能量和生物活性剂的定向输送的制作方法

文档序号:1200596阅读:230来源:国知局

专利名称::能量和生物活性剂的定向输送的制作方法
技术领域
:本发明整体上涉及医疗装置、系统及方法。具体地,本发明提供用于将能量和/或生物活性材料(即,生物活性剂)输送到身体组织中的方法及系统,最优选地通过使用基于导管的治疗系统来有选择地输送到围绕腔管设置的身体组织中的方法及系统。
背景技术
:医生使用导管来接近和修复身体的内部组织,特别是在诸如血管之类的身体腔管内的组织。例如,球囊血管成形术和其他导管常常用于打开已因动脉粥样硬化疾病而变窄的动脉。球囊血管成形术通常在打开堵塞的血管方面是有效的,但是与球囊膨胀相关的创伤能够施加明显的伤害,以使得球囊膨胀的益处可能在时间上受到限制。连同球囊膨胀一起的支架手术常常是用于动脉粥样硬化的优选治疗法。在支架法中,折叠的金属框架被安装在引入身体内的球囊导管上。支架被操纵到堵塞的部位内并且通过在下面的球囊的膨胀而扩展就位,或者在自扩展支架的示例中,当由导管释放限制时支架打开。支架法已经获得广泛地认同,并且在很多情况下产生基本可接受的疗效。除治疗血管(特别是冠状动脉)以外,支架还能够用于治疗身体内的很多其他管状阻塞,比如用于治疗生殖系统阻塞、胃肠道阻塞和肺部阻塞。在支架法之后的身体腔管的再狭窄或后来的变窄已在大量的情况下发生。已经提出多种更改的再狭窄治疗或再狭窄抑制治疗模式,包括血管内放射、低温处理、超声波能量等等,它们常常与球囊血管成形术和/或支架法一起使用。尽管这些和不同的方法显示出用于在血管成形术和支架法之后降低血液流动中的后续退化的不同程度的可能,但是由血管成形术初始施加在组织上的创伤始终成为问题。已经提出对多种替代支架法和球囊血管成形术的方法以打开狭窄的动脉。例如,已经公开和尝试很多种旋切术装置和技术。不管血管成形术和支架法的缺点和限制,旋切术仍尚未获得广泛地使用和基于膨胀方法的成功率。最近,已经出现膨胀法的其他的缺点。这些包括存在易损斑块,该斑块能够破裂并且释放物质,这些物质可能导致心肌梗死或心脏病发作。最近,涂药支架(比如强生公司的Cypher支架,所关联的药物包括西罗莫司)已经证实明显减小的再狭窄率,并且其他人正在开发和商业化可替代的药物洗脱支架。尽管药物洗脱支架显示出具有用于治疗很多病人的动脉硬化的明显希望,但是始终存在支架无法使用或者出现明显缺点的很多情况。通常,支架法将植入物留在身体中。这些植入物能够出现风险,包括机械疲劳、腐蚀、血栓形成等等,特别是当难以移除植入物且涉及侵入性手术时。支架法在用于治疗弥漫性动脉疾病、用于治疗分歧、用于治疗易受挤压的身体区域、以及用于治疗经受扭转、弯曲、拉长和缩短的动脉时可能具有另外的缺点。可以在如下专利文献中发现与所提出的动脉粥样硬化疾病治疗相关的信息例如美国专利No.5,102,402、No.5,304,121、No.5,304,171、No.5,306,250、No.5,380,319、No.5,588,962、No.5,693,029、No.6,389,314、No.6,477,426、No.6,623,453、No.6,695,830、No.6,706,011、No.6,723,064、No.6,788,977、No.6,991,617、No.6,958,075,No.7,008,667,No.7,066,904,No.7,291,146以及No.7,407,671。能够在如下专利文献中发现另外的信息美国专利申请公开No.2003/0069619、No.2003/0229384、No.2004/0062852、No.2004/0243199、No.2005/0203498、No.2005/0251116、No.2005/0283195、No.2006/0235286、No.2007/0278103、No.2008/0125772、No.2008/0140002、No.2008/0161801、No.2008/0188912、No.2008/0188913、No.2008/0262489和No.2009/0074828以及欧洲专利申请No.EP1622531以及PCT专利公开号WO2005/007000和WO2009/121017。还可以包括在相关信息中的是kheller等人2008年8月发表在EuroIntervention中的‘‘PotentialSolutionstotheCurrentProblem=CoatedBalloon,”,SupplC:C63_66和Tepe等人2008年2月14发表在NEnglJMed上的"LocalDeliveryofPaclitaxeltoInhibitRestenosisDuringAngioplastyoftheLeg,“;358(7):689_699。因此,有利的是提供用于将医疗处理输送到有病组织中的新型的和/或改进的方法及系统。理想地,这些改进的技术通过将温度变化和/或生物活性剂引入到靶组织中而便于有选择地靶定组织以用于治疗,从而可以简化手术、减少手术时间、提高治疗效果、或者它们的任意组合。
发明内容本发明涉及通过定向输送能量和/或生物活性材料来治疗靶组织以获得医疗效果。在最优选实施例中,具有球囊部分、还包括多个电极的球囊导管系统可以被激励以将能量、生物活性剂、或者它们的组合有选择地输送到靶组织中。所述组织可以通过利用控制器使用能量源来施加能量、进行组织阻抗分析、以及进一步选择性地使电极通电而被靶定。在一优选实施例中,用于通过定向输送能量和/或生物活性材料来治疗靶组织的系统包括细长导管,所述导管具有近端部和远端部以及位于它们之间的轴线。所述导管具有在所述远端部附近的可径向扩展球囊和在所述球囊上的能量输送表面。带有可释放的生物活性材料的热可变涂层联接到所述球囊上。所述热可变涂层定向为当所述球囊扩展时被推靠在所述靶组织上。能量源可操作地联接到所述导管上以激励所述能量输送表面来加热所述热可变涂层并且将所述生物活性材料释放到所述靶组织中。在另一实施例中,所述能量输送表面包括围绕所述可扩展球囊设置的多个间隔开的电极。所述能量源可操作地联接到所述多个电极上以有选择地使所述电极对通电来加热所述热可变涂层的位于所述电极对之间的部分以将所述生物活性材料释放到所述靶组织中。在一示例性实施例中,所述电极涂覆有绝缘材料。在又一实施例中,所述球囊由选择性透过膜包封,所述膜由多个周向间隔开的电极覆盖。在另一实施例中,所述球囊构造为接收包括有所述生物活性材料的膨胀介质。在一些实施例中,组织分析仪构造为表征所述身体组织。在其他实施例中,响应所述被表征的身体组织,所述电极输送部分被激励以加热所述可热变涂层以释放所述生物活性材料。在另一实施例中,在输送所述生物活性材料之前、期间和/或之后,所述电极输送部分被激励以加热所述身体组织。在另一实施例中,所述可热变涂层包括多于一种的可释放的生物活性材料。每种材料可以具有不同的相变温度。在另一实施例中,所述生物活性材料选取为如下中的至少一种抗增殖药、抗凝血酶、免疫抑制剂、脂质、抗脂质、脂质体、抗炎药、抗肿瘤药、抗血小板药、血管生成剂、抗血管生成剂、维生素、适体、抗有丝分裂药、金属蛋白酶抑制剂、NO供体、雌二醇、抗硬化剂、血管活性药、生长因子、β受体阻滞剂、AZ受体阻滞剂、激素、抑制素、抗氧化剂、膜稳定剂、钙拮抗剂、类维生素Α、肽、脂蛋白、多肽、核苷酸编码多肽、蛋白质、蛋白质药物、酶、遗传物质、细胞、化学溶剂、能量活化剂、抗淋巴细胞、以及抗巨噬细胞物质。在又一实施例中,所述生物活性材料附接到脂质体的一部分上。在另一实施例中,所述热可变涂层选取为如下中的至少一种聚乳酸、聚乙醇酸、聚醋酸乙烯、聚乙烯基丙烯(polyvinylpropylene)、羟丙基甲基纤维素、甲基丙烯酸酯、或以上任何组合。在其他实施例中,所述能量源是RF能量源,并且所述输送部分构造为发射RF能以释放和/或激活至少一种生物活性材料。在其他实施例中,所述能量源是光能源,并且所述输送部分构造为发射光能以释放和/或激活至少一种生物活性材料。在一示例性实施例中,一种用于有选择地输送可释放的生物活性材料的方法,所述方法包括通过径向扩展导管的球囊使围绕腔管设置的身体组织与可热变涂层接合。所述可热变涂层设置在所述球囊上。所述球囊上的表面被激励以加热所述可热变涂层。响应所述加热,将所述生物活性材料从所述可热便涂层释放到所述身体组织内。在另一实施例中,所述输送部分包括围绕所述可扩展球囊设置的多个电极,并且所选取的电极对被通电以加热和液化所述可热变涂层的位于所述电极对之间的部分。在又一实施例中,所述腔管的所述身体组织包括有病部分。所选取的电极对被通电以加热接近所述有病部分的所述可热变涂层。在另一实施例中,组织被表征以识别待治疗的身体组织。响应所述被表征的身体组织,所述可热变涂层的部分被有选择地加热以释放所述生物活性材料来治疗所述被识别的身体组织。在另一实施例中,在输送所述生物活性材料之前、期间和/或之后,所述身体组织被加热。所述生物活性材料选取为如下中的至少一种治疗流体、麻醉药物、治疗药物、小分子、基因治疗化合物、抗溶栓剂、容许较高温度而无粘附的润滑剂、降低电极处的阻抗的导电化合物、防止对无需治疗的组织进行治疗的电绝缘化合物、意欲迁移穿过组织的内皮细胞层以将能量运送到间质层的导电化合物、或以上的组合。在另一实施例中,所述输送部分用RF能量激励以释放和/或激活至少一种生物活性材料。在另一实施例中,所述输送部分用激光能量激励以释放和/或激活至少一种生物活性材料。在另一实施例中,所述输送部分用超声波能量激励以释放和/或激活至少一种生物活性材料。在另一实施例中,所述输送部分通过微波能量激励以释放和/或激活至少一种生物活性材料。在一优选实施例中,一种用于将生物活性材料输送到围绕腔管设置的身体组织中的导管系统,所述系统包括细长导管,所述导管具有近端部和远端部以及位于它们之间的轴线。所述导管具有在所述远端部附近的径向可扩展球囊和接近所述球囊用于能量传送的能量输送表面。多个生物分子具有共价键合到所述球囊上的惰性部分和热可释放的药物部分。能量源可操作地联接到控制器上以有选择地激励所述输送部分,以便加热所述生物分子以将所述生物活性材料释放到所述身体组织中。在一示例性实施例中,一种在腔管中输送生物活性材料的方法,所述方法包括使围绕所述腔管设置的身体组织与多个生物分子接合。当所述可扩展球囊扩展时,惰性部分和热可释放的药物部分在导管的远端部附近共价键合到所述球囊上。响应所述生物分子的加热,所述导管的接近所述球囊的电极输送部分被激励以加热所述生物分子并且将所述药物部分从所述生物分子释放到所述身体组织内。在一优选实施例中,一种用于将流体有选择地输送到围绕腔管设置的身体组织中的导管系统,所述系统包括细长的柔性导管本体。