电外科手术气囊的制作方法

文档序号:1248615阅读:298来源:国知局
电外科手术气囊的制作方法
【专利摘要】一种电外科手术用气囊包括由非导电基底材料形成的可膨胀气囊体。一个或多个电极设置在气囊体的外表面上。电极可包括一对双极电极,而气囊体可具有至少一个流体出口孔,其构造成将流体供应到该对双极电极。第二可膨胀气囊体可设置在第一可膨胀气囊体内。电外科手术用气囊可纳入在导管组件内,其中,电外科手术用气囊是在导管远端处的气囊电极末端。
【专利说明】电外科手术气囊
【技术领域】
[0001]本发明涉及医疗器械,尤其是涉及电外科手术气囊,该气囊具有设置在气囊外表面上的一个或多个电极,且该气囊还具有双极电极的构造,其中,一对双极电极设置在气囊的外表面上。
【背景技术】
[0002]医学对医疗器械不断地提出各种要求,要求其能够通过狭窄通道到达体内的所要求部位,以可在该部位处进行诊断和治疗的程序。目前,诸如导管之类的细长医疗器械可通过进口点从体外延伸到体内,通过各种连接通道而到达目标部位。有时希望在目标部位处进行电外科手术。
[0003]电外科手术涉及具有电极末端的医疗器械,对该电极末端通电以执行诸如凝结、切开、干燥和烧蚀之类的手术。电能可以直流电(DC)形式或交流电(AC)形式提供。包括DC的低频电能可刺激肌肉和神经,如果操作不合适的话,有可能带来诸如心跳停止之类的不希望出现的结果。高频电能、尤其是射频(RF)范围内的电能(例如,约3千赫兹至约300千兆赫兹)不会刺激肌肉和神经,因此可更适合于对组织去髓核和作凝固。用超声波能对电极末端施加能量还可用来实施诸如凝结和组织切除之类的电外科手术。
[0004]现代的细长医疗器械可提供通向内部器官和其它组织的经皮肤的通路,可允许医生导航到体内的位于远处和狭窄的部位。为了提供如此的经皮肤的通路,这些细长的医疗器械必需满足各种要求,诸如要求的长度、足够小的外直径以允许行进到狭窄的体内通道、以及足够大的内直径以允许将要求的功能递送到远处部位。在细长医疗器械具有以RF为动力的电极末端的情形中,例如,该器械可具有足够大的内直径以将要求的能量传送到电极末端。为了将电极末端导向到身体内的目标部位,包括电极末端的细长医疗器械可通过小的套管针伸展到身体内。该细长的医疗器械在身体内前进到体内目标部位,在目标部位处对电极末端通电以执行电外科手术。细长的递送系统(例如,递送导管和/或导向丝)可用来将细长医疗器械引导通过身体而`到达目标部位。
[0005]递送RF能量的电极末端可以是单极的或双极的。单极末端包括一个电极,而接地垫电极位于病人身上。通过电极施加的能量通过病人传递到接地部,通常是接地垫。对于双极末端而言,取消了位于病人身上的接地垫电极,代之以第二电极的极性作为末端的一部分。双极末端的这些主动和返回电极通常靠近在一起定位,以确保在施加电能以后使电流直接从主动电极流到返回电极。双极末端与单极末端相比可以是有利的,因为返回电流路径仅最小地流过病人。在双极末端中,主动电极和返回电极通常都暴露出来,使得它们可接触到组织,由此,提供从主动电极通过组织到返回电极的返回电流通路。还有,双极末端的组织穿透深度有利地浅于单极末端。不管是单极还是双极,由刚性材料制成的电极末端支配着可通过小的套管针和通过体内狭窄通道的电极末端的尺寸和形状。电极末端的尺寸和形状可影响身体内远处外科手术部位处电极末端的功能和特性能力。
【发明内容】

[0006]本发明需要的是可具有在外科手术部位处达到所要求的功能和特性能力的尺寸和形状的电极末端,细长医疗器械、套管针和/或递送导管的直径引起的尺寸限制为最小或没有这样的尺寸限制。本发明满足了以上需要,并还进一步提供了相关的优点,这将通过以下对实施例的描述得以明白。
[0007]给出了电外科手术气囊和使用电外科手术气囊作为电极末端的导管组件。在一些实施例中,电外科手术气囊包括由非导电基底材料形成的可膨胀气囊体、一对设置在气囊体外表面上的双极电极以及气囊体内的至少一个流体出口孔。该流体出口孔可构造成提供从流体源流到成对双极电极的导电流体。该成对的双极电极包括呈双极电极构造的第一电极和第二电极。
[0008]在一些实施例中,导管组件包括导管和气囊电极末端。该导管包括细长的本体,该本体具有附连有气囊电极末端的远端部分。气囊电极末端包括由非导电基底材料形成的可膨胀气囊体、一对设置在气囊体外表面上的双极电极以及气囊体内的至少一个流体出口孔,该流体出口孔构造成提供从流体源流到成对双极电极的流体。
[0009]在一些实施例中,导管组件包括第一导管、第二导管和气囊电极末端。第一导管包括第一细长的本体,该第一细长的本体具有第一远端部分,而第二导管包括第二细长的本体,该第二细长的本体具有第二远端部分和内腔。第一导管设置在该内腔内。气囊电极末端附连到第一远端部分,并包括由非导电基底材料形成的可膨胀外气囊体、设置在可膨胀外气囊体内的可膨胀内气囊体,以及设置在外气囊体的外表面上的电极。
[0010]还给出了使用气囊电极末端来治疗组织的方法。 【专利附图】

【附图说明】
[0011]附图被纳入本文并形成说明书的一部分,附图显示出本发明并连同描述一起进一步用来解释本发明的原理,并能使本【技术领域】内技术人员实施和使用本发明。在附图中,相同的附图标记、字母或表现部分表示相同的或功能类似的元件。
[0012]图1示出根据本文提出的实施例的具有气囊电极末端的导管组件的立体图,该气囊电机末端呈膨胀构造。
[0013]图2示出根据本文提出的实施例的图1所示具有气囊电极末端的导管组件的立体图,该气囊电机末端呈收缩构造。
[0014]图3A示出根据本文提出的实施例的图1所示气囊电极末端的立体图,其电极设置在在气囊远端上。
[0015]图3B示出根据本文提出的实施例的图1所示气囊电极末端的立体图,其电极设置在气囊侧部。
[0016]图4示出根据本文提出的实施例的具有气囊电极末端的导管组件的立体图,该气囊电极末端呈收缩构造。
