具有多种消融模式的消融装置制造方法

文档序号:1250582阅读:430来源:国知局
具有多种消融模式的消融装置制造方法【专利摘要】公开了用于在身体组织上进行消融治疗的装置、系统和方法。一种用于治疗身体组织的示例消融装置包括离子导电性球囊和将RF能量传送至球囊的远端区段中的射频电极。球囊构造成在向远端朝消融装置的前端的方向上传输RF能量。该装置上的多个消融电极可用于提供具有不同尺寸或形状的损伤。【专利说明】具有多种消融模式的消融装置[0001]相关申请的交叉引用本专利申请要求2011年9月14日提交的美国临时申请N0.61/534,590的优先权,该申请全文以引用方式并入本文中。[0002]本申请与2011年9月14日提交的名称为“AblationDeviceWith1nicallyConductiveBalloon,”(带有离子导电性球囊的消融装置)的共同未决的美国临时申请N0.61/534,587有关。该相关申请的内容全文以引用方式并入本文中以用于所有目的。【
技术领域
】[0003]本公开大体上涉及消融装置。更具体而言,本公开涉及一种消融装置,其包括用于对身体组织进行射频消融治疗的离子导电性球囊(balloon)。【
背景技术
】[0004]心律失常的治疗有时结合插入心脏的腔室中或引入或引出心脏的血管中的一个中的消融导管进行。例如,在心房纤颤的治疗中,可使配有多个电极的射频(RF)消融导管与心脏组织接触,以用于沿着该组织形成一个或更多个消融点。在消融期间,RF发生器向电极提供电能,从而在组织中生成电场。来自该电场的所得热形成受控的损伤(lesion),其阻挡电脉冲传导通过组织并且用来促进电脉冲通过心脏内的正确电通路的正常传导。[0005]在某些导管消融步骤中,可能难以电绝缘待治疗的组织。例如,在阵发性心房纤颤的治疗中,使用具有直接接触组织的消融电极的消融导管来隔离肺静脉往往是冗长而耗时的。此外,由一些消融电极形成的消融可在组织中造成脱水,这可能导致结疤和钙化为损伤愈合口。由于消融点的离散性质,也有在消融线上留下导电组织的小间隙的可能性,该间隙可以继续引发心律失常点。【
发明内容】[0006]本公开大体上涉及包括用于对身体组织进行射频消融治疗的离子导电性球囊的消融装置。[0007]在示例I中,一种用于治疗身体组织的消融装置,包括:细长轴,其具有近端区段、远端区段和构造成接收导电流体的至少一个流体管腔;可充胀(inflatable)球囊,其联接到轴的远端区段且包括内部区段,该内部区段与该至少一个流体管腔流体连通,以用于在收缩状态和膨胀状态之间促动球囊,其中,球囊包括复合物结构,该复合物结构具有包含第一聚合物材料的近端球囊区段和包含不同于第一材料的第二聚合物材料的远端球囊区段;和至少一个电极,其位于球囊的内部空间内。[0008]在示例2中,根据示例I所述的消融装置,其中第一聚合物材料为疏水性聚合物。[0009]在示例3中,根据示例1-2中的任一项所述的消融装置,其中第二聚合物材料为亲水性聚合物。[0010]在示例4中,根据示例1-3中的任一项所述的消融装置,还包括至少一个附加的流体管腔,以用于使流体通过装置再循环。[0011]在示例5中,根据示例1-4中的任一项所述的消融装置,其中,在膨胀状态下,球囊为圆锥形的。[0012]在示例6中,根据示例1-5中的任一项所述的消融装置,其中球囊的远端区段为内褶的。[0013]在示例7中,根据示例1-6中的任一项所述的消融装置,其中球囊的远端区段为半渗透的。[0014]在示例8中,根据示例1-7中的任一项所述的消融装置,其中球囊的厚度沿球囊的长度从近端球囊区段向远端球囊区段渐缩。[0015]在示例9中,根据示例1-8中的任一项所述的消融装置,其中球囊包括多层结构。[0016]在示例10中,根据示例1-9中的任一项所述的消融装置,还包括联接到球囊的远端区段的温度感测元件。[0017]在示例11中,根据示例1-10中的任一项所述的消融装置,还包括联接到球囊的远端区段的至少一个心电图传感器。[0018]在示例12中,根据示例1-11中的任一项所述的消融装置,还包括弹簧促动的柱塞组件,该弹簧促动的柱塞组件构造成在收缩状态下偏置球囊。[0019]在示例13中,根据示例12所述的消融装置,其中柱塞组件包括柱塞机构和构造成抵靠球囊偏置柱塞机构的弹簧。[0020]在示例14中,根据示例13所述的消融装置,其中柱塞机构包括柱塞轴和非创伤性顶端。[0021]在示例15中,根据示例14所述的消融装置,其中柱塞轴可滑动地设置在导管轴和电极内。[0022]在示例16中,一种用于治疗身体组织的消融装置包括:细长轴,其具有近端区段、远端区段和构造成接收导电流体的至少一个流体管腔;可充胀球囊,其联接到轴的远端区段且包括内部区段,该内部区段与该至少一个流体管腔流体连通以用于在收缩状态和膨胀状态之间促动球囊;至少一个电极,其位于球囊的内部空间内;和弹簧机构,其构造成在收缩状态下偏置球囊。[0023]在示例17中,一种形成消融导管的球囊的方法,该球囊具有近端区段和远端区段,该方法包括:罩住球囊的近端区段;用电离辐射源照射球囊的远端区段;蚀刻球囊以形成穿过球囊的远端区段的多个微孔;和将球囊固定到导管。[0024]在示例18中,根据示例17所述的方法,其中电离辐射源包括氩离子源。[0025]在示例19中,根据示例17-18中的任一项所述的方法,其中球囊的近端区段包含疏水性聚合物,并且球囊的远端区段包含亲水性聚合物。[0026]在示例20中,根据示例17-19中的任一项所述的方法,其中微孔的孔尺寸在直径方面在约0.1微米至5微米之间。[0027]在示例21中,一种用于消融身体组织的系统包括:RF发生器,其包括可在第一位置和第二位置之间操作的切换机构;流体源,其包括导电流体的供应源;和消融装置,该消融装置包括:细长轴,其具有近端区段、远端区段和至少一个流体管腔;可充胀球囊,其联接到轴的远端区段且包括内部区段,该内部区段与流体源流体连通,以用于在收缩状态和膨胀状态之间促动球囊;第一电极,其设置在球囊的内部空间内且电联接到RF发生器,第一电极构造成用于当在第一位置操作时通过球囊且向身体组织中供应第一RF电场;第二电极,其联接到细长轴的远端部分且电联接到RF发生器,第二电极构造成用于当在第二位置操作时直接向组织中供应第二RF电场。