在葡萄糖监测器100检测到了来自葡萄糖传感器12的ISIG中的不可接受的噪音水平的情况下被激活。在特定的实施方式中,存储器存储值可被认为是有效的(有效ISIG值),除非发生下列校准取消事件中的一种不稳定信号警报(如上面所讨论的)、传感器初始化事件(如上面所讨论的)、传感器分离警报、开机/关机事件、范围外警报(如上面所讨论的)或校准错误警报。在此,如图10所示,只有有效ISIG值可由葡萄糖监测器100或后处理器200 用于计算血液葡萄糖水平。一旦发生校准取消事件,后续的存储器存储值就无效,因此,后续的存储器存储值不用于计算血液葡萄糖,直至葡萄糖监测器100或后处理器200被重新校准。图10示出了示范性的电脑屏幕截图,其中,小格P3用缩写“SeDi”表示传感器分离警报。如图所示,血液葡萄糖值没有出现在标题为“传感器值(Sensor Value)”的K栏中, 并且有效ISIG值没有出现在J栏中,直至初始化传感器之后,在小格W7中用“ESI,,标记来表示。然而,一个例外是开机/关机事件。如果关闭葡萄糖监测器100持续一段足够短的时间段,例如,30分钟,一恢复电力就可认为存储器存储值是有效ISIG值。例如,如果关机超过30分钟,则葡萄糖监测器100在ISIG值被认为有效之前被重新校准。可选地,可关机持续诸如30分钟之类的时间段或更长时间,一旦恢复电力,存储器存储值就可包括有效 ISIG值。在此,如果葡萄糖传感器100没有检测到信号,就可激活传感器分离警报。在优选的实施方式中,当在给定的存储器存储速度内收集的5个间隔值中的两个或两个以上小于1.0纳安时,触发分离警报。在可选的实施方式中,基于可接受的范围或传感器读数以及相关的传感器信号的稳定性,需要更多或更少的值低于特定的门限电流水平以触发分离警报。剩余的两个校准取消事件,校准错误和范围外警报的可选的实施方式,在下面与校准过程结合进行讨论。特定的实施方式涉及校准技术,所述技术可通过来自葡萄糖传感器的一个或一个以上信号的实时测量过程中的葡萄糖监测器来使用或者通过先前已记录并下载的数据的后处理过程的后处理器来使用(如图10所示)。为了校准葡萄糖监测器100,对于特定的葡萄糖传感器12,可计算称为灵敏度比 (SR)(血液葡萄糖水平/有效ISIG值)的校准因子。SR是用于至少部分基于血液葡萄糖水平(mg/dl或mmol/1)中的有效ISIG值(纳安)测量/估算血液葡萄糖浓度的校准因子。在可选的实施方式中,基于从传感器可获得的信号类型(频率、振幅、相移、S、电流、电压、阻抗、电容、流量,等等)、信号的大小、表达正在监测的特征的单位或类似因素,SR的单位可不同。在特定的实施方式中,使用者可从普通葡萄糖计量器或另一血液葡萄糖测量设备获得血液葡萄糖参考读数,并且立即将该血液葡萄糖参考读数输入葡萄糖监测器100。假设该血液葡萄糖参考读数是准确的并且用作校准的参考。葡萄糖监测器100或后处理器200 可暂时地将血液葡萄糖参考读数与有效ISIG值相关联,从而建立“配对的校准数据点”。 如图11所示,因为在间质性体液中的葡萄糖水平趋向于滞后于血液葡萄糖水平,葡萄糖监测器100或后处理器200使用延迟时间,然后将血液葡萄糖参考读数与有效ISIG值配对。 在特定的实施方式中,可使用凭经验得出的十分钟延迟。在特定的实施方式中,其中,有效 ISIG值可被平均化并且每5分钟进行存储,在输入血液葡萄糖参考读数之后(在该特定实施方式中产生10分钟至15分钟的有效延迟),葡萄糖监测器100可使所述血液葡萄糖参考读数和存储在存储器中的第三有效ISIG相关联。图11图示了一个实例,其中,在127分钟时将90mg/dl的血液葡萄糖参考读数600输入葡萄糖监测器100。