所述本体具有近端部和远端部。径向可扩展结构位于所述导管本体的所述远端部附近。多个流体输送通道可通过所述可扩展结构扩展,所述流体输送通道初始由热可变材料阻塞。能量源可操作地联接到所述流体输送通道上以加热和液化所述热可变材料以打开一个或更多个所述流体输送通道用于流体释放。在另一实施例中,所述多个流体输送通道从所述可扩展结构突起以透入所述腔管的所述身体组织内。在另一实施例中,组织分析仪构造为表征所述身体组织。在又一实施例中,响应所述被表征的身体组织,所述流体输送通道能够被选择性地激励以有选择地打开一个或更多个所述流体输送通道。在另一实施例中,所述径向可扩展结构包括球囊,并且所述流体输送通道安装在所述球囊的周缘上。在又一实施例中,所述径向可扩展结构包括可扩展篮(basket),并且所述流体输送通道安装在所述篮的周缘上。在另一实施例中,所述腔管的所述身体组织包括有病部分。所选取的电极被通电以有选择地打开接近所述有病部分的一个或更多个流体输送通道。在另一实施例中,同在所述腔管中释放流体一起,所选取的电极被通电以加热所述本体组织。在其他实施例中,所述流体选取为如下中的至少一种神经酰胺、苏拉明、雷帕霉素、紫杉醇、西罗莫司、佐他莫司、依维莫司、治疗流体、麻醉药物、治疗药物、小分子、基因治疗化合物、抗溶栓剂、润滑剂(容许较高温度而无粘附)、降低电极处的阻抗的导电化合物、防止对无需治疗的组织进行治疗的电绝缘化合物、意在迁移穿过组织的内皮细胞层以将能量运送到间质层的导电化合物、或以上的组合。在一优选实施例中,一种用于将流体有选择地输送到身体组织中的导管系统围绕腔管设置。所述系统包括细长的柔性导管本体,所述导管本体具有近端部和远端部。径向可扩展结构设置在所述导管本体的所述远端部附近。多个流体输送通道定向为当所述可扩展结构扩展时被推靠在所述腔管的所述身体组织上。多个微机电系统(MEMQ联接到所述流体输送通道上以有选择地打开一个或更多个流体输送系统并且将流体释放到所述腔管中。在另一实施例中,一种用于在腔管中有选择地输送流体的方法,所述方法包括所述腔管内的径向扩展结构而使围绕所述腔管设置的身体组织与多个流体输送通道接合。一个或更多个所述流体输送通道被有选择地打开并且将流体从所述选定的流体输送通道释放到所述腔管内。在另一实施例中,一个或更多个流体输送通道包括联接到所述流体输送通道上的多个微机电系统(MEMQ以有选择地打开和/或关闭所述流体输送通道。在一优选实施例中,一种用于将药物输送到围绕腔管设置的身体组织中的导管组件,所述导管组件包括细长导管,所述导管具有近端部和远端部以及位于它们之间的轴线。径向可扩展多孔球囊具有内表面和外表面。所述球囊定位在所述导管的所述远端部附近而能量输送表面接近所述球囊用于能量传送。具有内表面和外表面的选择性多孔膜覆盖在所述球囊上。包括有药物的用于使所述球囊扩张的扩张介质在所述球囊通过所述扩张介质扩张时被引入到所述多孔球囊的所述外表面与所述膜的所述内表面之间。能量源联接到所述导管的所述近端部上以当所述球囊在所述腔管内扩展时将能量输送到所述能量输送表面上,以将所述药物从所述球囊的所述外表面经过所述膜输送到所述身体组织中。在另一实施例中,一种用于将药物有选择地输送到围绕腔管设置的身体组织中的导管系统,所述系统包括细长的柔性导管本体,所述导管本体具有近端部和远端部。位于所述导管本体的所述远端部附近的径向可扩展球囊具有内表面和外表面。所述外表面包括生物相容性基质和在所述基质上的可溶性生物活性材料涂层。所述材料定向为朝向所述组织的潮湿表面,以当所述球囊扩展抵靠所述组织并且流体压力克服渗透压时使水分能够溶解所述生物活性材料并且迫使其离开所述基质。在其他实施例中,一种用于通过定向输送能量和/或生物活性材料来治疗靶组织的系统,所述系统包括细长导管,所述导管具有近端部和远端部以及位于它们之间的轴线。所述导管具有在所述远端部附近的径向可扩展球囊和在所述球囊上的能量输送表面。具有可释放的生物活性材料的可变涂层联接到所述球囊上。所述可变涂层定向为当所述球囊扩展时被推靠在所述靶组织上。能量源可操作地联接到所述导管上以激励所述能量输送表面以便改变所述可变涂层并且将所述生物活性材料释放到所述靶组织中。在很多示例性实施例中,所述球囊部分还可以包括一个或更多个包含有一种或更多种生物活性剂的表面涂层或层,所述生物活性剂通过施加能量、暴露给活体内环境、或者它们的组合而被弓I导至组织。在一些示例性实施例中,所述球囊导管的表面还可以包括润滑剂、导电化合物、意欲迁移穿过组织的层以将能量运送到间质层的化合物、或者它们的任意组合。在其他示例性实施例中,所述球囊部分还可以包括绝缘部分,所述绝缘部分优选地避免将能量直接传送到最靠近电极的区域。在又一示例性实施例中,所述球囊部分可以包括直接附接到所述球囊的表面上的生物活性剂。在又一示例性实施例中,所述球囊导管系统还包括用于发射光能的装置,所述光能可以用于释放生物活性剂、激活生物活性剂、或者它们的组合。在又一示例性实施例中,所述球囊可以包括输送通道、或多孔材料、或基质、或它们的组合,这有助于生物活性剂的输送。本发明的优选实施例可以用在医疗手术中用于实现组织中的生物效应。最优选地,本发明可以在血管成形手术之前、期间和/或之后的任何地点和时刻使用。图1示意性地示出导管系统的一个实施例,其具有用于将生物活性剂有选择地输送到围绕腔管设置的身体组织中的涂层;图2示意性地示出用于使用在图1的导管系统中的可扩张球囊的一个实施例;图3A示意性地示出图2的球囊的剖视图而图:3B是图2的球囊的放大图;图3C示意性地示出在图3A的球囊上的层状涂层;图4A和图4B示意性地示出包覆电极的涂层;图4C示意性地示出用于治疗组织的被包覆的电极;图5示意性地示出在治疗组织时适体的使用;图6示意性地示出用于在输送生物活性剂之前、期间和/或之后在组织分析和选择性能量治疗中使用的电极对的布置;图7示意性地示出导管系统的另一实施例,其具有用于将流体有选择地输送到围绕腔管设置的身体组织中的流体输送通道;图8A示意性地示出图7中的球囊的剖视图而图8B是放大截面,其示出穿过球囊的、联接到安装在球囊表面上的电极的流体输送通道;图8C是放大剖视图,其示出图8A和图8B中的流体输送通道和嵌入组织内的电极;图9A和图9B示意性地示出剖视图,其示出使用具有通过键合联接到组织表面上的惰性部分和热可释放的活性部分的生物活性分子来治疗组织;图IOA和图IOB示意性地示出在球囊的表面上的生物活性剂被释放到靶组织中;图IlA示意性地示出带有多种生物活性剂的脂质体;图IlB是磷脂双层的放大剖视图;图IlC示意性地示出脂质体从球囊的释放;图IlD是脂质体的组织摄取的放大示意图;图12示意性地示出从球囊释放的能量和生物活性剂被引导向组织病变区;图13A示意性地示出用于在图1的导管系统中使用的球囊的另一实施例,而图13B是图13A的放大剖视图;图13C示意性地示出当能量被施加到图1时生物活性剂的释放;图13D示意性地示出图13A的另一实施例,其中生物活性剂包括用于球囊的扩张介质;图14A示意性地示出用于在图1的导管系统中使用的球囊的又一实施例;以及图14B示意性地示出图14A的球囊将生物活性剂释放到组织内。具体实施例方式本发明的实施例涉及通过定向输送能量和生物活性材料来治疗靶组织以获得医疗效果。优选地,靶组织是腔管组织,其还可以包括比如在动脉疾病中发现的有病组织。但是,任何组织均可以被靶定用于治疗,包括定向输送能量和/或输送生物活性剂。能量的定向输送可以用于治疗组织、辅助生物活性剂的输送、辅助生物活性剂的组织摄取、或者它们的任意组合。通过本发明构思的生物活性剂可以被单独或组合地输送。生物活性剂的示例可以是大分子或小分子,并且可以包括但不限于抗增殖药、抗凝血酶、免疫抑制剂、脂质、抗脂质、脂质体、抗炎药、抗肿瘤药、抗血小板药、血管生成剂、抗血管生成剂、维生素、适体、抗有丝分裂药、金属蛋白酶抑制剂、NO供体、雌二醇、抗硬化剂、血管活性药、生长因子、β受体阻滞剂、AZ受体阻滞剂、激素、抑制素、抗氧化剂、膜稳定剂、钙拮抗剂、类维生素Α、肽、脂蛋白、多肽、核苷酸编码多肽、蛋白质、蛋白质药物、酶、遗传物质、细胞、能量活化剂、抗淋巴细胞、以及抗巨噬细胞物质。生物活性剂可以被结合到球囊导管上的涂层内,一旦在腔管内,该涂层就可以通过能量的定向施加而被释放以有选择地治疗靶组织。本发明的一些实施例使用加热来释放生物活性剂涂层。其他实施例将生物活性剂的输送与在输送到组织之前、期间和/或之后对靶组织的加热相结合。用于使用RF(即,射频)、超声波、微波和激光能量来加热组织的装置已经在美国专利申请No.11/975,474、No.11/975,383、No.11/122,263和美国临时申请No.61/099,155中公开,这些申请的全部公开内容通过参引的方式并入本文。图1和图7中示出基于球囊导管的能量输送系统的概图。药物输送涂层图1示出导管系统10的一个实施例,该导管系统10具有可释放涂层用于将药物有选择地输送到设置在腔管附近的身体组织中。导管系统10包括球囊导管12,该球囊导管12具有带近端部16和远端部18的导管本体14。导管本体14是柔性的并且限定有导管轴线15,并且可以包括一个或更多个腔管,比如导丝腔管22和扩张腔管对。导管12包括与远端部18相邻的可扩张球囊20和与近端部16相邻的壳体四。壳体四包括与导丝腔管22连通的第一连接器沈和与扩张腔管M流体连通的第二连接器观。扩张腔管M在球囊20与第二连接器观之间延伸。第一和第二连接器沈、观均可以可选地包括标准连接器,比如Luer-Loc连接器。远侧顶端可以包括一体的顶端阀以允许导丝等的通过。壳体四还容纳有电连接器38。连接器38包括多个电连接,每个电连接均经由导体36电联接至电极34。这使电极34易于被通电,电极通常由控制器40和诸如RF能量之类的电源42通电。在一个实施例中,电连接器38经由控制器40联接至RF发电机,其中控制器40允许能量有选择地引向电极34。尽管RF能量被公开,但是可以使用其他合适的能量源,比如微波能量、超声波能量或激光能量,每个均具有构造为输送期望能量的能量输送表面。参见2008年9月22日提交的同时待审的美国临时申请No.61/099,155(律师代理申请No.021830-002400US),该申请的全部公开内容通过参引的方式并入本文。在一些实施例中,控制器40可以包括处理器或者联接到处理器上以控制或记录治疗。处理器通常包括计算机硬件和/或软件,常常包括一个或更多个可编程处理器单元,这些处理器单元运行机器可读的程序指令或代码,从而用于实施本文描述的一种或更多种方法中的一些或全部。