[0028]在示例22中,根据示例21所述的系统,其中球囊包括复合物结构,该复合物结构具有包含疏水性聚合物材料的近端球囊区段和包含亲水性聚合物材料的远端球囊区段。[0029]在示例23中,根据示例21-22中的任一项所述的系统,其中,在膨胀状态下,球囊为圆锥形的。[0030]在示例24中,根据示例21-23中的任一项所述的系统,其中球囊的远端区段为内褶的。[0031]在示例25中,根据示例21-24中的任一项所述的系统,其中球囊的远端区段为半渗透的。[0032]在示例26中,根据示例21-25中的任一项所述的系统,其中球囊的厚度沿球囊的长度从近端球囊区段向远端球囊区段渐缩。[0033]在示例27中,根据示例21-26中的任一项所述的系统,其中球囊包括多层结构。[0034]在示例28中,根据示例21-27中的任一项所述的系统,还包括弹簧促动的柱塞组件,该弹簧促动的柱塞组件构造成在收缩状态下偏置球囊。[0035]在示例29中,一种用于在患者的身体上进行消融治疗的方法包括:将消融装置推进到目标身体组织区域,该消融装置包括联接到细长轴的可充胀球囊、设置在球囊的内部空间内的第一电极、和位于球囊外部的第二电极;将导电流体注入球囊的内部区段中并使球囊在身体内从收缩状态充胀至膨胀状态;选择性地激励(energize)第一电极并在球囊内部内生成第一RF电场;使用第一RF电场在身体组织内形成至少一个消融损伤;选择性地激励第二电极并生成第二RF电场;和使用第二RF电场在身体组织内形成至少一个消融损伤。[0036]在示例30中,根据示例29所述的方法,还包括RF发生器,该RF发生器包括切换机构,并且其中选择性地激励第一或第二电极包括在第一和第二切换位置之间操作切换机构。[0037]在示例31中,根据示例29-30中的任一项所述的方法,其中使用第一RF电场在身体组织内形成至少一个消融损伤包括在远离细长轴的位置处在身体组织中形成损伤。[0038]在示例32中,根据示例29-31中的任一项所述的方法,其中使用第一RF电场在身体组织内形成的至少一个消融损伤大于使用第二RF电场在身体组织内形成的至少一个消融损伤。[0039]在示例33中,一种用于治疗身体组织的消融装置包括:细长轴,其具有近端区段、远端区段和构造成接收导电流体的至少一个流体管腔;可充胀球囊,其联接到轴的远端区段且包括内部区段,该内部区段与该至少一个流体管腔流体连通,以用于在收缩状态和膨胀状态之间促动球囊;和至少一个电极,其位于球囊的内部空间内,该至少一个电极构造成用于将RF电场传输通过球囊并进入与球囊接触的身体组织内;其中球囊构造成在向远端朝消融装置的前端的方向上传输RF电场。[0040]在示例34中,根据示例33所述的消融装置,其中球囊包括复合物结构,该复合物结构具有包含疏水性聚合物材料的近端球囊区段和包含亲水性聚合物材料的远端球囊区段。[0041]在示例35中,根据示例33-34中的任一项所述的消融装置,其中,在膨胀状态下,球囊为圆锥形的。[0042]在示例36中,根据示例33-35中的任一项所述的消融装置,其中球囊的远端区段为内褶的。[0043]在示例37中,根据示例33-36中的任一项所述的消融装置,其中球囊的远端区段为半渗透的。[0044]在示例38中,根据示例33-37中的任一项所述的消融装置,其中球囊的厚度沿球囊的长度从近端球囊区段向远端球囊区段渐缩。[0045]在示例39中,根据示例33-38中的任一项所述的消融装置,其中球囊包括多层结构。[0046]在示例40中,根据示例33-39中的任一项所述的消融装置,还包括弹簧促动的柱塞组件,该弹簧促动的柱塞组件构造成在收缩状态下偏置球囊。[0047]虽然公开了多个实施例,但从示出和描述本发明的示例性实施例的下列详细描述,本发明的其他实施例对于本领域技术人员将变得显而易见。因此,附图和详细描述将被视为本质上为示例性的,而非限制性的。【专利附图】【附图说明】[0048]图1是根据示例性实施例的消融装置的示意图;图2是局部剖视图,示出了处于收缩状态的图1的消融装置的远端区段;图3是另一个局部剖视图,示出了处于膨胀状态的图1的消融装置的远端区段;图4是流程图,示出了用于制造消融装置的多孔球囊的示例方法;图5是透视图,示出了根据示例性实施例的示例复合物球囊;图6是局部剖视图,示出了根据另一个示例性实施例的消融装置的远端区段;图7是局部剖视图,示出了根据另一个示例性实施例的消融装置的远端区段;图8是局部剖视图,示出了根据另一个示例性实施例的消融装置的远端区段;图9是根据另一个示例性实施例的消融装置的示意图;且图10是使用图9的消融装置进行心脏消融手术的示例性方法的流程图。[0049]虽然已经以举例方式在附图中示出并在下文中详细描述了具体实施例,但是本发明能够采用各种修改和替代形式。然而,本发明不将本发明限制于所描述的特定实施例。相反,本发明旨在涵盖落在由所附权利要求限定的本发明的范围内的所有修改、等同物和备选方案。【具体实施方式】[0050]图1是根据示例性实施例的消融装置10的示意图。如图1所示,消融装置10包括细长轴12,细长轴12具有近端区段14、远端区段16和在近端区段14与远端区段16之间延伸穿过轴12的至少一个管腔18。联接到轴12的远端区段16的可充胀的消融球囊20可在身体内的目标位置处(例如,在心血管内)充胀并且与待治疗的身体组织接触。在一些实施例中,并且如下文进一步所述,位于球囊20的内部部分内的RF电极组件22生成RF电场,该RF电场可用于在组织内形成受控的损伤。例如,在阵发性心房纤颤的治疗中,球囊20和RF电极22可用于在肺静脉内进行电隔离,以防止电信号在心脏左侧内的异常传导。消融装置10也可用于治疗其他类型的心律失常和/或体内的心血管疾病。消融装置10也可用于治疗通常由消融装置处理的其他病症。