在130分钟时可将下一个有效ISIG值602存储。给定10分钟的延迟,可将葡萄糖参考读数600与在140分钟时存储的30纳安的有效ISIG值604配对。注意的是,需要两个数字来建立一个配对的校准数据点,血液葡萄糖参考读数和有效ISIG。基于特定的使用者的代谢、传感器的响应时间、用于葡萄糖计量器以计算读数并且用于待输入葡萄糖监测器100的读数所产生的延迟时间、正在测量的分析物的类型、置入了传感器的组织、环境因素、先前的葡萄糖有效ISIG值(或有效ISIG值的趋势)是否大于或小于当前有效ISIG值、和/或类似因素,可使用其他延迟时间。一旦配对的校准数据是可获得的,则基于自最近校准以来可获得的配对的校准数据点的数目、葡萄糖传感器12 已使用的总时间段、以及葡萄糖传感器12被校准的次数,可使用合适的校准过程。在特定的实施方式中,血液葡萄糖参考读数通过每天使用可周期性地输入葡萄糖监测器100中。在此,可在初始化/稳定葡萄糖传感器12之后立即进行校准并且此后每天进行一次校准。然而,基于是否替换葡萄糖传感器12、是否发生校准取消事件、随时间葡萄糖传感器12的灵敏度的稳定性和/或类似因素,可比以前更多地或更少地进行这样的校准。在优选的实施方式中,血液葡萄糖参考读数每天采集多次,但是新的校准因子每天仅仅计算一次。因此,通常超过一个配对的校准数据点在校准之间被采集。在可选的实施方式中,每当葡萄糖监测器被校准,就有新的配对的校准数据点被采集。如果仅仅单一的配对的校准数据点是可获得的,例如初始化/稳定之后立即获得,特定的实施方式可使用单点校准技术(如图13的框图所示)以计算SR。并且,如果两个或两个以上配对的校准数据点是可获得的,可使用改良的线性回归技术(图15a中的框图所示)。无论是否超过一个的配对的校准数据点可获得,特定的实施方式可使用单点校准技术。单点校准方程可基于当血液葡萄糖为0时有效ISIG为0的假设。如图13的过程 750所示,在框乃4获得的单一的配对的校准点700与点(0,0) —同使用以建立线702。从原点(0,0)穿过单一的配对的校准点700的线的斜率提供单点灵敏度比(SPSR)。在此,框 756可校准这样的SPSR,如下所示
血液葡萄糖参考读数
SPSR =------------------------------------
有效ISIG因此,校准的血液葡萄糖水平可表达如下血液葡萄糖水平=有效ISIG*SPSR作为实施例,使用图12中所示的配对的校准数据点的20. 1纳安和10aiig/dl值, 校准SPSR可表达如下SPSR = 102/21. 0 = 5. 07mg/dl/ 纳安为了继续当前实施例,一旦完成校准,给定15.0纳安的葡萄糖传感器读数,计算的血液葡萄糖水平可如下确定血液葡萄糖水平=15.0*5. 07 = 76. lmg/dl此外,特定的实施方式可在校准方程中使用补偿值(offset)以补偿观察到更加灵敏的葡萄糖传感器12(例如,在相同的血液葡萄糖水平下,相对于其他葡萄糖传感器12, 产生更高的ISIG值的葡萄糖传感器12,其产生较低的SR值)在非常高的血液葡萄糖水平下相对于具有较低灵敏度(并因此具有相对较高的SR值)的葡萄糖传感器12可具有较小的线性特性。如上面所计算的,如果特定葡萄糖传感器12的SPSR小于灵敏度阈值,那么在框760中可使用在框758中选择的补偿值计算改良的SPSR(MSPSR)。在一种特定的实施方式中,所述阈值为7。如果SPSR(如上所示)的初始计算值小于7,例如,补偿值为3可用于计算MSPSR。如果SPSR的初始计算值为7或更大,那么补偿值可以为0。因此,根据改良的单点校准表达式,可使用补偿值在框760中计算MSPSR,如下所示