代码通常实施在诸如存储器(可选地,只读存储器、随机存取存储器、非易失性存储器等等)和/或记录介质(比如软盘、硬盘驱动器、CD、DVD、非易失性固态存储卡等等)之类的有形介质中。代码和/或关联的数据和信号还可以经由网络连接(比如无线网络、以太网、互联网、内部网等等)发送到处理器或从处理器发出,并且代码中的一些或全部还可以经由一根或更多根总线而在导管系统10的部件之间和处理器内进行传送,并且合适的标准的或专用的通信卡、连接器、电缆等等通常包括在处理器中。处理器通常构造为至少部分地通过软件代码对处理器进行编程来执行本文描述的计算和信号传送步骤,该软件代码可以写为单独的程序、一系列分开的子程序或相关程序等等。处理器可以包括标准的或专用的数字和/或模拟信号处理硬件、软件和/或固件,并且通常有足够的处理能力来执行本文所述的在病人治疗期间的计算,处理器可选地包括个人电脑、笔记本电脑、平板电脑、专用处理单元、或它们的组合。还可以包括与现代计算机系统相关联的标准或专用的输入装置(比如鼠标、键盘、触摸屏、操纵杆等)和输出装置(比如打印机、音箱、显示器等),并且可以在大范围的集中式或分布式数据处理架构中采用具有多个处理单元的处理器(或者甚至分开的计算机)。图2中更详细地示出球囊20。球囊20通常包括联接到扩张腔管M上的近侧部分30和联接到导丝腔管22上的远侧部分32。球囊20在利用流体或气体扩张时径向地扩展。在一些实施例中,流体或气体可以是不传导的和/或冷的。在一些实施例中,球囊20可以是低压力的球囊,被加压以接触动脉组织。在其他实施例中,球囊20是血管成形球囊,其能够具有较高压力以既加热动脉组织又扩展动脉腔管。球囊20可以包括顺从式或不顺从式球囊,其具有螺旋折叠以便于将球囊从径向扩展的、扩张构型再构造为小轮廓构型,特别是用于在使用后的移除。电极34安装在球囊20的表面上,其中关联的导体36从电极向近侧延伸。电极34可以以多种不同的式样或排列布置在球囊20上。该系统可以用于施加单极性或双极性能量。为输送单极性能量,相邻的电极轴向偏离以使双极性能量能够在周向相邻(轴向偏离)的电极之间被引导。在其他实施例中,电极可以布置在围绕球囊的带中以允许双极性能量在相邻的远侧电极与近侧电极之间被弓丨导。涂层35联接至球囊20并且定位在电极34之间,比如图3A和图中所示。涂层35包括待输送到靶组织中的流体或药物。可以构想的是,涂层将被热激活并且构造为当温度高于身体温度(大于37C)时从球囊表面释放。想法是具有能量输送或热量,将涂层化合物的相从固态变到液态,并且释放药物。该温度增大涉及到使用RF能量来使电极34通电。当能量增大时,电极34之间的涂层35被加热并且被热释放到局部组织48中。涂层35是耐久的或柔性的,以使得其能够和球囊20折叠而不会分离或剥离。该机构能够释放小分子或大分子药物或制药产品。药物能够为固态凝胶形式。在一些实施例中,在球囊20上的涂层35b的层可以结合有多于一种的生物活性齐U、流体或涂层(图3C),每个均具有不同的物理性能,比如相变温度。例如,在全局位置中可能存在神经的位置处,可以在较高温度的特定治疗之前在较低的熔化温度下施行麻醉齐U。在一些实施例中,如图3C中所示,可以使用不同材料的涂层,比如通过分层法。例如,第一层可以包括第一活性剂35b,该第一活性剂35b附接至靶组织48从而作为对第二层中的第二活性剂35c的受体。在一些实施例中,第二涂层35A可以用于覆盖电极34,比如图4A中所示。第二涂层35A可以是位于电极34上的绝缘涂层。当在腔管中的金属物体比如支架内部进行治疗时使用第二涂层35A,这是因为如果电极34与金属接触,则例如它们可能短路而由此终止治疗。如果电极34涂覆有具有使电极不能与金属物体短路的电性能的材料,则治疗能够甚至在与金属物体接触时继续。这允许导管系统10在诸如支架的物体内部进行治疗。如图4B中所示,第二涂层35A还可以作用为使电极34与组织48绝缘,这中断/抑制能量流过组织48,并且通过涂层35发送能量,从而仅加热电极34之间的涂层35,并将药物释放到组织48中。第二涂层35A还可以包括与涂层35不同的药物。为说明,如图4C中所示,当在位于腔管内部的金属物体(比如存在支架内再狭窄90的支架)内部或附近进行治疗时,优选地使用绝缘涂层,这是因为如果电极与金属接触,则它们可能短路并且将终止治疗。由此,在一些实施例中,优选的是使电极绝缘以避免在靠近诸如金属(图4C)的导电物体时短路,由此允许治疗在这种情况下继续。绝缘涂层还可以作用为使电极与组织绝缘,这可以在阻止能量直接流动至组织部位的同时使能量能够被引导至在球囊上的选定位置。涂层中可以包括多种药物。例如,涂层可以包括当前在药物洗脱支架中使用的药物,比如西罗莫司(sirolimus)(在Cypher支架中使用)、紫杉醇(paclitaxel)(在Taxus支架中使用)、佐他莫司(zotarolimus)(在Endeavour支架中使用)和依维莫司(everolimus)(在XienceV支架中使用)。本发明的一些实施例可以包括使用基底涂覆到球囊20上的适体52,该基底在加热时(比如当激励RF能量源时)容易破裂。适体是连结到特定靶分子上的寡核苷酸(oligonucleicacid)或肽分子。它们能够设计为非常特别地连结到各种分子靶上,比如小分子、蛋白质、核酸、以及甚至细胞、组织和有机体。适体52能够被合成以与腔管或动脉内的待治疗的期望组织48(比如斑块)相连结M。当导管系统10未被驱动并且球囊20收缩时,带有适体52的涂层35将保持在球囊20上。一旦球囊20扩张并且能量单元接通,涂层就被释放并且适体52连结到期望的组织上,比如图5中所示。在一些实施例中,适体52将配合到微珠56上,该微珠56高度接收由导管系统10发出的能量58,比如RF能量。珠56将RF能量转变为热能,该热能直接通到且仅通到与适体52相接触的组织。适体是以与抗体基本相同的方式连结到分子的表面上的核酸。适体与抗体之间的一个重要不同在于适体能够通过化学合成产生,而抗体在生物学上产生,首先是动物,然后在培养液或表达系统中产生。另一重要不同在于适体非常稳定并且对它们周围的环境(包括温度)不敏感。在一些实施例中,涂层35可以包括具有斑块软化性能的化学溶剂。乙醚、氯仿、苯和丙酮已知为脂质溶剂。此外,氨基酸、蛋白质、碳水化合物和核酸基本上不溶于这些溶剂。如果溶剂与组织加热一起使用,则该组织治疗可以需要较短时间段上的较少能量,从而减少损害健康组织的机会。如果组织包括钙沉积,则用于将脂质溶剂输送至斑块的相同过程能够用于将钙溶剂输送至钙化部位。钙高度地溶于多种有机溶剂。在这两种情况下,溶剂均利用涂层联接到球囊的表面上,该涂层在施加热或RF能量时或者在球囊扩张时破裂。在一些实施例中,涂层可以在涂层内结合有多于一种的本文所列的药物、试剂、或者流体,每种均具有不同的相变温度。例如,在全局位置中可能存在神经的位置处,能够在较高温度的特定治疗之前在较低的熔化温度下施行麻醉剂。在一些实施例中,可以使用具有不同材料的两个涂层,比如通过分层法。例如,第一层可以包括第一药物,该第一药物附接至靶组织并且作为对第二层中的第二药物的受体。在一些实施例中,涂层是非传导的以减小或消除电极之间的电短路。在一些实施例中,组织特征(tissuesignature)能够用于通过使用阻抗测量来识别治疗区域。采用腔管中径向间隔开的电极34的阻抗测量能够用于分析组织。当电流路径穿过有病组织时,以及当其穿过腔管壁的健康组织时,在成对的相邻电极之间(和/或在成对的分离电极之间)的阻抗测量可能不同。因此,在有病组织的任一侧上的电极之间的阻抗测量可以指示病变,而在成对的相邻电极之间的测量指示健康的组织。诸如血管内超声波、光学相干断层扫描等的其他表征可以用于识别待治疗的区域。本文描述的一些实施例可以用于通过选择性药物输送与利用“Q10定律”进一步增强流体或药物治疗的“平缓加热”的结合来治疗动脉粥样硬化疾病。在QlO定律下,众所周知的是生化反应的速率通常在温度增大10°C时加倍。如图6中所示,电极34围绕球囊20周向地设置。RF能量43指向与电极对34A和34C、或34A和34D、或者34A-34D的任意组合相邻的电极,从而治疗腔管50内的健康组织45和动脉硬化物质48。该布置生成通过组织的能量路径43,该能量路径43将具体治疗区域或部段中的能量或热(“组织改造能量”)输送到位于电极对之间的(“改造区域”)动脉组织中,该动脉组织具有位于电极之间的特定深度下的体积。使用电极对的不同组合可以通过使用重叠的对来减小或消除在改造区域之间的间隙。利用双极性能量来使用电极对可以避免单极性方法的一些潜在问题。有病的动脉组织48比健康的动脉组织具有更高的电阻率。通过在双极性系统中使用电极对34A、34B,组织改造能量将穿过位于改造区域中的、介于电极对之间的健康组织、有病组织、或者健康组织与有病组织的组合。可以以不同的式样或排列使用任意数目的电极对以生成多个改造区域。控制器可以施加恒定的功率、恒定的电流、或者恒定的电压,哪个具有最大优点就施加哪个。控制器40可以用1秒至180秒的大约0.25瓦到5瓦的平均功率、或者用大约4焦耳至45焦耳来激励电极。更高能量的治疗在更低的功率和更长的持续时间下进行,比如0.5瓦90秒或0.25瓦180秒。在2瓦至4瓦范围内的大多数治疗进行1秒至4秒。使用更宽的电极间距,合适的是按比例增大治疗的功率和持续时间,在该情况下,平均功率能够高于5瓦,总能量能够超过45焦耳。相似地,使用更短的或更小的电极对需要按比例降低平均功率,并且总能量能够小于4焦耳。功率和持续时间被校准以足够小而不导致严重的伤害,并且具体的是足够小而不会烧蚀血管内的有病组织48。在一些实施例中,药物的输送和平缓加热可以伴随有使用平缓膨胀的球囊血管成形术以利用膨胀压力来改造动脉,该膨胀压力处于或显著地小于标准的、未加热的血管成形术膨胀压力。其中10-16个大气压的球囊扩张压力可以例如适于具体病变区的标准血管成形术膨胀,本文描述的(通过球囊上的柔性电路电极、直接沉积在球囊结构上的电极等等)与适当电势相结合的改型的膨胀治疗可以采用从10至16个大气压,或者可以利用6个或更小的大气压的压力并且可能低至1到2个大气压的压力来实现。这种适度的膨胀压力可以(或不可以)与组织表征、调制能量、偏心式治疗(eccentrictreatment)、以及本文描述的用于治疗外周血管疾病的其他治疗方面中的一个或更多个方面结合。共价键合的牛物分子当前用于防止或永久移除增生型内膜(hyperplasticneointima)的血管内疗法是不完全有效的。尽管移除这种组织通过多个这种疗法实现,但是组织的再生频繁地发生,从而导致再狭窄和不正常的血液流动。药物洗脱支架能够抑制再狭窄的频率,但是因持久植入物、支架的存在而不能完全恢复血管功能。