[0017]图5示出根据本文提出的实施例的具有气囊电极末端的导管组件的侧视图,该气囊电极末端呈膨胀构造。
[0018]图6示出图5所示导管组件的纵向剖视图。
[0019]图7示出图5所示导管组件的分解侧视图。[0020]图8A-8C示出根据本文提出的实施例的气囊电极末端的示例性气囊形状的立体图。
[0021]图9A示出根据本文提出的实施例的具有气囊电极末端的导管组件的侧视图,该气囊电极末端呈收缩构造。
[0022]图9B示出根据本文提出的实施例的图9A所示具有气囊电极末端的导管组件的侧视图,该气囊电极末端呈膨胀构造。
[0023]图10示出根据本文提出的实施例的具有气囊电极末端的的导管组件的侧视图,该气囊电极末端呈膨胀构造。
【具体实施方式】
[0024]除非另有定义,本文中所用的所有科技术语具有本发明所属【技术领域】内技术人员通常理解的同样的含义。在有冲突的情形中,以包括有所涉定义的本申请为准。还有,除非上下文中另有要求之外,单数术语将包括复数的情形,而复数术语将包括单数的情形。出于各种目的,本文以参见方式引入文中提及的所有出版物、专利和其它参考资料的全部内容。
[0025]文中所用的术语“发明”或“本发明”是非限制性的术语,并不意图指特殊发明的任何单一实施例,但包括如本申请中所描述的所有可能实施例。
[0026]根据本发明某些实施例,电外科手术气囊包括一个或多个集成在可膨胀气囊(SP,可由气体或液体而膨胀的气囊)外表面上的电极。气囊可由非导电性基底材料形成。电外科手术气囊可纳入到导管组件内。气囊可设置在细长医疗器械(例如,导管)的远端处,以向导管提供电外科手术功能。可连接到导管近端处的电源的导管引线可由导管承载引导到导管远端,以与电极连接。
[0027]—个或多个电极可由任何合适材料形成。例如,电极可以是附着到气囊外表面的生物相容的导线(诸如不锈钢或钛),或电极可由施加(例如,通过印刷或压印工艺)在气囊基底材料表面上的导电油墨形成。气囊表面上的导线或导电油墨电极可包括暴露的电极部分(用于外科手术部位处的组织治疗)和导线部分(由导线或导电油墨形成)。电极导线部分可钎焊到导管导线的远端部分。钎焊连接部和电极导线部分可以绝缘(例如,使用设置在导电油墨电极上的绝缘材料(诸如非导电的油墨或油漆),或使用导线电极上的绝缘护套)。用于形成电极的导电油墨可包括由非导电材料形成的油墨或油漆,例如,金属颗粒(例如,粉末状的或碎片状的银)、碳、导电的聚合物或类似材料。导电油墨还可包括顺从性材料,其允许干的导电油墨在气囊上随着气囊膨胀而散布,由此保持从导管导线到电极导线部分到暴露的电极部分的导电通路。
[0028]气囊的近端可安装在刚性环上,该刚性环被送到导管的远端,该刚性环可以是电极导线部分与导管导线钎焊的地方。气囊可由顺从性材料(例如,硅树脂、乳胶)或非顺从性材料(例如,PVC、PE、PET)制成。气囊材料相对于用于充注的流体(例如,盐水)可以是多孔的或非多孔的。气囊为了`稳定性和便于安装在导管上可具有双直径(近端较小的直径,远端较大的直径)。气囊可以是任何的构造或形状(例如,管状、球状)并可以是各种尺寸,允许气囊设计用于种种的治疗。当使气囊膨胀到给定膨胀量时的尺寸和形状时,可根据电外科手术操作中要展开的气囊处的解剖学结构部位以及病人的体形大小(例如,成年人解剖学的体形大小(即,相对较大的气囊尺寸)或婴幼儿解剖学结构的体形大小(即,相对较小的气囊尺寸))来定制。
[0029]电外科手术气囊可设有单极(单一)电极系统或双极(成双)电极系统。电极可构造成对治疗提供合适的瓦特数。例如,在某些实施例中对于双极RF治疗,电外科手术气囊的双极电极可供应有RF能量,其范围从约2至约60瓦、从约10至约50瓦从约15至约45瓦或从约10至约30瓦。在某些实施例中,电外科手术使用约18瓦的RF能量、用电外科手术气囊的双极电极来进行。结合双极系统(以及单极系统)使用的电力水平可以变化,并对特殊的应用进行优化,如果电力水平足够高的话,则电力可产生足以切开、凝结或其它方式热处理其所施加的组织的热量。这可使组织适合于各种外科手术,诸如是钝切开。可使用这里所描述的气囊电极的示范的组织治疗手术例如包括如上所述的切开和凝结以及带有凝结的钝切开、点凝结和大的组织平面的凝结。
[0030]气囊的膨胀量可调节,由此,允许在特殊病人的外科手术部位处进行个性化的尺寸调整。膨胀量(根据气囊内的内部压力(例如,PSi)进行测量)可变化,以提高气囊对组织表面的一致性,甚至在不规则的组织表面上也是如此。气囊对组织表面较大的一致性可增大电极与组织接触面积,这可导致治疗时间减少和/或对功率要求的减小。非顺从性的气囊可确保电极之间的距离,并确保膨胀的气囊尺寸和形状基本上保持在预定的构造。如果气囊是顺从性的,则膨胀量也可用来调整双极电极之间的间隙。对于RF治疗来说,双极电极之间的间隙变化可改变施加到组织的RF施加量。例如,双极电极彼此靠得越近,则施加到电极之间区域的RF能量就越聚焦,允许RF能量越深入地渗透到该区域的组织内。在某些实施例中,气囊表面上的一个或多个电极构造成递送超声波治疗。在某些实施例中,电外科手术气囊构造成提供RF的施加和超声波的施加。[0031]在某些实施例中,双极电极对设置在气囊的外表面上。电极对包括用作双极电极构造的第一极的第一电极(例如,主动电极)和用作双极电极构造的第二极的第二电极(例如,返回电极)。电极在气囊外表面上彼此分离,并通过由非导电性气囊基底材料形成的分离区域使电极彼此绝缘。滴落孔设置在气囊基底材料内。在以收缩状态被递送到治疗部位之后,可用流体对气囊进行充注。一部分流体可通过滴落孔流出。滴落孔特别地定位在气囊内,以确保流出气囊的流体被提供到成对的电极,从而将电极流体地连接在一起。在某些实施例中,用来对气囊进行充注的流体是导电性流体(例如,盐水)。气囊中的滴落孔允许导电性流体流(“滴落”)到成对的电极。通过对能量提供导电路径以在治疗部位处的成对电极之间流动,滴落下来的导电性流体便产生与治疗部位的电气偶联。此外,流体的滴落可迁移掉因通电电极耗散出的热量所引起的气囊任何热膨胀。