血液葡萄糖参考读数
MSPSR =------------------------------------
有 mSIG-offset因此,在框762中传感器12的初始校准可用于根据传感器测量值来估算血液葡萄糖,如下所示
血液葡萄糖水平=(有效ISIG_offset)*SPSR继续上述实施例,因为SPSR为5. 07,其小于7,因此,采用MSPSR方程重新计算灵敏度比,如下所示MSPSR = 102/(20. 1-3) = 5. 96mg/dl/ 纳安在校准之后,给定15. 0纳安的葡萄糖传感器读数,计算的血液葡萄糖可表示成如下血液葡萄糖水平=(15.0-3) = 5. 96 = 71. 5mg/dl在另一实施例中,给定来自典型的血液葡萄糖计量器的血液葡萄糖参考读数为 95,有效ISIG值为22. 1,得到的SPSR可确定为95/22. 1 = 4. 3。因为SR < 7,所以补偿值 =3。因此,MSPSR为95/[22. 1-3] 5. 0。注意的是,如果SPSR大于或等于7,则补偿值为 0,因此,MSPSR = SPSR0在可选的实施方式中,补偿值可从如下所示的用于计算血液葡萄糖值的表达式中除去血液葡萄糖水平=有效ISIG*MSPSR基于从测试的特定类型的葡萄糖传感器12所观察到的特征,凭经验选择阈值为 7和相关的补偿值为3,例如在名称为“薄膜传感器的制造方法(Method of Fabricating Thin Film Sensors),,的美国专利第5,391,250号和美国专利第6,360,888号中所描述的那些特征。其他阈值可与其他补偿值相结合使用以优化用于不同类型的葡萄糖传感器12 和用于检测其他身体特征的传感器的计算的MSPSR的准确度。事实上,许多阈值可用于在许多补偿值之间进行选择。使用两种不同的阈值0和7)在三种不同的补偿值(5、3和0) 之间进行选择的实例如下如果SPSR < 4,补偿值=5 ;如果4彡SPSR < 7,补偿值=3 ;以及如果SPSR彡7,补偿值=0。在特定的实施方式中,MSPSR可与有效灵敏度范围进行比较以确定新计算的 MSPSR是否合理。为了识别潜在的系统问题,例如,可使用1. 5至15的有效MSPSR范围。然而,这仅仅是这样的范围的实例,要求保护的主题并不限于这方面。该范围可至少部分基于体外得到有效葡萄糖传感器灵敏度测量值来确定。该范围外的MSPSR值可导致校准错误警报(CAL ERROR)以告知使用者潜在的问题。基于待校准的传感器的类型、用于不同传感器类型的可接受的灵敏度范围、所期望的传感器的制造一致性、环境条件、传感器已使用的时间长度和/或类似因素,可使用其他有效灵敏度范围。特定的实施方式可使用改良的线性回归技术加强上述单点校准技术(图1 中框图所示),如果超过一个配对的校准数据点是可获得的。如图14所示,配对的校准数据点 800可通过最小二乘方法进行线性回归,以计算与配对的校准数据点800关联的最佳拟合直线802。由线性回归产生的线的斜率可以是用作校准因子以校准葡萄糖监测器100的线性回归灵敏度比(LRSR)。线性和非线性最小二乘方回归可使用如下假设每个数据点提供关于值或结果的总变化的确定部分的相同信息。例如,在这些过程中,与值有关的误差的标准偏差对于所有估计的预测值是恒定的。在一些过程中,情况不是这样。例如,如上所述,在使用最低限度酶侵入式生物传感器实时连续进行葡萄糖监测以估算血浆葡萄糖浓度中,可能存在不相等的误差分布。在此,图1 的散布图举例说明了在一种特定的实施方式中,在整个大的血糖范围中针对配对的血液葡萄糖参考值绘制若干个校准的葡萄糖传感器点。