[0051]联接到轴12的近端区段14的手柄24可由临床医生用于将远端区段16操控和操纵到身体内的目标部位,以用于进行消融。在一些实施例中,手柄24包括与导电流体30的供应源流体连通的流体端口26和阀门28。在一些实施例中,例如,流体30可包括盐水或盐水和荧光镜造影介质的溶液,该造影介质为导电的和生物相容的。在消融步骤期间,加压流体30可经由流体管腔18输送到球囊20的内部,从而造成球囊20充胀,同时也在电极22和与待治疗的身体组织接触的球囊20的部分之间形成电通路。在一些实施例中,可提供多个流体端口以使流体30通过作为闭环系统一部分的消融装置10再循环,以用于控制球囊20内的温度。[0052]在一些实施例中,消融装置10还包括操纵机构32,其可用来在身体内机械地操纵轴12的远端区段16。在某些实施例中,例如,操纵机构32包括手柄24上的滑块或杠杆机构,其可由临床医生促动以接合位于轴12内的多个操纵线。在装置10向身体内的目标区域传送期间,操纵机构32可接合以偏转轴12的远端区段16,从而允许临床医生更好地将装置10导航通过血管系统。[0053]RF发生器34构造成将射频能量供应至电极组件22。在一些实施例中,装置10构造成以双极模式操作,其中由RF发生器34供应的消融能量从电极组件22的一个电极流到电极组件22的另一个电极或者在沿装置10(例如,沿轴12的远端区段16)的不同位置处提供。在其他实施例中,装置10构造成以单极模式操作,其中无关电极(indifferentelectrode)(例如,电极贴片)附连到患者的背部或其他外部皮肤区域,并且来自RF发生器34的消融能量从组件22的一个电极流到该无关电极。[0054]图2是局部剖视图,更详细地示出了图1的消融装置10的远端区段16。如在图2中进一步可见,并且在一些实施例中,电极组件22包括位于球囊20的内部空间38内的至少一个RF电极36。RF电极36牢固地固定到轴12的远端40(例如,在电极36的两端处使用合适的粘合剂),并且电联接到RF发生器34。在图2的实施例中,RF电极36包括由诸如钼的适当地导电的金属制成的金属管状部件,并且经由位于轴12内的多个导体线(未示出)电联接到RF发生器34。然而,RF电极36的构造可与图示构造不同。例如,RF电极36可包括线圈、环、扁平带或其他合适的形状。在一些实施例中,电极组件22可包括多个电极36,以或者作为双极RF消融系统的一部分,或者作为带有多个电极的单极系统的一部分。[0055]装置10包括至少一个流体管腔,以用于将加压流体30传输到球囊20的内部空间38。在图2的实施例中,装置10包括中央流体管腔18,其纵向延伸穿过轴12且穿过RF电极36的一部分。在一些实施例中,流体管腔18向远端终止于围绕RF电极36周向设置的多个充胀端口42处。在一些实施例中,相同的流体管腔18可用于对球囊20进行充胀和泄放两者。在其他实施例中,单独的流体管腔用于对球囊20进行充胀和泄放。此种构造可提供流体在球囊20内的连续灌注和排放,以维持球囊20内受控的操作压力和温度两者。在一个实施例中,轴12内的多个流体管腔可允许导电流体30在消融步骤期间通过装置10再循环。流体30也可包括造影介质以有利于球囊20在荧光镜下的可视化。[0056]在图2的实施例中,球囊20在轴远端40处或附近联接到轴12的远端区段16,并且能够从初始收缩位置充胀至第二膨胀位置,收缩位置具有方便装置10行进通过身体的低轮廓,第二膨胀位置接触并接合待消融的身体组织。在某些实施例中,球囊20具有由不同聚合物材料形成的复合物结构,该结构有助于将RF能量从RF电极36导向和聚焦到位于球囊20的远端44处或附近的身体组织中。在一个实施例中,例如,复合物球囊20包括由疏水性聚合物制成的近端非导电区段46a和由亲水性聚合物制成的远端导电区段46b。非导电区段46a的聚合物可以是非离子导电性的,并且远端区段46b的聚合物可以是离子导电性的。在一些实施例中,例如,复合物球囊结构可包括由诸如TECOPHILIC60D-35?的疏水性聚氨酯材料制成的近端区段46a和由诸如TECOPHILIC60D?的亲水性聚氨酯材料制成的远端区段46b,这两种材料均能够从ThermedicsPolymerProducts(Woburn,Massachusetts)获得。TECOPHILIC?是聚醚基脂族聚氨酯并且呈现出足够的弹性,以便能够在球囊20充胀时显著地伸展超出其平衡尺寸。其他聚合物材料也可用来赋予近端区段46a和远端区段46b不同的亲水特性。如本文所用,术语“亲水性”表明聚合物在与水溶液接触时能吸收一定量的水,同时仍保持其结构完整性。[0057]当用导电流体30充胀时,由于在将RF能量供应至RF电极36时流体30的离子内容物,复合物球囊20的远端区段46b通过水合而呈现导电性。结果,电流传输通过流体30并进入与球囊20的远端区段46b接触的组织中。在一些情况下,电流行进穿过亲水性的球囊材料的所有区域,但不行进穿过疏水性或非导电性的球囊的区域。[0058]复合物球囊结构可使用多种不同技术形成。例如,球囊20的不同区段46a、46b可通过在具有限定的尺寸和形状的心轴上单独地浸涂球囊20的各个区段而形成。球囊20也可诸如通过在中空模具中旋涂或通过注射或吹塑而使用其他技术形成。此处结合图4进一步讨论用于构建具有可渗透的或半渗透的远端区段的复合物球囊结构的另一种示例方法。[0059]在一些实施例中,装置10还包括可用来感测球囊20内的流体30的温度的一个或更多个温度感测元件。在某些实施例中,并且如图2所示,诸如热电偶或热敏电阻器的温度感测元件48在远端区段46b处联接到球囊20的内表面50。在其他实施例中,温度感测元件48在远端区段48处联接到球囊20的外表面52,或者联接到球囊20的另一部分或轴12。在另一个实施例中,温度感测元件48包封在球囊材料的内部内。在一些实施例中,多个温度感测元件可联接到球囊的内表面50和/或外表面52并且/或者联接到轴12,以用于在多个位置处感测温度。[0060]在一些实施例中,温度感测元件48感测包含在球囊20的内部区段38内的流体30的温度,并且连接到位于身体外部的温度感测电路(例如,基于温度计)。