[0032]滴落孔可构造成仅在气囊已经膨胀到给定膨胀量后才打开而释放导电性流体。例如,正如本【技术领域】内技术人员所熟知的,通过将心轴浸在硅内,并固化该硅,便可形成顺从性的(例如,硅树脂)气囊。该心轴可构造用来形成具有不同厚度区域的气囊。例如,心轴可设置有凹座(或替代地是隆起),凹座在气囊中形成对应的隆起(或替代地,对应的凹座),它们具有比气囊其余部分大的厚度。气囊中这些隆起(或凹座)用作为销孔的部位,它们可形成为处于收缩构造中的气囊的隆起(或凹座)。相对于销孔尺寸,隆起(或凹座)的厚度应是这样:当气囊收缩时,销孔对于释放导电性流体来说过于小,但一旦气囊膨胀则打开而形成滴落孔。替代地,气囊可设有均匀的厚度(没有凹座/隆起),这样,销孔可设置在气囊内的任何地方。相对于销孔的尺寸,气囊厚度应是这样:当气囊收缩时,销孔对于释放导电性流体来说过于小,但一旦气囊膨胀则打开而形成滴落孔。作为对构造成仅在气囊膨胀后打开的滴落孔的替代或附加情形,气囊可设有构造成不管气囊是否处于膨胀状态总是打开的滴落孔,。
[0033]在某些实施例中,除了滴落孔之外,在气囊中还可设置药物递送孔,用以将药物从药物源递送到治疗部位。因此,使用电外科手术气囊,可将电外科手术的和基于药物的治疗施加到治疗部位上。
[0034]在某些实施例中,电外科手术气囊可包括两个气囊:外气囊和内气囊(参照图5-7,见下面描述的导管组件200)。外气囊可设置有位于其如上所述外表面上的一个或多个电极。内气囊(设置在外气囊的腔室内)对外气囊提供支承。内和外气囊各可由顺从性材料或非顺从性材料制成。内和外气囊各是可膨胀的,且各可用来自流体源的流体进行充注。当电外科手术气囊展开时(即,在治疗部位处进行充注),外气囊可由流体可调整地进行膨胀,而内气囊可始终用流体填充(不作调整)。
[0035]在某些实施例中,外气囊用顺从性材料制成,而内气囊用非顺从性材料制成。在某些实施例中,外气囊用非顺从性材料制成,而内气囊用顺从性材料制成。在某些实施例中,内和外气囊都用顺从性材料制成,而在某些实施例中,内和外气囊都用非顺从性材料制成。流体可以是气体(例如,空气)或液体(例如,盐水)。在某些实施例中,外气囊构造成用液体进行充注,而内气囊构造成用气体进行充注。在某些实施例中,外气囊设置有一对具有双极电极构造的电极。在如此的实施例中,外气囊可有选择地用来自流体源的流体进行充注,并具有用于将流体分配到如上所述的成对电极的滴落孔。在组织治疗过程中,内气囊可用来将电极支承和保持在外气囊上就位,而外气囊可被控制用来改变膨胀量和压力,以便控制滴落的流体量、接触表面面积和双极电极之间的距离。
[0036]在某些实施例中,导管可滑动地设置在外导管的内腔内。在某些实施例中,导管可完全地缩回到外导管内,以使收缩的气囊可驻留在外导管的内腔内,直到展开在治疗部位为止。在某些实施例中,气囊附连到内导管的远端和外导管的远端。当气囊膨胀时,内导管相对于外导管的运动可迫使气囊跑出或进入外导管的内腔,施加如此的力可改变气囊的形状和内压。该相对运动可用来控制`气囊与组织相接触的面积。该运动可用来控制滴落流体量以及对双极实施例来说双极电极之间的距离。
[0037]在某些实施例中,由导管和处于其收缩构造中的电外科手术气囊(用作为气囊电极末端)构成的导管组件可延伸通过2French大小的内腔或更大的导管。在操作中,可使用递送系统来将导管组件(包括内导管、外导管(如果提供的话)以及电外科手术气囊)递送通过套管针到达经皮肤进入的治疗部位。仅是作为一个举例而没有限制含义,递送导管通过套管针插入到特定的治疗部位。导向丝通过递送导管而被插入到治疗部位。移去递送导管,使导管组件沿着导向丝前进到治疗部位。电外科手术气囊从治疗部位处的外导管(如果有的话)延伸并进行膨胀。使气囊外表面上的电极通电,用通电的气囊电极末端接触目标组织。在电外科手术进行之后,既可同时地也可顺次地以任何次序移去导向丝和导管组件。
[0038]根据这里提出实施例的电外科手术气囊允许增大有待与目标组织接触的表面面积,使之超出典型腹腔镜器械的标准5mm套管针的直径。因此,包括该电外科手术气囊的导管组件允许将较大的电极系统递送通过较小的套管针。电外科手术气囊可允许使用电极系统来进行电外科手术,该电极系统具有在外科手术部位处达到要求功能和特性能力的尺寸和形状,由导管组件、套管针和/或递送导管的直径引起的尺寸限制为最小或没有这样的尺寸限制。
[0039]本文所描述的电外科手术气囊的实施例可用于许多种手术中,包括经皮肤的动脉瘤的治疗、通过收紧二尖瓣周围环腔来对二尖瓣回流的治疗、上和下胃肠(GI)道(例如,包括出血的血管曲张、溃疡、腐蚀毒、克罗恩病)的治疗、肠憩室病、曲张静脉、交感神经(例如,通过RF切除术的肾脏神经去除)、肿瘤、基因和干细胞治疗,以及其它外科手术,其中,治疗可包括血管闭合/凝结、组织收缩和/或组织切除。
[0040]为了进一步本文所描述的电外科手术气囊和导管组件,现将参照附图来描述示范的实施例。应该理解到,这里所披露实施例的特征可与这里披露的任何其它实施例的任何特征相组合,而不会脱离本发明的范围。因此,上述的电外科手术气囊和导管组件的任何特征可与以下参照附图所描述的示范实施例的任何特征相组合。
[0041]图1和2示出根据本文所提出实施例的示例性导管组件100。该导管组件100包括外导管110、内导管130以及气囊电极末端120。图1示出处于膨胀构造中的气囊电极末端120,图2示出处于收缩构造中的气囊电极末端120。