从绘制的图中可观察到随着参考血液葡萄糖值的增加,传感器葡萄糖测量值的精确度降低。可测量这样降低的精确度作为与这些测量值有关的误差的方差和/或标准偏差,所述测量值随血液葡萄糖浓度和/或配对的参考血液葡萄糖参考值增加。因此,在一些情况下,例如,优选的是不等同地处理每个观察结果,并且不使用加权的最小二乘方回归。根据特定的实施方式这可通过给予每个点合适的权重以控制影响参数确定的量来实施。在进行这样的实施方式中, 对精确度影响较小的点在计算线性回归中加权较小的权重,而影响较大的点加权更大的权重。在特定的实施方式中,在框854中配对的校准点可线性回归以确定LRSR,所述配对的校准点包括与血液葡萄糖浓度传感器测量值有关的样品值,在框852,所述血液葡萄糖浓度传感器测量值与参考测量值配对。如上面所指出的,在特定的实施方式中,基于先验信息,根据与这些样品值的精确度有关的确定性程度,这样的回归可加权特定的配对和/或样品值。这样的线性回归校准可如下计算
权利要求
1.一种方法,所述方法包括获得由传感器产生的电信号样品,所述样品具有与血液葡萄糖浓度的测量值有关的样品值;根据与所述样品值有关的血液葡萄糖参考样品函数,独立地加权至少一些所述样品值;至少部分地基于所述独立地加权的样品,估算样品值与所述血液葡萄糖浓度的关系。
2.如权利要求1所述的方法,其中,所述估算所述关系包括至少部分地基于所述加权的样品和相关血液葡萄糖参考值的线性回归,估算所述样品值与所述血液葡萄糖浓度之间的线性关系。
3.如权利要求2所述的方法,其中,所述估算所述线性关系进一步包括至少部分地基于所述加权的样品和相关血液葡萄糖参考值,计算线性回归灵敏度比;至少部分地基于所述计算得到的线性回归灵敏度比,选择补偿值;以及至少部分地基于所述选择的补偿值、所述加权的样品和所述相关血液葡萄糖参考值, 计算改良的线性回归灵敏度比。
4.如权利要求1所述的方法,其中,所述血液葡萄糖参考样品的函数至少部分地基于作为相关血液葡萄糖参考样品的函数的所述样品值的统计学分布的测量值。
5.如权利要4所述的方法,其中,所述统计学分布的测量值包括作为所述相关血液葡萄糖参考样品的函数的所述样品值的方差和/或方差的近似值。
6.如权利要求4所述的方法,其中,所述函数包括所述样品值的所述统计学分布的测量值的倒数。
7.如权利要求4所述的方法,所述方法还包括估算所述样品值的所述统计学分布的测量值与血液葡萄糖浓度的线性关系;以及至少部分地基于所述线性关系获得所述函数。
8.如权利要求1所述的方法,其中,独立地加权所述至少一些所述样品值进一步包括基于近来如何获得所述样品进一步加权所述样品。
9.如权利要求1所述的方法,所述方法还包括至少部分地基于所述估算的关系的变化检测所述传感器的失效。
10.如权利要求1所述的方法,所述方法还包括至少部分地基于所述估算的关系校准用于测量血液葡萄糖浓度的所述传感器的测量值。
11.如权利要求1所述的方法,其中,所述独立地加权所述至少一些所述样品值包括根据与所述加权的样品有关的血液葡萄糖参考值的递减函数加权所述至少一些所述样品值。
12.—种设备,所述设备包括用于获得由传感器产生的电信号的样品的装置,所述样品具有与血液葡萄糖浓度的测量值相关的样品值;用于根据与所述样品值有关的血液葡萄糖参考样品的函数独立地加权至少一些所述样品值的装置;以及用于至少部分地基于所述独立地加权的样品估算样品值与所述血液葡萄糖浓度的关系的装置。
13.如权利要求12所述的设备,其中,所述用于估算所述关系的装置包括用于至少部分地基于所述加权的样品和相关血液葡萄糖参考值的线性回归,估算所述样品值与所述血液葡萄糖浓度之间的线性关系的装置。