在消融期间,RF发生器34可被控制,以便将包含在球囊20中的流体30的温度调整至所需温度。在其中使用多个流体端口将流体通过装置10再循环的那些实施例中,流体的流动也可基于来自温度感测元件48的反馈来控制,以将球囊20内的流体维持在特定温度或温度范围内。在各种实施例中,温度传感器位于球囊的外表面上和/或球囊的壁内。此种构造可测量经受消融的组织的温度。在本文引用的这些或其他实施例中,消融治疗的强度(例如,功率)可基于测量的温度自动地调节,以限制经受消融的组织的温度。此种构造可提供针对蒸汽爆裂的保护,其中,否则可能由在温度达到100°C或更高时转变为蒸汽的组织中的水形成组织中的小的气体性破裂。[0061]联接到球囊20的一个或更多个心电图传感器也可在一些实施例中用来感测心脏中或附近的电活动。例如,在图2的实施例中,心电图传感器54在远端区段46b处联接到球囊20的内表面50,从而允许临床医生监测目标消融部位处任何电活动的存在。在其他实施例中,心电图传感器54在远端区段46处联接到球囊20的外表面52,或者联接到球囊20的另一部分或轴12。在另一个实施例中,心电图传感器52包封在球囊材料的内部内。在一些实施例中,多个心电图传感器可联接到和/或包封在球囊20内和/或联接到轴12,以用于在多个位置处感测电活动。[0062]弹簧促动的柱塞组件56可用来将球囊20保持在收缩的低轮廓位置,以有利于在使球囊20在所需的目标组织位置处充胀之前将装置10传送通过身体。在图2的实施例中,组件56包括柱塞机构58和弹簧60。弹簧60位于轴12的内部内靠近RF电极36处,并且构造成沿朝球囊20的远端44的远端方向机械地偏置柱塞机构58,从而将球囊20保持在伸出位置,直到充胀。[0063]在一些实施例中,柱塞机构58包括柱塞轴62,其可滑动地设置在球囊20的内部区段38内且通过RF电极36的一部分。柱塞轴62的远端包括非创伤性顶端64,当柱塞机构58被向远端充分接合时,顶端64构造成接触并接合球囊20的远端44,从而造成球囊20收缩并呈现低轮廓位置,如图所示。顶端64的形状为弯曲的以符合远端44处的球囊20的形状。柱塞轴62的近端联接到柱塞密封件66,柱塞密封件66提供弹簧60接合柱塞轴62所抵靠的表面。位于轴12内部内靠近弹簧60处的肩部68提供了近端止挡件,以在弹簧60压缩时防止弹簧60的近端移动。[0064]图3是图1的消融装置10的另一个局部剖视图,示出了处于第二充分膨胀位置的球囊20。如在图3中进一步可见,当加压流体30被注入球囊20的内部区段38内时,施加在柱塞密封件66的表面上的流体压力构造成克服由弹簧60提供的弹簧偏置,从而造成弹簧60移动至轴内部内的第二压缩位置。一旦球囊20被充胀,球囊20的内部区段38内的压力就沿近端方向推动柱塞组件56。结果,柱塞轴62被向近端拉入轴内部,从而造成非创伤性顶端64脱离球囊20的远端44。[0065]当顶端64脱离球囊20的远端44时,并且如图3所示,球囊20构造成膨胀至其第二膨胀位置。在一些实施例中,充胀的球囊20的形状可以沿其长度变化,使得球囊20的近端区段46a具有不同于远端区段46b的轮廓和形状。在图3的实施例中,例如,充胀的球囊20具有基本上圆锥的形状,使得球囊20的远端导电区段46b朝球囊20的远端44暴露相对大的区域。远端区段46b的圆锥形状有利于球囊20与主要位于装置10远端的身体组织的接触。球囊20的近端区段46a又具有相对低的轮廓,并且因此不接触身体组织。相比远端区段46b,近端区段46a的疏水材料也不与球囊20内的流体30进行传导。[0066]虽然图3中的示例性球囊20在膨胀时具有圆锥形状,但在其他实施例中,球囊20在充胀时可具有不同的形状和/或轮廓。其他球囊形状的示例可包括椭圆形、球形或哑铃形。在一些实施例中,球囊形状可类似于美国专利N0.7,736,362中描述的自锚固球囊形状中的一种,该专利的内容全文以引用方式并入本文中以用于所有目的。其他球囊构造也是可能的。[0067]在一些实施例中,球囊20的远端区段46b为半渗透的,从而允许球囊20的内部区段38内的加压流体30中的至少一些在目标消融部位处或附近渗入身体内。在一些实施例中,球囊20的远端区段46b为可渗透的,从而允许球囊20的内部区段38内的加压流体30在目标消融部位处或附近渗入身体内。在消融期间,导电流体在该界面区域处的存在有助于为由RF电极36生成的电场形成电导管,并且进一步用来冷却消融部位。当RF能量被施加到球囊20内部的RF电极36时,RF能量通过穿过球囊20渗出的导电流体传输到与球囊20接触的组织。远端区段46b的渗透性或半渗透性也允许传送包含在流体30内的药剂或药物。这样,通过将一种或更多种药物引入到导电流体30中并允许药物行进穿过球囊20且进入组织内,球囊20也可作用为药物传送装置。[0068]图4是示出用于制造多孔球囊的示例方法70的流程图。通过制造具有近端非导电区段和远端导电区段的复合物球囊,方法70可以大体上始于框72。应当指出,在一些实施例中,远端区段为非导电的。在某些实施例中,例如,诸如图2-3所示的复合物球囊20可使用合适工艺来制造,诸如浸涂、旋涂、注塑或吹塑。也可使用其他制造技术来制造复合物球囊。[0069]可以选择一种或多种球囊材料,以便有利于进一步的加工步骤,以形成穿过球囊材料的微孔。在一些实施例中,例如,用来形成复合物球囊的工件可由诸如聚对苯二甲酸乙二醇酯(PET)的热塑性聚合物树脂形成。PET的热学和/或化学特性允许在球囊上进行后续加工步骤,同时保持球囊的所需抗拉强度和弹性特性。[0070]一旦复合物球囊已被制造,就罩住球囊的近端非导电区段(框74),并且利用来自电离辐射源的离子照射球囊的远端(例如,导电)区段(框76)。在一个实施例中,利用来自氩等离子体源的氩原子照射复合物球囊。其他合适的离子辐射源也可用来利用离子照射球囊的远端区段。[0071]一旦被照射,球囊就接着经受一段时间的氢氧化钠(NaOH)蚀刻工艺,以在球囊的远端区段中产生均匀的微孔(框78)。