[0042]外导管110具有带内腔116的细长体112。内腔116可从近端部分(未示出)延伸到远端部分114。内导管130设置在外导管110的内腔116内。内导管130具有细长体132和远端部分134。在某些实施例中,气囊电极末端120附连到内导管130的远端部分134。在某些实施例中,气囊电极末端120还附连到外导管110的远端部分114。图3A示出气囊电极末端120 (没有导管110和130)。气囊电极末端120包括具有外表面124的可膨胀的气囊体122,一对双极电极156a和156b设置在该外面124上。气囊体122可由顺从性材料或非顺从性材料制成。气囊体122可由流体(例如,气体或液体)膨胀,在在某些实施例中,气囊体可用由流体源提供的导电流体 (例如,盐水)膨胀。通过设置在外导管110或内导管130内的一个或多个流体出口开口将流体分配到气囊体122的内部腔室内,可实现气囊体122的膨胀。在图1和2所示的实施例中,多个流体出口开口 136设置在内导管130的远端部分134内。内导管130可具有与开口 136连通的内腔。该内腔形成流体通道,用以将来自内导管130近端处的流体源的流体供应到流体出口开口 136。
[0043]在气囊体122附连到外导管110的实施例中,流体可通过外导管110内的流体供应内腔供应到气囊体122。从外导管110 (未示出)供应的流体可以是对通过开口 136从内导管130分配流体的替代情形或附加情形。例如,外导管110可包括内腔,该内腔与气囊体122的内部腔室连通,以用来自内腔供应的流体填充气囊体122。
[0044]气囊体122设置有多个滴落孔126,它们排出对气囊体122进行充注的一部分流体。在如上所述的某些实施例中,滴落孔126可构造成阀,当气囊体122收缩时阀保持关闭,但当气囊体122膨胀到给定的最小膨胀量和/或内压时阀则打开。
[0045]电极156a和156b可放置在气囊体122外表面124上的任何地方。在如图1、2和3A所示的实施例中,电极156a和156b设置在气囊体122的远端上(例如,半球部分164)。如此的电极放置对于需要清除堵塞血管的治疗来说是理想的,由此,位于远端处的电极可用来切除堵塞的组织。对于需要封闭血管或移去体腔侧壁处组织的治疗来说,可要求将电极156a和156b定位在气囊体122的侧边上(例如,在圆柱形部分162a处),就如图3B中所示的气囊电极末端120’的实施例中所显示的。如图3A和3B的实施例中所示,滴落孔126位于气囊体122内的延伸在电极156a和156b之间的区域内。当导电性流体被用来膨胀气囊体122并从滴落孔126滴落出来时,滴落的导电性流体退入延伸在电极156a和156b之间的区域,并提供紙连电极156a和156b的电气通道。这样,相对于电极156a和156b的放置来确定滴落孔126的布置,以确保流出滴落孔126的流体被提供到电极,以将它们流体连
接在一起。
[0046]在如图1、2、3A和3B所示的实施例中,双极电极156a和156b由导电油墨形成,并包括各自暴露的导电电极部分(在电极156a和156b处)和各自的导线部分158a和158b,它们的外表面已经被绝缘材料155覆盖。电极的导线部分158a和158b (以及绝缘材料155)从暴露的电极部分朝向近端地延伸到气囊体122的近端部分166(见图3A)。在气囊体122的近端部分166处,电极导线部分158a和158b与外导管110远端部分114处的导管引线118a和118b (在图1和2中用虚线显示)相会合。导管引线118a和118b连接到外导管110近端部分处的电源(未示出)。
[0047]在某些实施例中,刚性环140可安装在电极导线部分158a和158b上方的近端部分166的圆柱形部分166a的外部上(见图3A)。如图1和2所示,导管引线118a和118b可延伸到面向圆柱形部分166a的环140的内表面上,以与钎焊部位159处的导线部分158a和158b相会合,环140可起作基底的作用,用来将电极导线部分158a和158b钎焊到钎焊部位159处的导管引线118a和118b。在图1和2的实施例中,环140固定在外导管110的内腔116内(例如,通过过盈配合、粘合、卡扣锁定机构和/或其它已知的附连方法),由此,将气囊体122的近端部分166附连到外导管110的远端部分114。也可使用行内熟知的其它方法将气囊体的近端部分166附连到外导管110。
[0048]气囊体120的远端部分可附连到内导管130的远端部分134。如图3A所示,气囊体122可包括远端部分162,该远端部分具有朝向近端地延伸到圆柱形部分162a的半球形部分164。该半球形部分164包括位于气囊体122远端部分129b处的附连部分128。附连部分128附连到内导管130的远端部分134。在某些实施例中,附连部分128是刚性环,该环可固定在内导管外面(如图1和2所示)或固定在内导管130的内腔内。可通过过盈配合、粘结、卡扣锁定机构和/或其它已知的附连方法来实现附连部分128和内导管130之间的附连。也可使用行内熟知的其它方法将气囊体122附连到气囊体122远端部分129b处的内导管130。
[0049]在气囊体122的近端部分129a (从圆柱形部分166a朝向近端地延伸)处的是形成气囊体122的喉部123的圆柱形部分。该喉部123具有近端开口 123a,其将内导管130接纳到气囊体122的内部腔室内。喉部123可具有对应于内导管130外直径的直径。内导管130和喉部123可具有流体紧密的密封啮合,由此,允许从出口开口 136分配出的流体填充气囊体122的内部腔室,并使气囊体122膨胀。
[0050]当气囊体122膨胀时,远端部分162的圆柱形部分162a可邻接抵靠在外导管110的远端上,如图1所示。在某些实施例中,外导管110的远端部分114可用比外导管110的近端部分软的材料制造,以有助于防止远端部分114损害到气囊体122的弹性(如果用顺从性材料制成),和/或一旦膨胀则防止刺破气囊体122。