最近,药物凝块球囊已经显示出比药物洗脱支架更多地降低再狭窄的频率并且在治疗之后被移除,但是,需要高压力扩张以最佳地输送抗增殖和抗炎的生物分子。这些分子可以通过防止炎性细胞涌入(influx)(趋化作用)、细胞增殖而作用为防止再狭窄。这些分子还可以通过提供结构支承而作用为稳定IEL基质,由此“设定”腔管直径。现在转至图9A和图9B,其示出用于将药物输送到身体组织248的导管系统200的另一实施例。除使用生物分子235联接到球囊20上而非使用涂层以外,该系统200与上述系统10相似。生物分子235包括共价键合到球囊20的表面上的惰性部分23和热可释放的活性部分23fe。活性部分或分子23能够治疗期望的组织M8,这可以通过温度和压力来增强。生物分子的惰性部分23保持在球囊上。本文描述的实施例采用射频血管内球囊导管,其在低压扩张和将能量从球囊输送至动脉粥样硬化病变区时超热地释放共价键合到球囊上的生物分子的活性部分,由此将分子的活性部分输送到靶组织中。能量还可以包括超声波发射的能量。活性分子23作用为通过任意的方式来防止增生组织的产生,这些方式包括但不限于白细胞瘀滞(防止有丝分裂)、受体成熟(即,位于靶组织上的细胞处/上的那些受体,这些受体对于/用于趋化性而言是可附着的以/用于细胞渗透,从而促进增生组织的形成)。分子的生物活性部分23通过能量的输送(比如从电极34)从完整的生物分子235中释放,该能量输送引致局部的过高温环境。分子在过高温条件下是稳定的。分子能够防止以下功能中的一个或全部1)细胞增殖;2)细胞功能;3)受体-配体连结;4)炎性细胞对靶组织的趋化作用;以及幻原生动脉层中的细胞迁移到有病组织。通过能量介导过低温(energymediatedhypothermia)便于和/或加速分子235b涌入有病组织48内,即,从完整的生物分子的裂解、向有病组织内的迁移、以及借助于增大的孔隙度而在有病组织中的驻留均通过该过高温而加速。本发明通过如下将生物活性分子唯一地输送到有病组织内1)由过低温加速的更大速度;幻通过向有病组织赋予对于分子的更大的接收性/孔的更大完整性;和/或幻没有生物分子的惰性段(即,没有聚合物、没有惰性蛋白质序列/段、或者没有用于因惰性段保持在球囊上而在治疗部位处遗留的活性所需的辅因子)。临床应用和使用设计为减少斑块,抑制在支架或无支架部位中的再狭窄,并且^L^ffl{^ΧΤ'Ι^ΦΙΛζIfiIiW(aggressivenon-implantableendovascularprocedures)和支架植入的辅助治疗。流体输送通道图7示出导管系统100的另一实施例,所述导管系统100具有流体输送通道用于将流体有选择地输送到围绕腔管设置的身体组织。导管系统100包括球囊导管112,该球囊导管112具有带近端部116和远端部118的导管本体114。导管本体114是柔性的并且限定有导管轴线115,并且可以包括一个或更多个腔管,比如导丝腔管122和扩张腔管124。导管112包括与远端部118相邻的可扩张球囊120和与近端部116相邻的壳体129。壳体129包括与导丝腔管122连通的第一连接器1和与扩张腔管IM流体连通的第二连接器128。扩张腔管IM在球囊120与第二连接器1之间延伸。第一和第二连接器126、128均可以可选地包括标准连接器,比如Luer-Loc连接器。远侧顶端可以包括一体的顶端阀以允许导丝等的通过。壳体1还容纳有电连接器138。连接器138包括多个电连接,每个均经由导体136电联接至电极134。这允许电极134易于通电,电极通常由控制器140和诸如RF能量、微波能量、超声波能量或其他合适能量源的电源142通电。在一个实施例中,电连接器138经由控制器140联接至RF发电机,其中控制器140允许能量被有选择地引向电极134或电极对。控制器140可以包括处理器或者联接到处理器上以控制或记录治疗。图8A示出球囊120的横截面,图8B是放大截面,其示出穿过球囊120的、联接到安装在球囊120的表面上的电极134上的流体输送通道160。电极134包括从电极向近侧延伸的关联导体。电极134和流体输送通道160可以以多种不同的式样或排列布置在球囊120上。流体输送通道160可以联接到保持有流体152的流体容器或腔管162上。在一些实施例中,扩张介质可以包括待输送的流体。在一些实施例中,穿过球囊120的通道160可以填满能够被热排出以打开通道的蜡状材料164(或者能够被排出的任意其他物质)。在其他实施例中,电极134可以打开和关闭翼片以释放流体。输送通道160可以从球囊表面突起,以使得它们能够透入腔管的身体组织内。在一些实施例中,电极可以透入身体组织内。导管系统100还可以包括构造为表征身体组织的组织分析仪。在一些实施例中,如上面讨论的,电极134可以是感测电极,这能够有助于表征组织以识别待治疗的区域或不使用电阻抗断层成像。诸如血管内超声波、光学相干断层扫描等的其他表征可以用于识别待治疗的区域。电极134可以响应被表征的身体组织而被通电。如上面讨论的,本文描述的一些实施例可以用于通过选择性药物输送与进一步增强流体输送或治疗的“平缓加热”的结合来治疗动脉粥样硬化疾病。电极134可以被有选择地通电以打开或关闭流体输送通道160来治疗组织。一种方法包括通过有选择地加热电极(通过焦耳加热或其他装置,包括在相邻区域中引致升高的温度,由此热传递能够加热电极)来打开流体输送通道160,以使得会阻塞通道的材料164从固态相变到液态。另一可能的方法可以包括使用MEMS(微机电系统)以有选择地打开和/或关闭通道160。在一些实施例中,流体输送通道可以是穿过电极(灌注式电极)的通孔(vias)。通孔或小孔可以用于将流体输送到靠近电极的动脉组织。孔的直径可以小于1μm并且可以利用激光或离子束制成。孔可以在电极和球囊中制成。在一个示例中,在柔性电路中的电极垫设计为具有被电镀的通孔。柔性电路安装在球囊上并且激光或离子束用于在柔性基底和球囊中生成孔。在柔性/球囊中可以设有若干个孔用于每个电极垫。随后可以利用标准灌注球囊设备或专用设备来灌注球囊。该灌注方法还可以提供除流体输送以外的另外的优点,比如消除粘附、带走热或调节负载阻抗。在一些实施例中,可以使用具有微观级别上的流体输送通道的多孔球囊,从而允许所选取的分子借助于热来通过。多孔球囊可以具有内层、多孔外层或膜、设置在层(即,容器)之间的药物或流体分子、以及联接到外层上的电极。在低压下,分子保持在流体槽内。当施加热时,分子可以穿过多孔层,这可以以不同的方式进行。例如,当施加热时,药物分子可以变为活跃,从而提供足够的力以穿过多孔外层。在另一示例中,当向球囊施加热时,孔扩展,从而允许药物分子穿过多孔外层。分子还可以通过随热一起的渗透压穿过多孔外层或膜。在一些实施例中,治疗可以包括药物、和/或热、和/或小分子或大分子注入、和/或RFjn/或球囊膨胀、和/或过高温。在其他实施例中,可以采用业内已知的电机或机械装置以释放流体,所述电机或机械装置作为示例可以包括由控制器驱动的翼片或微流体型装置165。如图8C中所示,输送通道234可以从球囊表面突起,使得它们能够透入身体组织48(例如腔管组织)内。尽管本文公开的装置、系统和方法讨论球囊当作径向可扩展结构,但是也可以使用其他可扩展结构,比如在2007年10月18日提交的美国专利申请No.11/975,651(律师代理申请NO.021830-000540US)中描述的结构;该申请的全部公开内容通过参引的方式并入本文。热激发的渗透压在一些实施例中,可以使用在膜中的具有微观级别的流体输送通道的多孔球囊,从而允许分子借助于压力和热来通过。该概念通过使流体或药物穿过膜来将流体或药物输送到特定的地点,这很象反渗透。在反渗透中,压力用于驱动液体(比如水)通过膜,其中通路小到仅合适的分子能够穿过。在该实施例中,膜阻挡层保持药物,比如紫杉醇。在低压力下,药物分子不能穿过膜。为了通过膜释放药物,使用球囊向药物分子施加压力,通过电极对或单极电极局部地施加能量来加速药物的释放。在很多实施例中,能量输送表面包括多个间隔开的电极,比如图3A、图3B、图3C、图4A、图4B、图6、图8A、图8B、图10A、图10B、图11C、图12、图13A、图13B、图13C、图13D和图14B中所示。如图1和图7中所示的能量源可操作地联接到多个电极上以有选择地使所选取的电极通电。能量可以加热可变涂层的多个部分,其中被加热的部分可选地位于电极之间,以将生物活性剂50直接或间接地释放到靶组织中,正如图3B、图3C、图4B、图5、图9A、图9B、图10A、图10B、图11C、图12、图13C、图14A和图14B中所示。在很多实施例中,组织可以包括腔管的有病部分,并且所选取的电极被通电以有选择地加热靠近有病部分的热可变涂层。在很多实施例中,能量输送表面包括围绕可扩展球囊设置的多个电极以便当球囊在腔管内扩展时限定出靶组织中的多个改造区域。如图6中所示,电极优选地与组织相联接,并且能量可以被传送到电极与组织之间以启动生物反应。球囊通常包括球囊导管的远端部,并且在球囊上的能量输送表面通常将使用联接到导管的近端部上的能量源来激励。能量管道可以沿着导管本体在近端部与球囊之间延伸,其中能量管道常常包括电导体(用于施加RF能量等等)、光导体(比如沿着导管本体中的腔管延伸的光纤丝以传导激光或其他光能量)等等。在一些实施例中,组织特征能够用于通过使用阻抗测量来识别组织治疗区域。采用腔管内周向间隔开的电极(比如图6中所示的那些电极)的阻抗测量可以用于分析组织。当电流路径穿过有病组织时,以及当其穿过腔管壁的健康组织时,在成对的相邻电极之间(和/或在成对的分离电极之间)的阻抗测量可能不同。因此,在有病组织的任一侧上的电极之间的阻抗测量可以指示病变,而在其他成对的相邻电极之间的测量可以指示健康的组织。诸如血管内超声波、光学相干断层扫描等的其他表征可以用于识别待治疗的区域。本文描述的一些实施例可以用于通过选择性生物活性剂的输送与利用“Q10定律”以进一步增强生物活性剂治疗的“平缓加热”的结合来治疗动脉粥样硬化疾病。在QlO定律下,生化反应的速率通常在温度增大10摄氏度时加倍。在一些实施例中,电极围绕球囊周向地隔开,RF能量可以被引导到选定的电极或任一选定的电极组合。通过选定接收能量的电极,诸如图1和图7中所示的控制器可以将能量定向地施加向有病组织部位从而用于将能量施加到组织中(图6)、释放生物活性剂(图3B、图3C、图4B、图5、图8B、图9B、图10B、图11C、图12、图13C、图14B)、辅助生物活性剂的组织摄取、或者它们的任意组合。