在某些实施例中,例如,球囊可被插入蚀刻槽中并处理大约10至15分钟的时间,直到穿过球囊材料形成所需尺寸的孔。孔尺寸可通过电离辐射和蚀刻步骤的持续时间、电离辐射的强度和蚀刻溶液的强度来控制。诸如球囊组成、球囊厚度以及其他特性的其他因素也可以影响孔尺寸。可使用该过程生成的示例孔尺寸在直径方面可在约0.1微米至约5微米之间,但也可以设想更大或更小的其他孔尺寸。例如,在一些情况下,孔直径可以直到20微米。[0072]—旦在球囊的远端区段中形成微孔,就可以接着进行附加的加工步骤以将球囊固定在轴上(框80)。在一个实施例中,球囊可安装到轴的远端,类似于图2-3所示的示例性实施例中所示。球囊可以以多种方式固定到轴,包括粘合剂结合、热结合、机械结合、螺钉、卷绕、或它们的组合。[0073]图5是示出已使用图4的方法70处理的示例复合物球囊20的透视图。在图5中可以看出,球囊20的远端区段46b包括多个微孔82,由于处于其充胀状态的远端区段46b的尺寸和形状,微孔82沿大体上由箭头84指示的方向基本上在远端方向上背对球囊20的远端44。当导电流体的稳定流被提供到球囊20的内部区段38时,流体30的至少一部分穿过微孔82渗出并与位于球囊20远端的身体组织接触。球囊20的近端区段46a为基本上无孔的,并且因此阻止加压流体流过近端区段46a。[0074]图6是示出根据另一个示例性实施例的消融装置86的远端区段的局部剖视图。消融装置86包括细长轴88,该细长轴88联接到可充胀的消融球囊90。轴88的近端区段(未示出)联接到导电流体源和RF发生器。在图6的实施例中,轴88的远端区段92延伸穿过球囊90的内部94,并且包括多个流体端口96、98,以用于使流体循环通过球囊内部94。与轴88内的第一管腔流体连通的第一流体端口96构造成将导电流体从外部流体源传送到球囊内部94中。与轴88的返回流体管腔流体连通的第二流体端口98又作用为返回端口,以用于将球囊内部94内的受热流体再循环到患者身体外部的位置以进行冷却。[0075]设置在球囊90的内部94内的电极组件100电联接到RF发生器,并且构造成生成RF电场以用于在位于球囊90附近的组织内形成受控的损伤。在一些实施例中,并且如图6所示,电极组件100包括具有螺旋形状的金属线圈RF电极102,该螺旋形状围绕轴88的位于球囊内部94内的一部分延伸。在其他实施例中,RF电极102可包括管状部件、环、扁平带或其他合适形状。在一些实施例中,电极组件100可包括多个电极102,以或者作为双极RF消融系统的一部分,或者作为带有多个电极的单极系统的一部分。[0076]在图6的实施例中,球囊90的近端区段112a联接到细长轴88的远端区段92。球囊90的远端区段112b又联接到细长轴88的远端108。在一些实施例中,并且如图6所示,球囊90的远端区段112b具有内褶构造,该构造通过将球囊90的一部分折叠或翻转回其自身上并且将球囊90的远端106附连到轴远端108的内表面而形成。球囊90能够从初始收缩位置充胀至第二膨胀位置,初始收缩位置具有方便装置86行进通过身体的低轮廓,第二膨胀位置接触并接合待消融的身体组织。在一些实施例中,球囊90具有由不同聚合物材料形成的复合物结构,该结构有助于将RF能量从RF电极100导向和聚焦到位于球囊90的远端区段112b处或附近的身体组织中。在一个实施例中,例如,复合物球囊90包括由疏水性聚合物制成的近端非导电区段112a和由亲水性聚合物制成的远端导电区段112b。在一些实施例中,例如,复合物球囊结构可包括由诸如TECOPHILIC60D-35?的疏水性聚氨酯材料制成的近端区段112a和由诸如TECOPHILIC60D?的亲水性聚氨酯材料制成的远端区段112b。其他聚合物材料也可用来根据需要赋予近端区段112a和远端区段112b不同的亲水特性。[0077]当利用导电流体充胀时,由于在将RF能量供应至RF电极102时流体的离子内容物,球囊90的远端区段112b通过水合而呈现导电性。电流因而传输通过流体并进入与球囊90的远端区段112b接触的组织。当被充胀时,球囊90的内褶构造也用来朝球囊90的远端区段112b导向RF电场。[0078]消融装置86可进一步包括结合其他实施例描述的一个或更多个特征,包括用于感测球囊90的表面内或表面上的流体的温度的一个或更多个温度传感器,和用于感测心脏中或心脏附近的电活动的一个或更多个心电图传感器。装置86也可包括其他特征,诸如弹簧促动的柱塞组件。在某些实施例中,球囊90也可制造成可渗透的或半渗透的,从而允许球囊90的内部区段94内的加压流体中的至少一些在目标消融部位处或附近渗入身体内。[0079]图7是示出根据另一个示例性实施例的消融装置114的远端区段的局部剖视图。消融装置114包括细长轴116,细长轴116联接到可充胀的消融球囊118。轴116的近端区段联接到导电流体源和RF发生器。在图7的实施例中,轴116的远端区段120延伸穿过球囊118的内部122,并且包括多个流体端口124、126,以用于使流体循环通过球囊内部122。与轴116内的第一管腔流体连通的第一流体端口124构造成将导电流体从外部流体源传送到球囊内部122内。与轴116内的返回流体管腔流体连通的第二流体端口126又作用为返回端口,以用于将球囊内部122内的受热流体再循环到患者身体外部的位置以进行冷却。[0080]设置在球囊118的内部122内的电极组件128电联接到RF发生器,并且构造成生成RF电场,以用于在位于球囊118附近的组织内形成受控的损伤。在一些实施例中,并且如图7所示,电极组件128包括具有螺旋形状的金属线圈RF电极130,该螺旋形状围绕轴116的位于球囊内部122内的一部分延伸。在其他实施例中,RF电极130可包括管状构件、环、扁平带或其他合适形状。在一些实施例中,电极组件128可包括多个电极130,以或者作为双极RF消融系统的一部分,或者作为带有多个电极的单极系统的一部分。[0081]在图7的实施例中,球囊118的近端部分134联接到细长轴118的远端区段120。