[0051]在某些实施例中,如图3A和3B所示,气囊体122具有双直径,其中,气囊体122的远端部分162具有一个直径,而近端部分166具有另一直径。在3A和3B的实施例中,从圆柱形部分162a朝向近端延伸的圆柱形部分166a具有的直径小于处于膨胀构造中的圆柱形部分162a的直径。在某些实施例中,气囊体122通过环140附连到外导管110,比如以上参照图1和2所描述的那样。在如此的实施例中,近端的圆柱形部分166a的直径可对应于环140的直径,同样地,接纳环140的内腔116的内直径也是这样。因此,圆柱形部分166a可用作气囊体122附连到外导管110的部位。圆柱形部分166a也可用作对远端圆柱形部分162a的支承基础,以对气囊体122的远端部分162提供稳定性。提高远端部分162的稳定性可帮助确保远端部分162上的电极156a和156b的暴露的电极部分可稳定地放置成与目标组织接触。在图3A和3B的实施例中,远端部分162具有比处于膨胀构造中的近端部分166大的直径。在其它实施例中,可提供双直径的气囊体,其中,远端部分162具有的直径小于处于膨胀构造中的近端部分166的直径。
[0052]图4示出根据本文提出的实施例的导管组件100’。导管组件100’是导管组件100的变体,不同之处在于,气囊体122不附连到外导管110。在图4中,具有与以前对导管组件100描述的元件类似的或相同的功能和构造的元件用相同的附图标记表示,因此,可省略或简略对如此元件的详细解释。在图4的实施例中(显示气囊体122处于其收缩构造中),气囊体122在附连部分128处(见图3A,在远端129b处)和喉部123处(见图3A,在近端129a处)附连到内导管130。刚性环140’设置在喉部123外部的周围,并用作为钎焊的基底,以使电极导线部分158a和158b和钎焊部位159处的导管引线118a和118b电气地连接(导管引线未在图4视图中示出;例如见图1和2实施例中所示的导管引线118a和118b)。在图4的实施例中,环140’将喉部123束缚到内导管130的外面上,并提供气囊体122的喉部123和内导管130的远端部分134之间的流体紧密的密封。也可使用行内熟知的其它方法来将气囊体122附连到喉部123处的内导管130。
[0053]在本文所描述的任何实施例中,内导管130可滑动地设置在外导管110的内腔116内。在图1和2的实施例中,内导管的远端部分134的至少一部分可缩回到内腔116内。在某些实施例中,内导管的远端部分134可将大部分的收缩气囊体122缩回到内腔116内,这可对气囊电极末端(例如,末端120或120’或文中描述的其它电极末端实施例)提供保护,直到在外科手术部位处展开`为止。与导管组件100相比,因为在图4的实施例中气囊体122不附连到外导管110,所以,内导管130的远端134可将全部的气囊体122缩回到外导管110的内腔116内。
[0054]气囊体122的膨胀量和内压可改变,以控制来自滴落孔126的流体的流量和帮助达到在组织表面上所要求的电极接触。此外,如果气囊体是由顺从性材料制成的话,气囊体122的膨胀量和内压可改变,以控制电极156a和156b之间的距离。可通过调整分配到气囊体122内部腔室内的流体量(即,膨胀量)(通过出口开口 136),和/或通过操纵内导管130远端部分134相对于外导管110远端部分114的位置,来控制膨胀量和内压。膨胀量的调整可独立于或结合于对内和外导管远端部分的相对位置的操纵。
[0055]如图所示,在图1、2和4的实施例中,当气囊体122膨胀时,内导管远端部分134相对于外导管远端部分114向着近端的运动,可使气囊远端部分162紧勒抵靠在外导管远端部分114上。该紧勒动作可造成一部分气囊体122坍缩到外导管内腔116内,迫使气囊体122的内部腔室内的流体流入内腔116外的气囊体122的其余部分内。附加的流体增加内压,并可增大来自滴落孔126的流体流量。对于定位在诸如图3A实施例中的气囊体远端处的电极来说,内导管130的朝向近端的运动也会将气囊体122的远端12%朝向近端地曳拉(通过它们在远端附连部分128处的附连),这致使电极156a和156b朝向远端地推向内而更靠近在一起。对于气囊体122的近端部分166附连到外导管远端部分114的实施例(见图1和2)来说,内导管远端部分134朝向远端的运动可拉长气囊体122,这可造成电极156a和156b彼此被推开,增大它们的分开距离。气囊拉长的程度可改变顺从性气囊体的形状,使得最初设置在气囊体远端的电极156a和156b移到拉长的气囊体的侧边。附加的流体可从内导管出口开口 136分配出,以使气囊体122的其余部分进一步膨胀而改变流体流量和/或电极156a和156b之间的距离。应该明白到,操纵气囊的形状(通过内和外导管的膨胀量和/或相对运动)可对不同的电极定位获得不同的结果。例如,对于诸如图3B实施例中的气囊体侧边上的电极,如果气囊体是顺从性的,则气囊体122的其余部分(未在外导管110内坍缩)可在增大的压力之下膨胀。尽管气囊体122的远端12%通过内导管130朝向近端的运动而被向近端拉动,这仍造成电极156a和156b移动分开。
[0056]滴落孔126可构造成在气囊体收缩时关闭,而在气囊体122膨胀到给定的最小膨胀量和/或内压时打开。增大膨胀量和/或内压(超过打开孔126的最小值)可增大从孔126流出的流体流量,这对于控制治疗部位处的温度是所需要的。导电流体的流量可影响组织的热特性。例如,对于RF应用来说,当流体是导电性流体时,该流体可以起作散热装置的作用,吸收和移走因电极156a和156b通电引起的过度的或不希望的热能。通过分配施加在较大表面面积上的电流,该导电性流体还可提供电力的分配,由此,限制不希望的热力集中的可能。失控的或冗余流量可提供太多的电力分配和在电极/组织接口处的冷却。另一方面,太低的流量会导致过度的热力和起弧。