在一些实施例中,在球囊或其他导管系统表面上的涂层还可以包括一种或多种聚合物(图3A、图3B、图3C、图4B、图10A、图10B、图12、图13A、图13B、图14A、图14B)、润滑剂(例如,允许更高温度而没有粘附)、用来降低电极处的阻抗的导电化合物、用于防止对无需治疗的组织进行治疗的电绝缘化合物(图4A)、意欲迁移穿过组织的内皮细胞层以将能量运送到间质层中的导电化合物(图幻、或者它们的任意组合。在包括有球囊的实施例中,球囊还可以包括顺从性或非顺从性物质,包括它们的组合在内,如在业内公知的那样。组织感测和能量的选择方向在选择性地定向能量时,组织特征能够用于通过使用阻抗测量来识别组织治疗区域,该阻抗测量可以通过采用间隔开的电极(例如如图6中所示的在腔管内周向间隔开的电极)执行分析来进行。与电流路径穿过健康组织(比如腔管壁的那些组织)时相比,当电流路径穿过有病组织时在成对的相邻电极之间(和/或在成对的分离电极之间)的阻抗测量可能不同。因此,在有病组织的任一侧上的电极之间的阻抗测量可以指示病变,而在成对的相邻电极之间的测量可以指示健康的组织。诸如血管内超声波、光学相干断层扫描等的其他表征可以用于识别待治疗的区域。在一些实施例中,如图1和图7中所示的控制器可以包括处理器或者联接到处理器上以控制或记录治疗。处理器通常包括计算机硬件和/或软件,常常包括一个或更多个可编程处理器单元,这些处理器单元运行机器可读的程序指令或代码用于实施本文描述的一种或更多种实施例和方法中的一些或全部。代码通常实施在诸如存储器(可选地,只读存储器、随机存取存储器、非易失性存储器等等)和/或记录介质(比如软盘、硬盘驱动器、CD、DVD、非易失性固态存储卡等等)等的有形介质中。代码和/或关联的数据和信号还可以经由网络连接(比如无线网络、以太网、互联网、内部网等等)发送到处理器或从处理器发出,并且代码中的一些或全部还可以经由一根或更多根总线而在导管系统的部件之间和处理器内进行传送,并且合适的标准的或专用的通信卡、连接器、电缆等等通常包括在处理器中。处理器通常构造为至少部分地通过用软件代码对处理器进行编程以执行本文描述的计算和信号传送步骤,该软件代码可以写为单独的程序、一系列独立的子程序或相关程序等等。处理器可以包括标准的或专用的数字和/或模拟信号处理硬件、软件和/或固件,并且通常有足够的处理能力来执行本文所述的在病人治疗期间的计算,处理器可选地包括个人电脑、笔记本电脑、平板电脑、专用处理单元、或它们的组合。还可以包括与现代计算机系统相关联的标准或专用的输入装置(比如鼠标、键盘、触摸屏、操纵杆等)和输出装置(比如打印机、音箱、显示器等),并且可以在大范围的集中式或分布式数据处理架构中采用具有多个处理单元的处理器(或者甚至不同的计算机)。控制器可以被采用以通过1秒至180秒的大约0.25瓦到5瓦的平均功率、或者以大约4焦耳至45焦耳来有选择地激励电极。更高的能量治疗以更低的功率和更长的持续时间进行,比如0.5瓦90秒或0.25瓦180秒。在2瓦至4瓦范围内的大多数治疗进行1秒至4秒。使用更宽的电极间距,合适的是按比例增大治疗的功率和持续时间,在该情况下,平均功率能够高于5瓦,而总能量能够超过45焦耳。相似地,使用更短的或更小的电极对将受益于按比例地降低平均功率,并且总能量能够小于4焦耳。功率和持续时间被校准以足够小而不导致严重的伤害,并且具体的是足够小而不会烧蚀血管内的有病组织。此外,QlO定律提供使生物活性剂的释放和组织摄取与向有病组织定向输送能量相结合的可能性。能量和生物活性剂向靶组织的选择性输送在一个优选实施例中,球囊导管的球囊部分(图2)构成为包括多个周向间隔开的电极(图3A、图3B、图3C、图4A、图4B、图4C、图6、图8A、图8B、图10A、图10B、图11C、图12、图13A、图13B、图13C、图13D、图14A、图14B)。在电极之间,包括多种生物活性剂的组成物呈现在球囊的表面的至少一部分上(图3A、图3B、图3C、图4B、图9A、图10A、图10B、图11C、图12、图13B、图13C、图14A图14B)。包含多种生物活性剂的组成物还可以包括其他材料,比如聚合物、凝胶、润滑剂、导电或不导电材料等等。可以使用浸渍、喷涂、气相沉积法等等来施加球囊涂层。例如,生物活性剂可以承载在球囊涂层中,该涂层包括有在人体血液中在大约37摄氏度时稳定的聚合物基质,这在将能量施加到所选定的电极上时导致与所选定的电极相邻的球囊涂层被局部加热并且释放其组成物的成分。作为示例,图10B、图IlC和图12中所示的释放可以至少部分地由在温度高于约37摄氏度下的涂层降解或溶解而导致。如聚乳酸、聚乙醇酸、聚醋酸乙烯、聚丙烯、羟丙基甲基纤维素和甲基丙烯酸酯聚合物等的可生物降解的聚合物能够被形成以随着升高的温度而更快速地降解,由此比它们被保持在名义人体温度(大约37摄氏度)的情况下更快地释放生物活性剂。作为另一示例,释放可以至少部分地因涂层被局部加热到高于大约37摄氏度时涂层的液化而导致,其中涂层可以在温度低于大约37摄氏度时为固态或凝胶状。在又一示例中,涂层可以因PH值的改变而破裂,比如当球囊外表面被放在与诸如血液的体液相接触时。已知的是,羟丙基甲基纤维素和甲基丙烯酸酯聚合物取决于PH值的变化而快速地释放有用的生物活性化合物。由局部区域中的电压变化引起的电流动作可以用于释放紧邻通电电极的这些化合物。聚乙二醇化合物、PNIPA水凝胶、壳聚糖水凝胶、包括有壳聚糖和聚(N-异丙基丙烯酰胺)的梳型接枝水凝胶(comb-typegrafthydrogels)、以及聚(N-异丙基丙烯酰胺)聚(乙烯醇)水凝胶(poly(N-isopropylacrylamide)poly(vinylalcohol))是已知水凝胶的示例,其可以作为用于包含有生物活性剂并且通过温度、PH值或这二者共同的变化来释放生物活性剂的装置。最优选地,能量基于对靶定用于治疗的有病组织的分析和选取通过图1和图7中的控制器被有选择地引至如图6中所示的特定电极,其中电极导致与通电电极(图13C)相邻的球囊涂层(图5、图9B、图10B、图11C、图1或外层的局部加热,这进一步导致生物活性剂从球囊释放到与通电电极相邻的组织内。生物活性剂的释放剂量可以通过球囊涂层或外层中的生物活性剂浓度水平以及通过引导至有病组织的能量数量来控制。图1和图7中所示的控制器可以用于调节施加到与电极(图6)相接触的组织上的能量,调节在与通电电极相邻的球囊涂层或外层加热期间释放的生物活性剂,或者它们的组合。此外,还优选的是施加能量到靶组织上,以使得摄取到靶组织内的生物活性剂根据QlO定律和控制器设定的总能量限制进行优化。在图5中所示,本发明的一些实施例可以包括使用基底涂覆到球囊上的生物活性适体,如所述和公开的,该基底在加热或暴露于活体环境(图3B、图3C、图5、图9B、图10B、图11C、图12、图13C)时破裂。适体是以与抗体基本相同的方式连结到分子的表面上的核酸。术语“适体”来源于拉丁文适合(aptus)“适应”并且被选取为强调适体与它们的连结配体之间的锁与钥匙的连结关系。由于存在特别多样的分子形状,因此适体可以用于多种分子靶标,这些分子靶标例如包括小分子;几乎所有类别的蛋白质,包括酶、膜蛋白、病毒蛋白、细胞因子和生长因子、免疫球蛋白;以及甚至细胞;组织和生物体。例如,适体可以合成为与有病腔管或动脉中发现的斑块相连结。除它们的区分识别以外,适体比抗体具有优势,这是因为适体能够完全在试管中设计,易于通过化学合成产生,拥有期望的存储性能,并且在医疗应用中弓I致很少的或没有免疫原性。包括有生物活性适体的球囊涂层(比如图3B、图3C、图4B、图9A、图10A、图11C、图12中所示的那些中的任一个)优选地在存储、部署和扩张期间保持完整并且附接到球囊上。生物活性适体可以在多个电极通电时被释放。一旦释放,生物活性适体就可以连结到期望的组织上,这随后可以便于生物反应。在一些实施例中,如图5中所示,生物活性适体可以配合于微珠,该微珠优选地高度接收由导管系统发出的能量,比如RF能量,以及本文公开的其他形式的能量。被配合的珠可以随后将能量(比如RF能量)转变为热能,从而允许将生物活性剂集中地施加到所选定的组织部位。另外,一些实施例可以将能量施加到靶组织上,以使得靶组织内的生物活性适体的摄取根据QlO定律和控制器设定的总能量限制进行优化。一些实施例还可以包括位于诸如导管系统的球囊或其他表面上的诸如聚合物、凝胶、润滑剂、导电或不导电材料等的涂层。如图IlA和图IlC所示,本发明的一些实施例可以包括使用基底涂覆到球囊上的脂质体70(图11A),该基底在加热或暴露给如本文所述和公开的活体环境时破裂。例如,月旨质体70可以结合到聚合物或凝胶基质内(图11C),或者可以直接附接到球囊的外表面上。当施加热或暴露给活体环境时,脂质体70可以被激活并且从球囊的外表面释放(图11C)。如图IlB中所示,脂质体70是极性的,具有一个疏水端74和一个亲水端73,并且包括在细胞膜中出现的材料。脂质体以及它们的相关的反胶团可以包含水溶液的核心72(图11A),该核心72可以用于将其他生物活性剂输送到细胞中,这是因为脂质体70具有生成穿过包括细胞壁的脂质膜的路径的能力,如图IlD中所示。细胞膜通常由磷脂形成,磷脂是具有头部团和尾部团的分子。头部被吸引到水中(即,亲水性的),而由长烃链形成的尾部被水排斥(即,疏水性的)。本质上,磷脂被发现处于如图IlB所示的包括有两层(S卩,磷脂双层71)的稳定膜中。在有水时,头部被吸引到水中并且排列形成面对水的表面。尾部被水排斥,并且排列形成远离水的表面。除在脂质体50c的核心内的生物活性剂50以外,生物活性剂还可以附接到磷脂头部50a、磷脂尾部50b、或者它们的任意组合(图11A)上。在细胞中,头部的一层面对细胞的外部,被吸引到环境中的水中。头部的另一层面对细胞的内部,被吸引到细胞内的水中。一层的碳氢化合物尾部面对另一层的碳氢化合物尾部,并且该组合的结构形成双层。当膜磷脂被扰乱时,它们能够重新组合为比正常细胞小的微小球体,或者是双层或者是单层。双层结构是脂质体70。单层结构被称为胶团。在质膜中的脂质主要是磷脂酰乙醇胺(phosphatidylethanolamine)和卵磷脂(phosphatidylcholine)之类的磷脂。磷脂是两亲的,分子的碳氢化合物尾部是疏水性,其极性头部是亲水性的。当质膜在两侧面对水溶液时,其磷脂通过形成疏水尾部彼此面对的磷脂双层来适应该情况。另外,包括脂质体的一些实施例可以使用多个电极将能量施加到靶组织上,以使得生物活性剂在靶组织内的摄取根据QlO定律和在系统控制器设定的总能量限制内来确定和/或优化。一些实施例还可以包括位于导管系统的其他表面上的诸如聚合物、凝胶、润滑剂、导电或不导电材料等的涂层。在一些实施例中,如图12中所示,球囊涂层可以包括具有斑块软化性能的化学溶齐U。作为示例,乙醚、氯仿、苯和丙酮是已知的脂质溶剂。