球囊118能够从初始收缩位置充胀至第二膨胀位置,初始收缩位置具有方便装置114行进通过身体的低轮廓,第二膨胀位置接触并接合待消融的身体组织。在一些实施例中,并且如图所示,球囊118的厚度可沿与轴116大体平行的球囊118的长度渐缩,使得近端区段134a的厚度大于远端区段134b的厚度。在某些实施例中,球囊118的厚度沿球囊118的长度在近端区段134a和远端区段134b之间连续地渐缩。在一个实施例中,例如,球囊118可以从在位置132(在这里球囊118的近端区段134a附连到细长轴116)处或附近的约5密耳(0.005英寸)至15密耳(0.015英寸)之间的厚度连续地渐缩至球囊118的远端部分136处或附近的约0.5密耳至5密耳之间的厚度。[0082]在其他实施例中,球囊118可在沿球囊118的长度的一个或更多个离散位置处在厚度方面过渡,使得近端区段134a的厚度大于远端区段134b的厚度。在一个实施例中,例如,球囊118厚度可在沿球囊118的长度的基本上半路的位置处从球囊118的近端部分134a处的相对厚的构造过渡到球囊118的远端区段134b处的相对薄的构造。球囊118也可在沿球囊118的近端区段134a和/或远端区段134b的多个位置处在厚度方面逐步地过渡。其他构造也是可能的。[0083]球囊118可包括亲水性聚合物,其有利于由RF电极130生成的电磁场传输通过球囊材料并与组织接触。在一些实施例中,球囊118包括复合物结构,其中多种材料用来将球囊118从沿球囊118的近端区段134a的相对疏水成分过渡到沿球囊118的远端区段134b的相对亲水成分。在一些实施例中,例如,复合物球囊结构可包括由诸如TECOPHILIC60D-35?的疏水性聚氨酯材料制成的近端区段134a和由诸如TECOPHILIC60D?的亲水性聚氨酯材料制成的远端区段134b,如本文所讨论的那样。所得的结构是沿球囊118的长度在材料组成和厚度方面均过渡的复合物球囊118。在消融期间,沿球囊118的长度的该厚度方面的减小(且在一些实施例中,材料成分方面的变化也)造成由RF电极130生成的更大量的电场行进穿过球囊118的远端区段134b,从而允许临床医生瞄准位于球囊118远端的身体组织。[0084]消融装置114可还包括结合本文的其他实施例描述的一个或更多个特征,包括用于感测球囊118的外表面内或外表面上的流体的温度的一个或更多个温度传感器,和/或用于感测心脏中或心脏附近的电活动的一个或更多个心电图传感器。装置114也可包括其他特征,诸如弹簧促动的柱塞组件。在某些实施例中,球囊118也可制造成可渗透的或半渗透的,从而允许球囊118的内部区段122内的加压流体中的至少一些在目标消融部位处或附近渗入身体中。[0085]图8是示出根据另一个示例性实施例的消融装置138的远端区段的局部剖视图。消融装置138包括细长轴140,细长轴140联接到可充胀的消融球囊142。轴140的近端区段联接到导电流体源和RF发生器。在图8的实施例中,轴140的远端区段144延伸穿过球囊142的内部146,并且包括多个流体端口148、150,以用于使流体循环通过球囊内部146。与轴140内的第一管腔流体连通的第一流体端口148构造成将导电流体从外部流体源传送到球囊内部146中。与轴140内的返回流体管腔流体连通的第二流体端口150又作用为返回端口,以用于将球囊内部146内的受热流体再循环到患者身体外部的位置以进行冷却。[0086]设置在球囊142的内部146内的电极组件152电联接到RF发生器,并且构造成生成RF电场以用于在位于球囊142附近的组织内形成受控的损伤。在一些实施例中,并且如图8所示,电极组件152包括具有螺旋形状的金属线圈RF电极154,该螺旋形状围绕轴140的位于球囊内部146内的一部分延伸。在其他实施例中,RF电极154可包括管状构件、环、扁平带或其他合适形状。在一些实施例中,电极组件152可包括多个电极154,以或者作为双极RF消融系统的一部分,或者作为带有多个电极的单极系统的一部分。[0087]在图8的实施例中,球囊142的近端部分156联接到细长轴140的远端区段144。球囊142能够从初始收缩位置充胀至第二膨胀位置,初始收缩位置具有方便装置138行进通过身体的低轮廓,第二膨胀位置接触并接合待消融的身体组织。在一些实施例中,并且如图8所示,球囊142包括具有第一层158和第二层160的多层结构。球囊142的第一层158包括亲水性能水合的离子导电材料层,其沿着球囊142的近端区段162a和远端区段162b两者横跨球囊142的整个表面区域延伸。在某些实施例中,例如,第一层158包括诸如TECOPHILIC60D?的亲水性聚氨酯材料。在某些实施例中,第一层158的厚度在约I密耳至3密耳之间。[0088]在一些实施例中,第一层158具有沿球囊142的整个长度均匀的厚度。在其他实施例中,第一层158的厚度可在厚度方面沿球囊142的长度过渡。例如,在一些实施例中,球囊142的第一层158可在厚度方面沿球囊142的长度渐缩,使得沿球囊142的近端区段162a定位的第一层158的部分比沿远端区段162b定位的第一层158的部分更厚。第一层158的厚度可以沿球囊142的长度连续地或在一个或更多个离散的位置处渐缩。在一些实施例中,第一层158的厚度可在厚度方面从球囊142的近端部分156附连到细长轴140的位置处或附近的约3密耳过渡到球囊142的远端部分164处或附近的约I密耳的厚度。[0089]球囊142的第二层160包括疏水材料,并且延伸横跨球囊142的仅一部分。在图8的实施例中,例如,第二层160沿球囊142的仅近端区段162a定位。在一些实施例中,第二层160包括在球囊制造过程期间喷涂到第一层158上的疏水性聚合物掩模。可用来形成第二层160的示例疏水材料包括TECOPHILIC60D-35?。也可使用其他技术来形成第二层160,包括溅射、粘合或共挤出。[0090]在图8的实施例中,第二层160的厚度沿其长度连续地渐缩。在其他实施例中,第二层160在沿其长度的一个或更多个离散位置处在厚度方面减小。