[0057]此外,与焦化变干的组织不同,导电流体可用来帮助维持范围内的温度以有利于凝结组织(例如,足够热得使胶原质和大部分软组织和骨头改性的温度,然而,不会热到使组织损坏到如此程度,以致在康复过程中组织不能容易地吸收回到身体内)。造成凝结的胶原质收缩是时间和温度的函数。在100°c时,基本上瞬时出现凝结,而在更高的温度时也将发生凝结。凝结可以在低于10 0°c时发生,但凝结能更加逐渐地发生。若正在处理的组织内不存在流体(例如,盐水),那么,温度会快速地上升到100°c以上,在如此较高的温度下,组织发粘和焦化的可能性更大。正如本【技术领域】内技术人员将会认识到的,可改变所施加的时间和温度以适合于特定的用途。通过合适的软件可控制RF功率系统来获得所要求的功率递送特性。例如,在某些实施例中,控制装置或定制的发生器可构造成允许使用者选择RF功率的“脉冲”模式,由此,施加到气囊电极末端的RF功率被反复地打开和关闭。脉冲的RF功率可有助于有效地治疗厚的组织,如本【技术领域】内技术人员会认识到的。此外,在某些实施例中,可根据所施加的RF功率可控制从滴落孔126流出的流体流量,以使治疗部位处的温度保持在要求的范围内。
[0058]在本文所述的实施例中,已经提供作为示例性导电流体的盐水来填充气囊体122,并通过滴落孔126排出该流体;然而,作为替代或附加情形,也可使用其它导电流体,这与本文所提供的实施例相一致。填充气囊体122并通过滴落孔126排出的流体还可包括非导电流体(例如,去离子水和乳酸林格氏液)。使用非导电性流体仍能提供优于使用干电极的优点,这样的优点例如包括降低组织粘附到这里所披露的末端组件电极上的发生率,以及电极和/或组织的冷却。[0059]在某些实施例中,气囊电极末端120 (或120’)设置有内气囊体(设置在气囊体122的内部腔室内)。内气囊体可向气囊电极末端120提供双壁构造,该构造更能抗位移。内气囊体可用作电极末端120的支承,以提高气囊体122的稳定性,并有助于确保远端部分162上的电极156a和156b暴露的电极部分稳定地放置成与目标组织相接触。外气囊体122可调整地用流体进行膨胀,以改变其形状或内压来控制来自滴落孔126的流体流量,改变电极之间的距离和/或在组织表面上达到理想的电极接触。在某些实施例中,一旦气囊展开(不作调整),内气囊体可总是用流体填充。
[0060]现将参照图5-7来描述具有由内和外气囊形成的双壁构造的导管组件200的示范实施例。在这些附图中,具有与以前对导管组件100描述的元件类似的或相同的功能和构造的元件用相同的附图标记表示,因此,在以下的描述中可省略或简略对如此元件的详细
解释。
[0061]导管组件200包括具有外气囊体222和内气囊体272的双壁气囊电极末端220。外气囊体222具有外表面224 (—个或多个电极设置在其上,未示出)和内部腔室222a,内气囊体272设置在该内部腔室内。内气囊体272具有内部腔室272a。内气囊体272的远端在附连部分278a处附连到内导管130的远端部分134。内气囊体272的近端具有喉部273,该喉部273具有近端开口 273a,用来将内导管130的远端部分134接纳到内部腔室272a内。喉部273可具有对应于内导管130外直径的直径。内导管130和喉部273可在附连部分278b处具有流体紧密的密封啮合(见图6),由此,允许用从内导管130出口(诸如出口开口 136,见图1和2)分配出的流体来填充内气囊体272的内部腔室272a,并使内气囊体272膨胀。外气囊体222的远端也在附连部分228 (类似于以前描述的气囊体122的附连部分128)处附连到内导管130的远端部分134。外气囊附连部分228远离内气囊附连部分278a定位。外气囊体222的近端附连到外导管110的远端部分114 (类似于以前描述的导管组件100的气囊体122)。在某些实施例中,内气囊体272和外气囊体222可以独立地膨胀。流体可从内导管130中的出口(诸如出口开口 136,见图1和2)分配到外气囊体222的腔室222a内。替代地,流体可从设置在外导管110内的出口分配到外气囊体222的腔室222a内。替代地,流体可从内气囊体的流体膨胀腔室272a分配到外气囊体222的腔室222a内(例如,通过设置在内气囊体272内的流体出口孔)。
[0062]可使用环(诸如环140)将外气囊体222附连到外导管110,并且可使用环(诸如环140’)将内气囊体272的喉部273附连到内导管130。图5_7实施例中所示的附连构造仅是示范而已,应该理解到,也可使用行内熟知的其它方法将内和外气囊体272和222附连到内导管和外导管130和110。在某些实施例中,外气囊体222的近端可附连到内导管130,而不是附连到外导管110 (类似于以前描述的导管组件100’的气囊体122)。
[0063]电极、滴落孔和气囊体内的流体出口以及导管已经从图5-7的视图中略去;然而,应该理解到,导管组件200可设置有内导管130内的流体出口开口(诸如出口开口 136)和内或外导管130和110内的流体出口开口,前者出口开口用来分配流体以对内气囊体272进行充注,而后者出口开口用来对外气囊体222进行充注,如上所述。应该理解到,导管组件200也可设置有一个或多个电极,在某些实施例中,如以前所描述的,其包括双极电极对(诸如电极156a和156b)以及构造成对双极电极对提供流体的滴落孔(诸如孔126)。还应该理解到,这里所描述的气囊电极末端的任何特征(包括但不限于参照具有单一气囊体的气囊电极末端所描述的特征,诸如是参照图1、2、3A、3B就4的导管组件100和100’所描述的特征)适用于具有两个气囊体的双壁气囊电极末端(例如,导管组件200的气囊电极末端220)。因此,为简明起见,省略掉对有关双壁气囊电极末端实施例的如此特征的进一步详细描述。