14.如权利要求13所述的设备,其中,所述用于估算所述线性关系的装置进一步包括 用于至少部分地基于所述加权的样品和相关血液葡萄糖参考值计算线性回归灵敏度比的装置;用于至少部分地基于所述计算得到的线性回归灵敏度比选择补偿值的装置;以及用于至少部分地基于所述选择的补偿值、所述加权的样品和所述相关血液葡萄糖参考值,计算改良的线性回归灵敏度比的装置。
15.如权利要求12所述的设备,其中,所述血液葡萄糖参考样品的函数至少部分地基于作为相关血液葡萄糖参考样品的函数的所述样品值的统计学分布的测量值。
16.如权利要求15所述的设备,其中,所述统计学分布的测量值包括作为所述相关血液葡萄糖参考样品的函数的所述样品值的方差和/或方差的近似值。
17.如权利要求15所述的设备,其中,所述函数包括所述样品值的所述统计学分布的测量值的倒数。
18.如权利要求15所述的设备,所述设备还包括用于估算所述样品的所述统计学分布的测量值和血液葡萄糖浓度的线性关系的装置;和用于至少部分地基于所述线性关系获得所述函数的装置。
19.如权利要求12所述的设备,其中,所述用于独立地加权所述至少一些所述样品值的装置进一步包括用于基于近来如何获得所述样品进一步加权所述样品的装置。
20.如权利要求12所述的设备,所述设备还包括用于至少部分地基于所述估算的关系的变化检测所述传感器失效的装置。
21.如权利要求12所述的设备,所述设备还包括用于至少部分地基于所述估算的关系对用于测量血压葡萄糖浓度的所述传感器的测量值进行校准的装置。
22.如权利要求12所述的设备,其中,所述用于独立地加权所述至少一些所述样品值的装置包括用于根据与所述加权的样品有关的血压葡萄糖参考值的递减函数加权所述至少一些所述样品值的装置。
23.一种物品,所述物品包括存储介质,所述存储介质包括存储于其上的机械可读指令,如果所述机械可读指令由计算平台执行的话,所述机械可读指令适用于指导所述计算平台执行下述操作获得传感器产生的电信号的样品,所述样品具有与血液葡萄糖浓度的测量值有关的样品值;根据与所述样品值有关的血液葡萄糖参考样品函数,独立地加权至少一些所述样品值;至少部分地基于所述独立地加权的样品,估算样品值与所述血液葡萄糖浓度之间的关系。
24.如权利要求23所述的物品,其中,如果所述指令由所述计算平台执行的话,所述指令还适用于指导所述计算平台至少部分地基于所述加权的样品和相关血液葡萄糖参考值的线性回归,通过估算所述样品值与所述血液葡萄糖浓度之间的线性关系来估算所述关系。
25.如权利要求M所述的物品,其中,如果所述指令由所述计算平台执行的话,所述指令还适用于指导所述计算平台执行下述操作至少部分地基于所述加权的样品和相关血液葡萄糖参考值计算线性回归灵敏度比;至少部分地基于所述计算得到的线性回归灵敏度比选择补偿值;以及至少部分地基于所述选择的补偿值、所述加权的样品和所述相关血液葡萄糖参考值计算改良的线性回归灵敏度比。
26.如权利要求M所述的物品,其中,所述血液葡萄糖参考样品的函数至少部分基于作为相关血液葡萄糖参考样品的函数的所述样品值的统计学分布的测量值。
27.如权利要求沈所述的物品,其中,所述统计学分布的测量值包括作为所述相关血液葡萄糖参考样品的函数的所述样品值的方差和/或方差的近似值。
28.如权利要求沈所述的物品,其中,所述函数包括所述样品值的所述统计学分布的测量值的倒数。
29.如权利要求沈所述的物品,其中,如果所述指令由所述计算平台执行的话,所述指令进一步适用于指导所述计算平台执行下述操作估算所述样品值的所述统计学分布的测量值与血液葡萄糖浓度的线性关系;和至少部分地基于所述线性关系获得所述函数。