在一些实施例中,第二层160的厚度可从球囊142的近端部分156附连到细长轴140的位置处或附近的约5密耳到第二层160终止的位置处或附近的约I密耳的厚度之间过渡。[0091]在消融期间,球囊142的第一层158上的疏水性的第二层160的存在造成由RF电极154生成的更大量的电场行进穿过球囊142的远端区段162b,从而允许临床医生瞄准位于球囊142远端的身体组织。在一些情况下,在消融期间,球囊142的第一层158上的疏水性的第二层160的存在造成RF电流集中且穿过球囊的仅未遮掩的亲水性远侧表面均匀地分布,从而允许临床医生瞄准位于球囊142远端的身体组织。[0092]消融装置138可还包括结合其他实施例描述的一个或更多个特征,包括用于感测球囊的表面内或表面上的流体的温度的一个或更多个温度传感器,和/或用于感测心脏中或心脏附近的电活动的一个或更多个心电图传感器。装置138也可包括其他特征,诸如弹簧促动的柱塞组件。在某些实施例中,球囊142也可制造成可渗透的或半渗透的,从而允许球囊142的内部146内的加压流体中的至少一些在目标消融部位处或附近渗入身体中。[0093]图9是根据另一个示例性实施例的消融装置166的示意图。消融装置166包括细长轴168,细长轴168具有近端区段170、远端区段172和在近端区段170与远端区段172之间延伸穿过轴168的至少一个管腔173。联接到轴168的远端区段172的可充胀球囊174可在身体内的目标位置处充胀并且与待治疗的身体组织接触。在图9的实施例中,轴168的远端区段172延伸穿过球囊174的内部176,并且包括多个流体端口176、178,以用于使流体循环通过球囊内部176。与轴168内的第一管腔流体连通的第一流体端口178构造成将导电流体从外部流体源传送到球囊内部176内。与轴168内的返回流体管腔流体连通的第二流体端口180又作用为返回端口,以用于将球囊内部176内的受热流体再循环到患者身体外部的位置以进行冷却。[0094]设置在球囊174的内部176内的电极组件182电联接到RF发生器34,RF发生器34可用来生成RF电场以用于在组织内形成受控的损伤。在图9的实施例中,电极组件182包括第一电极184和第二电极186。第一电极184包括具有螺旋形状的金属线圈RF电极,该螺旋形状围绕轴168的位于球囊内部176内的一部分延伸。在其他实施例中,第一电极184可包括管状构件、环、扁平带或其他合适形状的电极。第二电极186又联接到细长轴168的远端部分188,并且位于球囊174的外部且直接接触待消融的身体组织。[0095]在一些实施例中,RF发生器34包括切换器190,切换器190用于选择性地激活第一电极184或第二电极186。在一个实施例中,并且如图所示,切换器190包括电联接到第一电极184的第一电线192和电联接到第二电极186的第二电线194。在消融步骤期间,在第一电极184和第二电极186之间来回切换的能力允许操作者在经由通过球囊174传导在相对大的区域上提供消融或经由第二电极186(其与组织直接接触并且具有比球囊174小的接触表面积)在相对小的聚焦区域上提供消融之间进行调整。[0096]在图9的实施例中,球囊174的近端区段196a联接到细长轴168的远端区段172。球囊174的远端区段196b又联接到细长轴168的远端188。在某些实施例中,球囊166具有由不同的聚合物材料形成的复合物结构。在一个实施例中,例如,复合物球囊166包括由疏水性聚合物制成的近端非导电区段196a和由亲水性聚合物制成的远端能水合的离子导电区段196b。在一些实施例中,例如,复合物球囊结构可包括由诸如TECOPHILIC60D-35?的疏水性聚氨酯材料制成的近端区段196a和由诸如TECOPHILIC60D?的亲水性聚氨酯材料制成的远端区段196b。其他聚合物材料可用来赋予近端区段196a和远端区段196b不同的亲水特性。[0097]当利用导电流体充胀时,由于在将RF能量供应至第一RF电极184时流体的离子内容物,球囊174的远端区段196b通过水合而呈现导电性。结果,电流传输通过流体并进入与球囊174的远端区段196b接触的组织中。[0098]消融装置166可还包括结合其他实施例描述的一个或更多个特征,包括用于感测球囊内或球囊-组织界面处的球囊表面上的流体的温度的一个或更多个温度传感器,和用于感测心脏中或心脏附近的电活动的一个或更多个心电图传感器。装置166也可包括其他特征,诸如弹簧促动的柱塞组件。在某些实施例中,球囊174也可制造成半渗透的,从而允许球囊174的内部区段176内的加压流体中的至少一些在目标消融部位处或附近渗入身体内。[0099]图10是使用消融装置进行的消融步骤的示例性方法198的流程图。图10可以表示例如可结合图9的消融装置166使用以在心脏组织上进行消融的若干示例步骤。方法198可使用本文所述的消融装置中的任一个来进行,并且可以用于进行其他类型的消融治疗。在一个实施例中,例如,方法198可用于在脑组织上进行消融治疗,以用于治疗神经障碍,诸如帕金森氏病。[0100]为了进行治疗,临床医生将消融装置166插入导向导管的管腔中,并且将消融装置166推进至待治疗的心脏中或附近的区域(框200)。在阵发性心房纤颤的治疗中,例如,临床医生可将导向导管和消融装置插入主要静脉或动脉(例如,股动脉)中,并且将组件通过血管系统推进到待治疗的心脏腔室或心脏血管(例如,肺静脉)内的位置。在一些实施例中,导向导管内或消融装置166自身内的操纵机构可用来将装置166的远端操纵就位至所需的治疗部位。[0101]一旦就位,导电流体就接着注入球囊174内,从而造成球囊174充胀(框202)。在必要时,可接着设定RF发生器34上的切换器190以激活第一(即,球囊)电极184(框204),从而造成能量通过经流体和球囊材料的传导从电极184流到球囊174的远端导电区段196b。临床医生可接着通过使球囊174的远端区段196b与组织接触而在组织上形成相对宽的损伤(框206)。