[0064]以上对参照附图所描述的装置和方法的具体实施例的描述,将完全地揭示出本发明的一般特性,使得其它人员通过应用本【技术领域】内的知识,便可容易地修改和/或改适如此具体实施例的各种应用,无需进行不必要的实验,这不会脱离本发明的总的概念。例如,如上所述,气囊电极可具有任何构造或形状的气囊体(例如,管状、球形等)并可以是各种大小,允许气囊被设计用于各种治疗。图8A-8C示出根据本文提出的实施例的气囊电极末端120a、120b和120c的示范气囊形状的立体图。在这些图中,还示出了气囊电极末端120a、120b和120c与内导管130的附连。气囊电极末端120a具有带有椭圆形中心部分的气囊体,该中心部分朝向附连到内导管130并具有与内导管130相同轮廓的相对的圆柱形端部逐渐呈锥形。气囊电极末端120b类似于末端120a但具有钝的远端部分,气囊体在那里向内翻折,以附连到内导管130 (比拟于图1、2、4和5-7的实施例中的气囊体122和222与内导管130相附连的附连构造)。气囊电极末端120c具有圆柱形气囊体,该气囊体具有钝的近端的和远端的部分,那里,气囊体在其近端和远端处附连到内导管130。
[0065]还有,在本文披露的任一实施例中,生物相容的导电丝可用于一个或多个气囊电极,以代替导电油墨,反之亦然。因此,导电油墨电极156a和156b可用导电丝电极来替代。在某些实施例中,电极156a和156b的暴露电极部分可由导电油墨形成,它们的导线部分158a和158b可由导线丝形成。在气囊体的外表面上使用丝电极的实施例中,丝电极应构造成随气囊膨胀而延伸。具有丝导线部分158’的丝导线156’的示例性构造显示在图9A和9B中。如图9A所示,气囊电极末端120d具有设置在收缩气囊体122’的外表面124上的丝导线156’。丝导线部分158’具有沿着收缩气囊体122’的长度的之字形构造。如图9B所示,气囊体122’的膨胀致使丝导线部分158’纵向地延伸和伸直。因此,丝导线部分158’先前的之字形构造随气囊的膨胀而伸直。
[0066]还有,在本文所披露的任一实施例中,一个或多个气囊电极可放置在气囊体外表面上的任何地方。如以上参照图3`A和3B所描述的,在某些实施例中,一对双极电极(例如,电极156a和156b)可设置在气囊体的侧边和远端之一处的气囊体的外表面上(例如,气囊体122)。也可采用其它的电极放置方式。例如,双极电极对中的一个电极可放置在气囊体的远端,而另一电极可放置在侧边。电极放置的另一示范的构造显示在图10中。如图10所示,气囊电极末端120e包括一对设置在气囊体122’ ’的外表面124上的双极电极156a’和156b’。气囊体122’’具有延伸到锥形远端部分的圆柱形中心部分。双极电极156a’和156b’围绕气囊体122’’的这些圆柱形和锥形部分螺旋地延伸。由于如此的构造,螺旋形电极156a’和156b’的通电在近端处(在圆柱形部分)提供比在远端处(在锥形部分)大的组织治疗区域。锥形部分可在较小的组织治疗区域上提供聚焦的能量,这对于组织的钝切开可以是特别地有用。圆柱形部分可对准更大的组织治疗区域,该圆柱形部分对于组织封闭可以特别地有用。
[0067]在如图8A-8C、9A_9B和10所示的示范气囊电极末端120a_e的这些实施例中的任何实施例中,导管组件可构成气囊电极末端和内导管130。在某些实施例中,导管组件还可包括外导管110 (例如参见图1、2和5-7)。如前所描述,外导管110可构造成容纳内导管130并还容纳所有的或部分的坍缩的气囊电极末端。在外科手术目标部位处,内导管的远端部分134可从外导管的远端部分114延伸,然后,展开气囊电极末端。应该认识到,在任何的这些实施例中,可将气囊电极末端120a-e修改成也附连到外导管110 (比拟于图1、2和5-7实施例中的气囊体122和气囊体222的附连部分)。还应认识到,在任何的这些实施例中,可将气囊电极末端120a_e修改成具有双气囊构造,即,设置有内气囊体(诸如内气囊体272),其设置在图8A-8C、9A-9B和10所示的气囊体的腔室内。
[0068]还有,例如在某些实施例中,本文所述的双极气囊电极末端可用作为可选择的单极末端,可在双极模式和单极模式之间切换。在单极模式中,至少一个电极156a和156b连接到功率发生器,以递送作为单极(主动)电极的能量,在器械上没有返回电极(相反,如行内所公知的,可使用病人身上的接地垫)。单极电极系统可特别适合于切除组织。在某些实施例中,可用RF能量(包括脉冲的RF能量)、超声波能量或任何其它合适的能量提供给单极电极以切除组织。 [0069]因此,应该认识到,根据本文内容的介绍和引导,意欲将这样的改适和修改纳入到所披露实施例的等价物的含义和范围之内。应该理解到,文中所用的词语和术语仅是为了描述之用,并无限制的含义,这样,本说明书的词语和术语应由技术人员根据本文的介绍和引导予以诠释。本发明的宽度和范围不应被任何上述的示范实施例限制,而应该仅根据附后的权利要求书和其等价物来予以定义。
【权利要求】
1.一种导管组件包括: 导管,所述导管包括具有远端部分的细长本体;以及 附连到所述导管的所述远端部分的气囊电极末端,所述气囊电极末端包括: 由非导电基底材料形成的可膨胀气囊体, 一对设置在所述气囊体的外表面上的双极电极,所述一对电极包括呈双极电极构造的第一电极和第二电极,以及 所述气囊体内的至少一个流体出口孔,所述流体出口孔构造成提供从流体源流到所述一对双极电极的流体。
2.如权利要求1所述的导管组件,其特征在于,还包括第二导管,所述第二导管包括具有第二远端部分和内腔的第二细长体,其中,所述第一导管设置在所述内腔内。
3.如权利要求2所述的导管组件,其特征在于,所述气囊电极末端还包括设置在所述第一气囊体内的可膨胀的第二气囊体。