30.如权利要求23所述的物品,其中,如果指令由所述计算平台执行的话,指令进一步适用于指导所述计算平台基于近来如何获得所述样品独立地加权所述样品。
31.如权利要求23所述的物品,其中,如果所述指令由所述计算平台执行的话,所述指令进一步适用于指导所述计算平台至少部分地基于所述估算的关系的变化检测所述传感器的失效。
32.如权利要求23所述的物品,其中,如果所述指令由所述计算平台执行的话,所述指令进一步适用于指导所述计算平台至少部分地基于所述估算的关系校准用于测量血液葡萄糖浓度的所述传感器的测量值。
33.如权利要求23所述的物品,其中,如果所述指令由所述计算平台执行的话,所述指令适用于指导所述计算平台根据与所述加权的样品有关的血液葡萄糖参考值的递减函数独立地加权所述至少一些所述样品值。
34.一种设备,所述设备包括传感器,所述传感器适用于产生响应于体内血液葡萄糖浓度的一种或一种以上信号;计算平台,所述计算平台适用于获得所述一种或一种以上信号的样品,所述样品具有与所述血液葡萄糖浓度的参考值有关的样品值;根据与所述样品值有关的血液葡萄糖参考样品的函数独立地加权至少一些所述样品值;以及至少部分地基于所述独立地加权的样品估算样品值与所述血液葡萄糖浓度的关系。
35.如权利要求34所述的设备,其中,所述计算平台还适用于至少部分地基于所述加权的样品和相关血液葡萄糖参考值的线性回归,通过估算所述样品值与所述血液葡萄糖浓度之间的线性关系来估算所述关系。
36.如权利要求35所述的设备,其中,所述计算平台还适用于至少部分地基于所述加权的样品和相关血液葡萄糖参考值,计算线性回归灵敏度比;至少部分地基于所述计算得到的线性回归灵敏度比选择补偿值;以及至少部分地基于所述选择的补偿值、所述加权的样品和所述相关血液葡萄糖参考值计算改良的线性回归灵敏度比。
37.如权利要求34所述的设备,其中,所述血液葡萄糖参考样品的函数至少部分地基于作为相关血液葡萄糖参考样品的函数的所述样品值的统计学分布的测量值。
38.如权利要求37所述的设备,其中,所述统计学分布的测量值包括作为所述相关血液葡萄糖参考样品的函数的所述样品值的方差和/或方差的近似值。
39.如权利要求37所述的设备,其中,所述函数包括所述样品值的所述统计学分布的测量值的倒数。
40.如权利要求37所述的设备,其中,所述计算平台还适用于估算所述样品值的所述统计学分布的测量值和血液葡萄糖浓度的线性关系;以及至少部分地基于所述线性关系获得所述函数。
41.如权利要求34所述的设备,其中,所述计算平台还适用于基于近来如何从所述传感器获得所述样品进一步独立地加权所述样品。
42.如权利要求34所述的设备,其中,所述计算平台还适用于至少部分地基于所述估算的关系的变化检测所述传感器的失效。
43.如权利要求34所述的设备,其中,所述计算平台还适用于至少部分地基于所述估算的关系校准用于测量血液葡萄糖浓度的所述传感器的测量值。
44.如权利要求34所述的设备,其中,所述计算平台还适用于通过根据与所述加权的样品有关的血液葡萄糖参考值的递减函数加权所述至少一些所述样品值来独立地加权所述至少一些所述样品值。
全文摘要
本文公开的主题涉及用于校准待用于估算血液葡萄糖浓度的传感器数据的系统、方法和/或设备。传感器测量值和参考读数之间的关系可用于估算传感器测量值与血液葡萄糖浓度之间的关系。这些传感器测量值可根据与传感器值有关的不确定性的递减函数来加权。
文档编号A61B5/00GK102264283SQ200980153109
公开日2011年11月30日 申请日期2009年12月22日 优先权日2008年12月29日
发明者德斯蒙德·巴里·基南, 约翰·J.·马斯特罗托塔罗 申请人:美敦力迷你迈德公司