[0102]远端球囊区段196b的尺寸和形状产生实际上很均匀的损伤,并且没有在使用与待消融的组织直接接触的电极的导管中可能产生的脱水或烧焦区域。在一些手术中,充胀的球囊174的尺寸和形状也可有利于形成重叠的损伤,以确保形成邻近的消融线并彻底阻断异常导电。在其中远端区段196b也是多孔的那些实施例中,可以在整个消融期内维持导电流体的稳定流动,这进一步用来形成球囊174和身体组织之间的电通路。[0103]如果,在消融手术期间,操作者希望在组织上提供微小损伤,则可以将切换器190设定成使用第二电极186来操作(框208)。一旦设定,来自RF发生器34的能量就接着被传输到第二(即,顶端)电极186,其将RF能量直接导向到组织中。相比具有与待消融组织接触的相对大的表面积的第一电极184,第二电极186产生更小的聚焦的消融(框210)。在某些步骤中,例如,第二电极186可用来生成狭窄的聚焦的消融点,而第一电极184可用来生成更宽的更少聚焦的消融点。在电极184、186中的各个之间来回切换的过程可以重复一次或更多次,直到消融步骤完成。[0104]在不脱离本发明的范围的情况下,可以对示范实施例进行各种修改和添加。例如,虽然上述实施例引用了特定特征,但本发明的范围也包括具有特征的不同组合的实施例和不包括所有所描述的特征的实施例。因此,本发明的范围旨在涵盖落入权利要求以及其所有等同物的范围内的所有此种备选方案、修改和变型。【权利要求】1.一种用于消融身体组织的系统,包括:RF发生器,其包括能够在第一位置和第二位置之间操作的切换机构;流体源,其包括导电流体的供应源;和消融装置,包括:细长轴,其具有近端区段、远端区段和至少一个流体管腔;可充胀球囊,其联接到所述轴的远端区段且包括内部区段,所述内部区段与所述流体源流体连通,以用于在收缩状态和膨胀状态之间促动所述球囊;第一电极,其设置在所述球囊的内部空间内且电联接到所述RF发生器,所述第一电极构造成用于当在所述第一位置操作时将第一RF电场供应通过所述球囊且供应到所述身体组织中;第二电极,其联接到所述细长轴的远端部分且电联接到所述RF发生器,所述第二电极构造成用于当在所述第二位置操作时直接将第二RF电场供应到所述组织中。2.根据权利要求1所述的系统,其特征在于,所述球囊包括复合物结构,所述复合物结构具有包含疏水性聚合物材料的近端球囊区段和包含亲水性聚合物材料的远端球囊区段。3.根据权利要求1所述的系统,其特征在于,在所述膨胀状态下,所述球囊为圆锥形的。4.根据权利要求1所述的系统,其特征在于,所述球囊的远端区段为内褶的。5.根据权利要求1所述的系统,其特征在于,所述球囊的远端区段为半渗透的。6.根据权利要求1所述的系统,其特征在于,所述球囊的厚度沿所述球囊的长度从近端球囊区段向远端球囊区段渐缩。7.根据权利要求1所述的系统,其特征在于,所述球囊包括多层结构。8.根据权利要求1所述的系统,其特征在于,还包括弹簧促动的柱塞组件,该弹簧促动的柱塞组件构造成在所述收缩状态下偏置所述球囊。9.一种用于在患者的身体上进行消融治疗的方法,所述方法包括:将消融装置推进到目标身体组织区域,所述消融装置包括联接到细长轴的可充胀的球囊、设置在所述球囊的内部空间内的第一电极、和位于所述球囊的外部的第二电极;将导电流体注入所述球囊的内部区段内并且将所述球囊在所述身体内从收缩状态充胀至膨胀状态;选择性地激励所述第一电极并且在所述球囊内部内生成第一RF电场;利用所述第一RF电场在所述身体组织内形成至少一个消融损伤;选择性地激励所述第二电极并且生成第二RF电场;并且利用所述第二RF电场在所述身体组织内形成至少一个消融损伤。10.根据权利要求9所述的方法,其特征在于,还包括RF发生器,该RF发生器包括切换机构,并且其中选择性地激励所述第一或第二电极包括在第一和第二切换位置之间操作所述切换机构。11.根据权利要求9所述的方法,其特征在于,利用所述第一RF电场在所述身体组织内形成至少一个消融损伤包括在远离所述细长轴的位置处在所述身体组织中形成损伤。12.根据权利要求9所述的方法,其特征在于,利用所述第一RF电场在所述身体组织内形成的所述至少一个消融损伤大于利用所述第二RF电场在所述身体组织中形成的所述至少一个消融损伤。13.一种用于治疗身体组织的消融装置,包括:细长轴,其具有近端区段、远端区段和构造成接收导电流体的至少一个流体管腔;可充胀球囊,其联接到所述轴的远端区段且包括内部区段,所述内部区段与所述至少一个流体管腔流体连通,以用于在收缩状态和膨胀状态之间促动所述球囊;和至少一个电极,其位于所述球囊的内部空间内,所述至少一个电极构造成用于将RF电场传输通过所述球囊并且传输到与所述球囊接触的身体组织中;其中,所述球囊构造成在向远端朝所述消融装置的前端的方向上传输所述RF电场。14.根据权利要求13所述的消融装置,其特征在于,所述球囊包括复合物结构,所述复合物结构具有包含疏水性聚合物材料的近端球囊区段和包含亲水性聚合物材料的远端球囊区段。15.根据权利要求13所述的消融装置,其特征在于,在所述膨胀状态下,所述球囊为圆锥形的。16.根据权利要求13所述的消融装置,其特征在于,所述球囊的远端区段为内褶的。17.根据权利要求13所述的消融装置,其特征在于,所述球囊的远端区段为半渗透的。18.根据权利要求13所述的消融装置,其特征在于,所述球囊的厚度沿所述球囊的长度从近端球囊区段向远端球囊区段渐缩。19.根据权利要求13所述的消融装置,其特征在于,所述球囊包括多层结构。20.根据权利要求13所述的消融装置,其特征在于,还包括弹簧促动的柱塞组件,该弹簧促动的柱塞组件构造成在所述收缩状态下偏置所述球囊。【文档编号】A61B18/14GK103987336SQ201280055862【公开日】2014年8月13日申请日期:2012年9月13日优先权日:2011年9月14日【发明者】R.苏布拉马尼亚姆,J.V.科布利什,Z.屯,G.R.哈维,M.曹,K.D.斯帕克斯申请人:波士顿科学西美德公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1