4.如权利要求3所述的导管组件,其特征在于,所述第二气囊体具有近端和远端,所述近端和所述远端各自联接到所述第一导管的所述远端部分。
5.如权利要求4所述的导管组件,其特征在于,所述第一气囊体具有近端和远端,所述远端联接到所述第一导管的所述远端部分,而所述近端联接到所述第二导管的所述远端部分。
6.如权利要求3所述的导管组件,其特征在于,所述第一气囊体构造成由来自所述流体源的流体可调整地膨胀,其中,所述流体是可导电的流体。
7.如权利要求6所述的导管组件,其特征在于,所述第二气囊体构造成由流体膨胀,其中,所述流体包括气体和液体之中的一种。
8.如权利要求3所述的导管组件,其特征在于,所述第一气囊体由顺从性材料和非顺从性材料之中的一种制成,其中,所述第二气囊体由非顺从性材料和顺从性材料之中的另一种制成。
9.如权利要求2所述的导管组件,其特征在于,所述第一导管可滑动地设置在所述第二导管的所述内腔内,其中,所述第一导管的所述远端部分构造成相对于所述第二导管的所述远端部分可运动,以使气囊电极末端的至少一部分选择性地延伸出所述第二导管的所述远端部分处的所述内腔外以及缩回到所述内腔内。
10.如权利要求9所述的导管组件,其特征在于,所述气囊体由顺从性材料制成,其中,所述顺从性材料包括硅树脂,其中,所述第一导管的所述远端部分相对于所述第二导管的所述远端部分的运动被构造成调节所述第一电极和所述第二电极之间的分开距离。
11.如权利要求2所述的导管组件,其特征在于,所述气囊体具有近端和远端,所述远端联接到所述第一导管的所述远端部分,而所述近端联接到所述第二导管的所述远端部分。
12.如权利要求1所述的导管组件,其特征在于,所述导管的所述远端部分具有至少一个流体出口,所述流体出口构造成提供从所述流体源流到由所述气囊体形成的腔室内的流体,由此用所述流体对气囊体进行膨胀。
13.如权利要求1所述的导管组件,其特征在于,所述气囊体由顺从性材料制成,其中,所述顺从性材料包括硅树脂。
14.如权利要求1所述的导管组件,其特征在于,来自所述流体源的流体是导电性流体,其中,所述导电性流体是盐水。
15.如权利要求14所述的导管组件,其特征在于,所述至少一个流体出口孔包括位于所述气囊体内的在所述一对双极电极之间延伸的区域中的多个流体出口孔,以便提供盐水的导电路径,所述导电路径电气地连接所述一对双极电极。
16.如权利要求1所述的导管组件,其特征在于,所述气囊体具有近端和远端,所述近端和所述远端各自联接到所述导管的所述远端部分。
17.如权利要求1所述的导管组件,其特征在于,所述气囊体具有侧边和远端,所述一对电极在所述气囊体的侧边和远端之一处设置于外表面上。
18.如权利要求1所述的导管组件,其特征在于,所述第一电极和所述第二电极中的至少一个由设置在形成所述气囊体的基底材料上的导电油墨形成。
19.如权利要求1所述的导管组件,其特征在于,所述第一电极和所述第二电极中的至少一个由设置在形成所述气囊体的基底材料上的导线形成。
20.一种导管组件包括: 第一导管,所述第一导管包括具有第一远端部分的第一细长本体; 第二导管,所述第二导管包括具有第二远端部分和内腔的第二细长本体,其中,所述第一导管设置在所述内腔内;以及 附连到所述第一远端部分的气囊电极末端,所述气囊电极末端包括: 由非导电基底材料形成的可膨胀外气囊体, 设置在所述可膨胀外气囊体内的可膨胀内气囊体,以及 设置在所述外气囊体的外表面上的电极。
21.如权利要求20所述的导管组件,其特征在于,还包括设置在所述外气囊体的外表面上的第二电极,所述第一电极和所述第二电极具有双极电极的构造。
22.如权利要求21所述的导管组件,其特征在于,还包括所述外气囊体内的至少一个流体出口孔,所述流体出口孔构造成提供从流体源流到所述第一和第二电极的流体。
23.如权利要求21所述的导管组件,其特征在于,所述第一导管可滑动地设置在所述第二导管的所述内腔内,其中,所述第一远端部分构造成相对于所述第二远端部分可运动,这样,所述第一远端部分的至少一部分选择性地在所述第二导管的所述远端部分处延伸出的所述内腔外以及缩回到所述内腔内,其中,所述第一远端部分相对于所述第二远端部分的运动调节所述第一和第二电极之间的分开距离。
24.一种电外科手术用气囊包括: 可膨胀的气囊体,其中,所述气囊体由非导电的基底材料形成; 设置在所述气囊体的外表面上的一对双极电极,所述一对电极包括呈双极电极构造的第一电极和第二电极;以及 所述气囊体内的至少一个流体出口孔,所述流体出口孔构造成提供从流体源流到所述一对双极电极的导电流体。
25.如权利要求24所述的电外科手术用气囊,其特征在于,所述气囊体构造成由来自所述流体源的导电流体可调整地膨胀。
26.如权利要求25所述的电外科手术用气囊,其特征在于,所述气囊体的膨胀量的调整配置成调节所述第一和第二电极之间的分开距离。
27.一种使用电能治疗组织的方法,该方法包括: 对附连到导管的远端部分的双极气囊电极末端提供射频能量,其中,所述气囊电极末端包括气囊体,所述气囊体由导电流体膨胀,并具有设置在所述气囊体的外表面上的一对双极电极,所述气囊体由非导电性基底材料形成; 用通电的所述双极气囊电极末端接触目标组织;以及 从所述气囊体内的流体出口孔排出一部分导电流体,以电气地联接设置在所述气囊体的外表面上的所述一对电极,其中,所述流体提供供能量在所述一对电极之间流动的导电通路。`
【文档编号】A61B18/14GK103732169SQ201280037221
【公开日】2014年4月16日 申请日期:2012年9月12日 优先权日:2011年9月30日
【发明者】E·F·布鲁姆, V·O·波达尼, C·M·格林劳, B·M·康利 申请人:美敦力先进能量有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1