而且,氨基酸、蛋白质、碳水化合物和核酸基本上不溶于这些溶剂。如果溶剂与组织加热一起使用(图6),则该组织治疗可能需要较短时间段上的较少能量,从而减少损害健康组织的机会。如果组织包括钙沉积51,则用于将脂质溶剂输送到斑块的相同过程能够用于将钙溶剂输送至钙化部位。众所周知的是,钙高度地溶于多种有机溶剂。图12示出包括有涂覆在球囊20上的钙溶剂300的生物活性剂。在这两种情况下,溶剂均通过涂层联接到球囊的表面上,该涂层将可以通过如本文所述和公开的能量(图12)(比如热或RF能量)的施加而破裂,或者球囊涂层可以在球囊扩张时通过涂层破裂而释放溶剂,等等。在一些实施例中,球囊导管系统(图1、图7)还可以构成包括用于将光能从诸如控制器的光源传送到系统的球囊部分的装置。用于传送光能的装置可以是放置在导管本体内部的腔管内的细股柔性光纤丝。光能的输送可以是用于释放和/或激活生物活性剂的替代或附加能量源。例如,紫外线(UV)光源可以用于使位于球囊的外部分上的多种生物活性剂破裂,并且同时仅当球囊定位在活体中的期望位置处之后激活生物活性剂的期望性能。这种光能装置的许多优点可以被想到,这些优点包括减少对组织加热的依赖(尤其是在长期的或重复治疗的情况下)、避免电流传输(比如当在金属支架植入物附近操作时)、防止在期望的释放时间之前失去生物活性效应(因存储或在引导至靶组织部位期间)、用于输送可得的生物活性剂的增大的变化等等。在球囊导管系统的另一优选实施例中,球囊部分(图2)还构成为包括流体输送通道,所述流体输送通道用于将包括生物活性材料的流体选择性地输送到围绕腔管设置的身体组织中,比如在图8A中所示的那些。导管系统包括球囊导管,该球囊导管具有带近端部和远端部的导管本体,比如图7中所示的那样。导管本体是柔性的并且限定有导管轴线,并且可以包括一个或更多个腔管,比如导丝腔管和扩张腔管(图7)。导管包括与可扩张球囊、相邻的远端部和与近端部相邻的壳体。在一些实施例中,壳体包括与导丝腔管连通的第一连接器和与扩张腔管流体连通的第二连接器(图7)。扩张腔管在球囊与第二连接器之间延伸。第一和第二连接器均可以可选地包括标准连接器,比如LUER-L0C连接器。另外,远侧顶端可以包括一体的顶端阀以允许导丝等的通过。壳体还可以容纳有电连接器,该连接器可以优选地包括多个电连接,每个均经由导体电联接至电极(图8A)。如图7中所示的该布置优选地允许电极易于通电,电极通常由控制器和诸如RF能量、微波能量、超声波能量或本领域中已知的其他合适的能量源之类的电源通电。在一个这种实施例中,电连接器经由控制器(图7)联接至RF发电机,其中该控制器可以优选地允许能量被有选择地引向电极(图6、图8A)。控制器还可以包括处理器或者联接到处理器上以控制或记录治疗。如图8B中所示,流体输送通道穿过球囊并且优选地联接到安装在球囊导管系统的球囊部分的表面上的电极上。电极包括从电极向近侧延伸的关联导体。电极和流体输送通道可以以多种不同的式样或排列布置在球囊上。在一些实施例中,流体输送通道可以联接到流体容器或腔管上,该流体容器或腔管保持包括有生物活性材料的流体。在一些实施例中,扩张介质可以包含待输送的流体(图8B、图8C)。在一些实施例中,穿过球囊的通道可以填充在加热时液化或充分破裂的材料,比如蜡状材料、凝胶状材料、聚合物等等,由此当能量被施加到所选定的电极(图8B)上时材料的破裂允许流体穿过通道。作为示例,一种方法包括通过焦耳加热或其他手段(包括在相邻区域中引致升高的温度)有选择地加热多个电极来打开流体输送通道,由此热传递能够加热多个选定的电极,以使得将阻塞通道的材料从固态相变到液态(图8B)。选定电极的通电可以优选地基于组织阻抗分析,比如本文描述的那样(图6)。在其他实施例中,可以采用本领域中已知的电机或机械装置以释放流体,所述电机或机械装置作为示例可以包括翼片165或由控制器驱动的微流体装置(图8C)。如图8C中所示,输送通道可以从球囊表面突起,以使得它们能够透入身体组织(例如腔管组织)内。导管系统还可以包括构造为表征身体组织的组织分析仪。在一些实施例中,如本文描述和公开的那些,电极可以是感测电极,所述感测电极可以使用电阻抗断层成像(图6)来辅助组织的表征以识别可被治疗或不被治疗的区域。诸如血管内超声波、光学相干断层扫描等的其他表征手段可以用于识别待治疗的区域。电极可以响应被表征的身体组织而被通电。本文描述的一些实施例可以用于通过选择性药物输送与进一步增强流体治疗的“平缓加热”的结合来治疗动脉粥样硬化疾病,如本文描述的那样。在一些实施例中,如图8B和图8C中所示,流体输送通道可以是穿过电极的通路(即灌注式电极)。通路或小孔可以用于将包括生物活性材料的流体输送到接近电极的动脉组织中。通路的直径可以小于1μm并且可以使用诸如激光或离子束的方法制成。通路可以形成在电极和球囊中。作为示例,在柔性电路中的电极垫设计为具有被镀层的通路。柔性电路安装在球囊上并且激光或离子束、或者本领域中已知的其他装置用于在柔性基底和球囊中生成通路。在柔性基底/球囊中可以设有若干个通路用于每个电极垫。随后可以利用标准灌注球囊设备或专用设备来灌注球囊。使用灌注式电极还可以提供除流体输送以外的另外的优点,比如消除粘附、带走热或调节通电负载的阻抗。一些实施例还可以包括位于诸如导管系统的球囊和其他表面的表面上的诸如聚合物、凝胶、润滑剂、导电或不导电材料等等的涂层。用于在机械装置中释放引致生物活性材料的能量的另一实施例是通过将活性材料与惰性的生物降解物质压实到一起。该二元混合物何时何地需要的情况下通过暴露于机械振动(比如超声波能量)而分开。当振动破坏表面张力时,半实心压实允许流体进入并且随后快速混合和溶解。该液化过程可以在延长的时间段上发生而没有能量施加,但是能量的施加会大大增强。在图13A所示的本发明的又一优选实施例中,球囊导管的球囊部分构造为包括由选择性多孔膜80包封的球囊,该膜80如图1中所示由多个周向间隔开的电极覆盖。最优选地,球囊包括非多孔的、非顺从性的材料,其可以从本领域中众所周知的材料中选取。优选地,包括有生物活性材料的流体定位在球囊的外表面与选择性多孔膜80的内表面之间(图13B)。球囊可以被加压到足够使其与腔管组织的内表面相接触的压力、大约20个或更小的大气压、最优选地介于大约4个大气压与大约6个大气压的压力之间(图13B)。最优选地,能量通过控制器基于对靶定用于治疗的有病组织的分析和选取而被有选择地引导至特定的电极(图6),其中选择性通电的电极导致覆盖在球囊上的选择性多孔膜的与通电电极相邻的局部加热。如图13C中所示,局部加热对选择性多孔膜80’的影响,优选地与扩张球囊压力一起可以随后进一步允许膜中的孔扩展到一尺寸,该尺寸允许包括有生物活性材料的流体分子穿过孔并且进入靶组织内,比如有病动脉腔管的组织。生物活性剂的释放剂量可以通过流体中的生物活性剂浓度水平、通过由通电电极导致的加热局部膜的量、通过球囊的扩张压力、通过引至有病组织的能量的量以及它们的任意组合来控制(图13C)。此外,可能进一步优选的是将能量施加到靶组织上,以使得摄取到靶组织内的生物活性剂根据QlO定律和控制器设定的总能量限制进行优化。一些实施例还可以包括位于诸如导管系统的球囊或其他表面之类的表面上的诸如聚合物、凝胶、润滑剂、导电或不导电材料等等的涂层。在一些可替代实施例中,球囊可以构造成使得球囊的扩张介质是包括生物活性材料50的流体,如图13D中所示,以使得当球囊扩张至压力“P”时将包括有生物活性材料的流体引入到球囊的外表面与选择性多孔膜80的内表面之间。穿过球囊的壁的流体连通可以以多种方式实现,其作为示例可以包括孔隙度、多个通路等等(图13D)。这种可替代实施例的优点包括使包括有生物活性剂的流体的浓度和组成适应于有病组织的天性的能力。此夕卜,消除执行医疗手术之前对易坏生物活性剂的存储可以延长球囊导管的贮藏期限。在其他可替代实施例中,球囊可以包括多种已知顺从性材料中的任一种、或者是与球囊顺从性的组合以实现定制的球囊形状。在美国专利5,383,873中,Hoey等人已经描述使用渗透泵吸作为在活体中输送药物的手段,该专利的全部公开内容通过参引的方式并入本文。在图14A和图14B所示的又一实施例中,“渗透泵吸”的原理可以被应用到生物活性输送装置的组成、结构和使用上,比如本文描述和公开的球囊实施例。生物活性剂输送的速率通过渗透释放系统的机构确定,并且相对独立于局部微观环境,比如PH值。输送装置可以包括球囊,该球囊包括在球囊导管领域中已知类别的生物相容性聚合物基质(图14A),或者可选地,柔性基质叠层(overlay)可以放置在球囊的外表面上,其中叠层优选的为硅酮基质。多个生物活性剂50可以与生物相容性聚合物基质85结合以构成球囊结构(图14A、图14B)。球囊结构可以使用本领域中已知的任意装置形成。例如,球囊可以模制成型并且固化以生成生物活性剂/聚合物基质85构型,并且呈其在其中硬化的模具的形式。球囊的多个部分还可以覆盖有不透水的生物相容性物质86,比如聚乙烯,以使得可以选定从其中可以发生生物活性剂的释放(图14A)的区域(一个或多个)、一个或多个表面。当球囊应用于潮湿表面(比如腔管的组织)时,流体进入基质的间隙并且溶解生物活性剂(图14B)。借助于额外的流体摄取,当流体压力"Pf"克服生物活性剂/聚合物基质中的渗透压力“Po”时生物活性剂被迫离基质并且扩散通过在球囊/腔管界面处的流体薄膜。当流体压力解除时获得“泵吸”效果。流体摄取的渗透压力再次接管直到足够的流体压力积聚并且“泵吸”效果重复为止。生物活性剂被从聚合物基质带至附近的组织并且实现局部浓度而不会明显影响系统浓度(图14B)。如本文公开和描述的,球囊还可以包括多个电极,这些电极可以有选择地通电以在组织治疗部位处提供另外的效果(图14A、图14B)。在图9A所示的本发明的又一优选实施例中,球囊导管系统的球囊部分(图2)可以采用联接到球囊上的生物活性分子来替代涂层或与涂层一起使用。生物活性分子可以包括通过键合、最优选地通过共价键联接到球囊表面上的惰性部分和热可释放的活性部分。活性部分或分子能够治疗靶组织,这可以经由选择性电极通电(图6)、球囊扩张压力或它们的组合而通过温度来增强。如图9B中所示,生物活性分子的惰性部分保留在球囊上。最优选地,采用球囊导管系统,比如图1中所示的那种,其中球囊的低压力扩张使围绕球囊的外表面周向设置的多个电极与有病组织(比如动脉粥样硬化病变区)接触。如本文公开和描述的,电极可以选择性地通电以靶定有病组织(图6),以导致图9B中所示的生物活性分子的活性部分的过热释放。生物活性分子最优选地共价键合到球囊上,其中选择性的能量施加导致共价键断开,由此将分子的活性部分选择性地输送到靶组织中。分子的生物活性部分通过能量的输送从联接到球囊上的部分(例如从多个电极(图3A、图4A))释放,该能量输送引致局部的过高温环境,最优选地高于大约37摄氏度。供应给电极的能量还可以包括超声波发出的能量。最优选实施例利用在过高温条件下稳定的生物活性分子。生物活性分子可以选取为防止细胞增殖、细胞功能、受体-配体联接、炎性细胞对靶组织的趋化作用、原生动脉层中的细胞迁移到有病组织、或者它们的任意组合。生物活性分子的活性部分作用为治疗有病组织。作为示例,在动脉粥样硬化中,生物活性剂通过任意的方式来防止增生组织的产生,这些方式包括但不限于细胞瘀滞(防止有丝分裂);用于在靶组织中的细胞处或上的、促进增生组织形成的那些受体的受体成熟。通过能量调节的过高温便于和/或加快生物活性分子向有病组织内的涌入,即,从完整的生物活性分子的裂解(图9B)、向有病组织内的迁移、以及借助于增大的孔隙度而在有病组织中的驻留。另外,一些实施例可以将能量施加到靶组织上,使得摄取到靶组织内的生物活性剂根据QlO定律和控制器设定的总能量限制进行优化。一些实施例还可以包括位于诸如导管系统的球囊或其他表面的表面上的诸如聚合物、凝胶、润滑剂、导电或不导电材料等等的涂层。牛物活件剂向靶组织的诜择输送在一些实施例中,诸如图4A和图4B中所示的绝缘涂层之类的绝缘涂层可以用于覆盖围绕球囊导管系统中的球囊的表面分布的多个电极。该涂层可以用于使电极与周围的活体环境绝缘,并且可以包括任意众所周知的具有绝缘性能的生物相容性材料,并且可以使用众所周知的多种方法中的任一种来施加,其作为示例可以包括将聚对二甲苯喷涂到电极的特定表面上或者在电极的特定表面上形成硅酮阻挡层。为说明,如图4C中所示,当在位于腔管内部的金属物体(比如在其中出现支架内再狭窄的支架)内部或附近进行治疗时,优选地使用绝缘涂层,这是因为如果电极与金属接触,则它们可能短路并且将终止治疗。由此,在一些实施例中,优选的是使电极绝缘以避免在接近诸如金属(图4C)的导电物体时短路,由此允许治疗在这种情况下继续。绝缘涂层还可以作用为使电极与组织绝缘,这可以在阻止能量直接流动至组织部位的同时使能量能够被引导至在球囊上的选定位置。例如,在有病组织部位的姑息疗法期间可以优选的是避免重复的或长时间的组织加热,同时保持有选择地使电极通电、生成局部球囊加热、以及以定向的方式将生物活性剂输送到组织部位中的能力。绝缘涂层还可以包括除球囊的其他区域(图4B)以外的另外的或不同的生物活性剂。一些实施例还可以包括位于诸如导管系统的球囊或其他表面的表面上的诸如聚合物、凝胶、润滑剂、导电或不导电材料等等的涂层。在血If成型手术其月丨旬定向输送的能量禾勿活+牛齐Π本发明的一些实施例提供用于在血管成形手术期间与加热组合在一起的在腔管中输送生物活性剂的系统和方法。血管成形术是用于穿过和打开狭窄病变区(图4C)的行之有效的临床方法,其中,狭窄可以是部分的或完全的、弥散的或集中的。多种众所周知的和证实的技术被采用以穿过和打开狭窄病变区,而可扩张血管成形球囊构成其一个重要方面。加热病变组织可以获得另外的益处。例如,加热可以导致病变区的软化和萎缩,这可以进一步使病变区内的斑块能够围绕球囊容易地再构形,从而避免血管的伸展并且由此避免对血管的伤害。另外的益处可以源自于在血管成形手术和加热过程期间释放生物活性剂。用于在血管成形手术期间有选择地输送生物活性剂的方法可以包括如下步骤中的任一个,这些步骤也可以以不同的顺序进行布置压力-归因于球囊以打开腔管。诸如图13D中所示的诸如压力“P”的压力可以是10-16个大气压的标准血管成形膨胀压力或者可以是6个或更小大气压的平缓的膨胀压力,并且可能小至1到2个大气压。气囊压力可以以逐步增大的方式使用。例如,球囊可以用作初始过程的一部分以穿过和部分打开高度狭窄的病变区,或者球囊可以用作在血管成形手术之后支架已经部署就位后的后续膨胀。能量和/或生物活性剂的选择性输送可以在手术期间的任意时刻被采用,或者其可以在手术之后的任意时刻被执行,比如用于治疗支架内再狭窄(图4C),该支架内再狭窄是与治疗血管疾病相关的常见问题。加热-归因于施加的能量(图6),其可以使病变组织软化和萎缩。如在与QlO定律相关地讨论中、与生物活性剂从球囊导管系统中的释放相关的讨论中、以及如在本文描述和公开的多个实施例的讨论中,加热还可以具有与生物活性剂的输送相关的其他益处。生物活性剂-多个生物活性剂可以在手术期间被释放(图:3B、图3C、图4B、图9B、图10B、图11C、图12、图13C、图14B)。生物活性剂可以包括可以产生生物反应的任意材料。生物活性剂的示例可以包括大分子和小分子,并且可以包括但不限于抗增殖药、抗凝血酶、免疫抑制剂、脂质、抗脂质、脂质体、抗炎药、抗肿瘤药、抗血小板药、血管生成剂、抗血管生成剂、维生素、适体、抗有丝分裂药、金属蛋白酶抑制剂、NO供体、雌二醇、抗硬化剂、血管活性药、生长因子、β受体阻滞剂、AZ受体阻滞剂、激素、抑制素、抗氧化剂、膜稳定剂、钙拮抗剂、类维生素Α、肽、脂蛋白、多肽、核苷酸编码多肽、蛋白质、蛋白质药物、酶、遗传物质、细胞、能量活化剂、抗淋巴细胞、以及抗巨噬细胞物质。一些优选实施例包括能够防止或减小平滑肌细胞(SMC)增生和/或从介质迁移到内膜中的任意分子,例如神经酰胺、苏拉明、雷帕霉素和紫杉醇。组织的加热可以具有在帮助将药物输送到病变或组织内并且更深地到介质内的关键作用。其他优选实施例包括蛋白质,比如抗炎蛋白质、抗体、以及能够减小和治疗病变区内的炎症或者能够防止或减小SMC增生和迁移的其他种类的蛋白质。一些实施例可以包括将引致细胞凋亡或胀亡的蛋白质。加热可以具有在治疗期间激励这些蛋白质的关键作用,并且如果在手术期间快速地加热,则能够使组织最大时间地暴露给蛋白质。为确保蛋白质将在手术期间被激活,应当考虑到蛋白质的半衰期。蛋白质的半衰期是用于该特定蛋白质的蛋白质库的一半仍然存在和起作用的时间。用于人体蛋白质的半衰期取决于很多因素但是尤其是取决于包括温度在内的环境因素。在很高温度(大于大约50摄氏度)下的半衰期能够以秒计,而中等高温(大约42摄氏度到大约45摄氏度)能够导致小时范围内的半衰期时间。对于蛋白质洗脱球囊,蛋白质优选地维持在存储环境中,这延长半衰期。最优选地,在球囊的表面上的蛋白质在大约0摄氏度与大约37摄氏度之间的温度下是稳定的以维持它们的生物活性的效力直到暴露给活体环境和能量的施加为止。若干种蛋白质可以与称为腺苷-5,-三磷酸腺苷(Adenosine-5,-triphosphate)(ATP)分子结合。ATP是一种多功能的核苷酸,其重要的是作为细胞内能量转移的“分子流通”。在一个示例中,球囊覆盖有蛋白质而电极覆盖有ATP(或相反),并且蛋白质将通过球囊扩张被释放,而ATP将在能量从电极发出时被释放(或相反)。又一实施例可以包括带有诸如内皮细胞或任意其他类型细胞之类的细胞的球囊,该球囊可以在手术期间迁移以接近组织,比如病变组织,其中细胞可以释放蛋白质或抗体以辅助治疗炎症或防止SMC增生和迁移。施加的热也可以用于在手术期间辅助激活细胞。又一实施例包括分子或蛋白质,这些分子或蛋白质可以在附接到热休克蛋白(HSP)上时被附接或被激活。HSP是当细胞暴露给升高的温度或其他应力时其表达增大的一组蛋白质。例如,HSP27作用在平滑肌(SMC)迁移中。RF能量的施加和加热可以导致在SMC内部HSP27的升高,由此容许通过使用抗HSP27的抗体来使任意生物活性剂(比如蛋白质)直接传递给SMC。热及热的后果可以便于或增强使用其他分子或蛋白质来连结、降解、抑制或激活在病变区和介质中的其他蛋白质和细胞以防止再狭窄。在很多实施例中,使用诸如组织阻抗测量(图6)、血管内超声波、光学相干断层扫描等等的评测方法来接近和问询有病组织以识别待治疗的区域。在血管成形手术中,识别用于治疗的组织可以在血管成形手术的已知步骤之前、期间或之后的任何时间进行。在很多实施例中,能量被引导到多个通电电极(图6)上,这些电极可以进一步通过使用控制器进行调节(图1、图7)。热的发展可以用作治疗有病组织的方法,比如治疗动脉病变的组织,其中热的发展开始于包括有球囊的球囊导管系统中的位置。在一些实施例中,多个电极的通电可以用于释放用于治疗有病组织的生物活性齐U,该生物活性剂例如可以是来自用于治疗血管疾病的球囊导管系统,其中生物活性剂的这种释放可以从包括有球囊的系统中的位置开始(图3B、图3C、图4B、图9B、图10B、图11C、图12、图13C、图14B)。生物活性剂的释放可以在血管成形手术期间的任意时刻。在一些实施例中,多个电极是绝缘的以防止能量从球囊导管系统传输到接近系统的球囊部分的组织或导电物体(图4A、图4B、图4C)。这些实施例可以在血管成形手术和/或支架手术之前、期间或之后的任意时刻使用。施加到球囊(比如在图3B、图3C、图4B、图9A、图10A、图11C、图12、图14A中所示的那些中的任一个)和球囊电极(如4A、图4C)上的涂层或层可以使用用于将材料置于表面上的有效方法中的任一种进行施加,这些方法可以包括喷涂、浸渍、印制、气相沉积、离子转移等等。本文公开的装置、系统及方法可以用于将能量和/或生物活性剂有选择地输送到任意动脉或血管(例如股动脉,胭动脉,冠状动脉和/或颈动脉)中的任意位置。尽管本公开关注于技术在血管中的使用,但是该技术对于任意腔管阻塞也将是有用的。其中本发明可以被使用的其他解剖结构是食道、口腔、鼻咽腔、咽鼓管和鼓室、大脑窦、动脉系统、静脉系统、心脏、喉头、气管、支气管、胃、十二指肠、回肠、结肠、直肠、膀胱、输尿管、射精管、输精管、尿道、子宫腔、阴道管以及宫颈管。此外,可以通过本发明治疗其中优选是减小侵入的导管或内窥镜技术的其他组织。尽管附图标记既出现在所附的附图中、也出现在临时申请No.61/114,958(律师代理申请No.021830-001500US)和美国专利申请序列No.12/616,720(律师代理申请No.021830-001510US)的对应附图中,但这些附图标记通常指示对应的结构。而且,下面在表1中的附图标记识别所列的元件。表权利要求1.一种用于通过定向输送能量和/或生物活性材料来治疗靶组织的系统,所述系统包括细长导管,所述导管具有近端部和远端部以及位于所述近端部和所述远端部之间的轴线,所述导管具有在所述远端部附近的径向可扩展球囊和在所述球囊上的能量输送表面;热可变涂层,所述热可变涂层具有可释放的生物活性材料并且联接到所述球囊上,所述热可变涂层定向为当所述球囊扩展时被推靠在所述靶组织上;以及能量源,所述能量源可操作地联接到所述导管上以激励所述能量输送表面,从而加热所述热可变涂层并且将所述生物活性材料释放到所述靶组织。2.如权利要求1所述的系统,其中,所述能量输送表面包括围绕所述可扩展球囊设置的多个间隔开的电极,所述能量源可操作地联接到所述多个电极上从而有选择地使电极对通电,以加热所述可热变涂层的位于所述电极对之间的部分以将所述生物活性材料释放到所述靶组织中。3.如权利要求2所述的系统,其中,所述电极涂覆有绝缘材料。4.如权利要求1所述的系统,其中,所述球囊由选择性透过膜包封,所述选择性透过膜由多个周向间隔开的电极覆盖。5.如权利要求4所述的系统,其中,所述球囊构造为接收包括有生物活性材料的扩张介质。6.如权利要求1所述的系统,还包括构造为表征所述身体组织的组织分析仪。7.如权利要求6所述的系统,其中,响应所述被表征的身体组织,所述电极输送部分被激励以加热所述热可变涂层以释放所述生物活性材料。8.如权利要求1所述的系统,其中,在输送所述生物活性材料之前、期间和/或之后,所述电极输送部分被激励以加热所述身体组织。9.如权利要求1所述的系统,其中,所述热可变涂层包括多于一种的可释放的生物活性材料,其中每种材料可以具有不同的相变温度。10.如权利要求1所述的系统,其中,所述生物活性材料选取为如下中的至少一种抗增殖药、抗凝血酶、免疫抑制剂、脂质、抗脂质、脂质体、抗炎药、抗肿瘤药、抗血小板药、血管生成剂、抗血管生成剂、维生素、适体、抗有丝分裂药、金属蛋白酶抑制剂、NO供体、雌二醇、抗硬化剂、血管活性药、生长因子、β受体阻滞剂、AZ受体阻滞剂、激素、抑制素、抗氧化剂、膜稳定剂、钙拮抗剂、类维生素Α、肽、脂蛋白、多肽、核苷酸编码多肽、蛋白质、蛋白质药物、酶、遗传物质、细胞、化学溶剂、能量活化剂、抗淋巴细胞、抗巨噬细胞物质、或以上任何组I=IO11.如权利要求1所述的系统,其中,所述生物活性材料附接到脂质体的一部分上。12.如权利要求1所述的系统,其中,所述热可变涂层选取为如下中的至少一种聚乳酸、聚乙醇酸、聚醋酸乙烯、聚乙烯基丙烯、羟丙基甲基纤维素、甲基丙烯酸酯、或以上任何组合。13.如权利要求1所述的系统,其中,所述能量源是RF能量源,并且所述输送部分构造为发送RF能量以释放和/或激活至少一种生物活性材料。14.如权利要求1所述的系统,其中,所述能量源是光能量源,并且所述输送部分构造为发送光能以释放和/或激活至少一种生物活性材料。15.一种用于有选择地输送可释放的生物活性材料的方法,所述方法包括通过径向扩展导管的球囊而使围绕腔管设置的身体组织与热可变涂层接合,所述热可变涂层设置在所述球囊上;激励所述球囊上的表面以加热所述热可变涂层;以及响应所述加热将所述生物活性材料从所述热可变涂层释放到所述身体组织内。16.如权利要求15所述的方法,其中,所述输送部分包括围绕所述可扩展球囊设置的多个电极,并且所选定的电极对被通电以加热和液化所述热可变涂层的位于所述电极对之间的部分。17.如权利要求15所述的方法,其中,所述腔管的所述身体组织包括有病部分,并且所选定的电极对被通电以加热接近所述有病部分的所述热可变涂层。18.如权利要求15所述的方法,还包括表征所述身体组织以识别待治疗的身体组织,并且响应所述被表征的身体组织有选择地加热所述热可变涂层的部分以释放所述生物活性材料来治疗所述被识别的身体组织。19.如权利要求15所述的方法,还包括在输送所述生物活性材料之前、期间和/或之后加热所述身体组织。20.如权利要求15所述的方法,其中,所述生物活性材料选取为如下中的至少一种医疗流体、麻醉药物、治疗药物、小分子、基因医疗化合物、抗溶栓剂、容许较高温度而无粘附的润滑剂、降低电极处的阻抗的导电化合物、防止对无需治疗的组织进行治疗的电绝缘化合物、意欲迁移穿过组织的内皮细胞层以将能量运送到间质层的导电化合物、或以上的组21.如权利要求15所述的方法,其中,所述输送部分用RF能量激励以释放和/或激活至少一种生物活性材料。22.如权利要求15所述的方法,其中,所述输送部分用激光能量激励以释放和/或激活至少一种生物活性材料。23.如权利要求15所述的方法,其中,所述输送部分用超声波能量激励以释放和/或激活至少一种生物活性材料。24.如权利要求15所述的方法,其中,所述输送部分用微波能量激励以释放和/或激活至少一种生物活性材料。25.一种用于将生物活性材料输送到围绕腔管设置的身体组织的导管系统,所述系统包括细长导管,所述导管具有近端部和远端部以及位于所述近端部和所述远端部之间的轴线,所述导管具有在所述远端部附近的径向可扩展球囊和接近所述球囊用于能量传送的能量输送表面;多个生物分子,所述多个生物分子具有共价键合到所述球囊上的惰性部分和热可释放的药物部分;以及能量源,所述能量源可操作地联接到控制器上以有选择地激励所述输送部分,从而加热所述生物分子以将所述生物活性材料释放到所述身体组织中。26.一种在腔管中输送生物活性材料的方法,所述方法包括当可扩展球囊扩展时使围绕所述腔管设置的身体组织与多个生物分子接合,所述多个生物分子具有共价键合到在导管的远端部附近的所述球囊上的惰性部分和热可释放的药物部分;激励所述导管的接近所述球囊的电极输送部分以加热所述生物分子;以及响应所述生物分子的加热将所述药物部分从所述生物分子释放到所述身体组织内。27.一种用于有选择地将流体输送到围绕腔管设置的身体组织中的导管系统,所述系统包括细长的柔性导管本体,所述导管本体具有近端部和远端部;径向可扩展结构,所述径向可扩展结构在所述导管本体的远端部附近;多个流体输送通道,所述多个流体输送通道能够通过可扩展结构扩展,所述流体输送通道初始用热可变材料阻塞;以及能量源,所述能量源可操作地联接到所述流体输送通道上,从而加热和液化所述热可变材料以打开一个或更多个所述流体输送通道用于流体释放。28.如权利要求27所述的系统,其中,所述多个流体输送通道从所述可扩展结构突起以透入所述腔管的所述身体组织内。29.如权利要求27所述的系统,还包括构造为表征所述身体组织的组织分析仪。30.如权利要求27所述的系统,其中,响应所述被表征的身体组织,所述流体输送通道能够被有选择地激励以有选择地打开一个或更多个所述流体输送通道。31.如权利要求27所述的系统,其中,所述径向可扩展结构包括球囊,并且所述流体输送通道安装在所述球囊的周缘上。32.如权利要求27所述的系统,其中,所述径向可扩展结构包括可扩展篮,并且所述流体输送通道安装在所述篮的周缘上。33.如权利要求27所述的系统,其中,所述腔管的所述身体组织包括有病部分,并且所选定的电极被通电以有选择地打开接近所述有病部分的一个或更多个所述流体输送通道。34.如权利要求27所述的系统,其中,同在所述腔管中释放流体一起,所选定的电极被通电以加热所述身体组织。35.如权利要求27所述的系统,其中,所述流体选取为如下中的至少一种神经酰胺、苏拉明、雷帕霉素、紫杉醇、西罗莫司、佐他莫司、依维莫司、治疗流体、麻醉药物、治疗药物、小分子、基因治疗化合物、抗溶栓剂、润滑剂(容许较高温度而无粘附)、降低电极处的阻抗的导电化合物、防止对无需治疗的组织进行治疗的电绝缘化合物、意欲迁移穿过组织的内皮细胞层以将能量运送到间质层的导电化合物、或以上的组合。36.一种用于将流体有选择地输送到围绕腔管设置的身体组织中的导管系统,所述系统包括细长的柔性导管本体,所述导管本体具有近端部和远端部;径向可扩展结构,所述径向可扩展结构在所述导管本体的远端部附近;多个流体输送通道,所述多个流体输送通道定向为当所述可扩展结构扩展时被推靠在所述腔管的所述身体组织上;以及多个微机电系统(MEMS),所述多个微机电系统联接到所述流体输送通道上以有选择地打开一个或更多个所述流体输送通道并且将流体释放到所述腔管中。37.一种用于在腔管中有选择地输送流体的方法,所述方法包括通过径向扩展所述腔管内的结构而使围绕所述腔管设置的身体组织与多个流体输送通道接合;有选择地打开一个或更多个所述流体输送通道;以及将流体从所选定的流体输送通道释放到所述腔管内。38.如权利要求37所述的方法,其中,有选择地打开一个或更多个所述流体输送通道包括将多个微机电系统(MEMQ联接到所述流体输送通道上以有选择地打开和/或关闭所述流体输送通道。39.一种用于将药物输送到围绕腔管设置的身体组织中的导管组件,所述组件包括细长导管,所述导管具有近端部和远端部以及位于所述近端部和所述远端部之间的轴线.一入,径向可扩展多孔球囊,所述球囊具有内表面和外表面;其中,所述球囊定位在所述导管的所述远端部附近而能量输送表面接近所述球囊用于能量传送;选择性多孔膜,所述选择性多孔膜具有内表面和外表面;其中所述膜覆盖在所述球囊上;用于扩张所述球囊的扩张介质;其中,所述介质包括药物,以使得当所述球囊用所述扩张介质扩张时所述药物被引入到所述多孔球囊的所述外表面与所述膜的所述内表面之间;以及能量源,所述能量源联接到所述导管的所述近端部上,以在所述球囊在所述腔管内扩展时将能量输送到所述能量输送表面上,从而所述药物从所述球囊的所述外表面经过所述膜输送到所述身体组织中。40.一种用于将药物选择性输送到围绕腔管设置的身体组织中的导管系统,所述系统包括细长的柔性导管本体,所述导管本体具有近端部和远端部;径向可扩展球囊,所述球囊在所述导管本体的所述远端部附近,所述球囊具有内表面和外表面,所述外表面包括生物相容性基质;在所述基质上的可溶性生物活性材料涂层,所述材料定向为朝向所述组织的潮湿表面,以当所述球囊扩展抵靠所述组织并且流体压力克服渗透压时允许水分溶解所述生物活性材料并且迫使其离开所述基质。41.一种用于通过定向输送能量和/或生物活性材料来治疗靶组织的系统,所述系统包括细长导管,所述导管具有近端部和远端部以及位于所述近端部和所述远端部之间的轴线,所述导管具有在所述远端部附近的径向可扩展球囊和在所述球囊上的能量输送表面;可变涂层,所述可变涂层具有可释放的生物活性材料并且联接到所述球囊上,所述可变涂层定向为当所述球囊扩展时被推靠在所述靶组织上;以及能量源,所述能量源可操作地联接到所述导管上以激励所述能量输送表面,从而改变所述可变涂层并且将所述生物活性材料释放到所述靶组织中。全文摘要本发明公开通过定向输送能量和/或生物活性材料来治疗靶组织以达到医疗效果的系统和方法。具有球囊部分和多个电极的球囊导管系统可被激励以有选择地将能量、生物活性材料、或它们的组合输送到包括围绕腔管设置的组织在内的靶组织中。所述组织可以通过利用控制器使用能量源来施加能量、进行组织阻抗分析、以及进一步有选择地使电极通电而被靶定。文档编号A61F2/958GK102458566SQ201080026729公开日2012年5月16日申请日期2010年5月13日优先权日2009年5月13日发明者B·D·康恩,C·斯通,M·F·霍伊,M·皮瑞,R·T·古斯塔斯,R·施莱伯申请人:Vessix血管股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1