本发明涉及肠镜腺瘤性息肉检出技术领域,特别是涉及一种基于深度学习提高结肠镜腺瘤性息肉检出率的方法。
背景技术:
息肉是指在肠腔黏膜表面突出或隆起的病变组织。借助结肠镜检查,可检出息肉的大小、数量。按照病理分型来看,息肉分为炎性息肉、增生性息肉、错构瘤、腺瘤性息肉等。其中腺瘤性息肉为多见,约占70%-80%,大小一般为0.5-2cm左右。腺瘤性息肉癌变除了与其病理分型有关外,一般认为腺瘤的大小、数目的多寡对癌变的可能性具有很大的影响。少于1cm的腺瘤性息肉癌变率几乎为零,大于1.0cm的腺瘤性息肉癌变机会增大,1-2cm腺瘤性息肉的癌变率在10%左右,>2m腺瘤性息肉的癌变率高达50%。据统计表明息肉数目少于3枚,癌变率为12%-29%;等于或超过3枚的,其癌变率增至66.7%。
综上所述,从腺瘤性息肉各方面的癌变率来看,其被认定是结直肠癌的癌前病变是公认的。所以,提高腺瘤性息肉检出率就显得尤为重要。
现如今结肠腺瘤性息肉检测的方法可以大致分为以下三类:1.结肠镜检查:这是检测结肠息肉和结肠癌最敏感的一项检查。它和乙状结肠镜检查相类似,但是所用的仪器(即结肠镜)是一根更长的纤细管子,并与摄像机和控制部分相连,因此医生可以通过它检查你的直肠和整个结肠。在检查中若发现有任何息肉,医生可以立即切除它,或是取一部分组织进行活检。2.粪便隐血试验:这项无创性检查是用于检测你的粪便中是否含有血液。这项检查的缺点是许多息肉和肠癌并不一定会导致肠道出血,也就是说,即使你有结肠息肉或结肠癌,结果也可能是阴性的。3.胶囊内镜:现在医学界已发明了一种内部装有微型照相机的胶囊,吞下它后就可以分辨出小肠内的息肉,并且准确度较高。不过,由于小肠息肉比较罕见,所以这项检查并不常用。
结肠镜检查还是现如今应用最广泛也是最有效的一种息肉筛查手段。但在结肠镜手术过程中,仅仅靠医生用肉眼去发现手术过程中的一些息肉往往会导致一漏检发生,于是在结肠镜检查中提高腺瘤性息肉的检出率就成为重中之重。
技术实现要素:
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种基于深度学习提高结肠镜腺瘤性息肉检出率的方法,用于解决在传统肠镜检查过程中依赖人工去检测息肉,很容易因为医生的疏忽或者息肉个头较小而产生的漏检问题。
为实现本发明的目的所采用的技术方案是:
一种基于深度学习提高结肠镜腺瘤性息肉检出率的方法,包括以下步骤:
将手术台中肠镜镜头传出的视频流一分为二,一部分传输到医生的操作平台上,另一部分视频流进行预处理后送到嵌入到肠镜操作系统中的息肉检测模型进行识别;
息肉检测模型对每一帧图像是否出现息肉以及息肉出现概率进行检测;
将息肉检测模型的检测结果返回到医生操作平台显示,若视频流中出现息肉,将息肉框出提示。
优选的,所述息肉检测模型通过以下步骤而获得:
从医院数据库中获取在肠镜检查过程中截取的清晰的带有息肉的图像集;
将图像集图像中息肉作为目标检测物标注,将标注好后的图像集分为训练集和测试集:
利用训练集对形成的初始化模型中进行训练,利用测试集进行测试,最终经训练测试而获得所述息肉检测模型。
优选的,所述息肉检测模型使用yolov3检测算法构建。
与现有技术相比,本发明的有益效果是:
本发借助人工智能深度神经网络,结合医学大数据和医学知识等,可以自动检测肠镜手术过程中镜头内出现的息肉,提高在在结肠镜检查过程中息肉的识别率,从而间接的提高了腺瘤性息肉的检出率。
附图说明
图1为肠镜手术过程中视频流的传输流程图;
图2为息肉检测模型的训练流程图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明一种基于深度学习提高结肠镜腺瘤性息肉检出率的方法,包括以下步骤:
步骤1:当手术开始时,将手术台中肠镜镜头传出的视频流一分为二,一部分传输到医生的操作平台上,另一部分送到基于卷积神经网络训练形成的息肉检测模型(嵌入在肠镜操作系统的人工智能检测模块中)中进行识别;
步骤2:对视频流进行预处理,然后送到息肉检测模型进行识别,对视频流中的每一帧图像,检测是否出现息肉及检测到的目标为息肉的概率。
步骤3:将步骤2的检测结果返回到医生操作平台上进行显示。
步骤4:若视频流中出现息肉,将其框出进行提示。
本发明的整体的流程图如图1所示,其中,步骤2中的基于卷积神经网络训练形成的息肉检测模型,使用yolov3检测算法开发,形成息肉检测模型,以满足整个肠镜检查中所需要的实时性。
其中,所述的基于卷积神经网络训练形成的息肉检测模型的训练,具体包括以下步骤;
步骤1:从医院数据库中获取在肠镜检查过程中截取的清晰明亮的带有息肉的图像集;
步骤2:将步骤1中得到的图像集进行目标标注,使用labelimg将图像中的息肉等目标检测物进行标注。将标注好后的图像集分为训练集和测试集两个部分,便于训练,具体包括:
步骤2.1:将步骤1得到的图像集进行统一裁剪,裁剪为统一大小,相同格式的图像集;
步骤2.2:使用labelimg将图像集中的目标物进行标注,得到完整的息肉图像集;
步骤2.3:挑选完整图像集中的1500张作为训练集,300张作为测试集;
步骤3:将挑选出的训练集输入到yolov3的初始化模型中,设定好训练过程中的参数,然后进行训练;
步骤4:将训练结束后得到的模型进行保存;
步骤5:将测试集作为输入传输到训练后的模型中,检测学习网络输出的结果;
步骤6:将训练好之后的模型嵌入到完整的肠镜操作系统中,以便进行手术过程中的实时检测。
本发明通过利用深度学习较高的精确度降低了传统传统肠镜手术过程中息肉的漏检率,为医生的诊断提供更可靠更高效的支持。
本发明利用深度学习的技术,将肠镜镜头输出的视频传输到训练后的神经网络,自动检测在肠镜手术过程中镜头事业内部所出现的一些息肉,同时提醒医生进行进一步的操作,从而提高腺瘤性息肉的检出率。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
1.一种基于深度学习提高结肠镜腺瘤性息肉检出率的方法,其特征在于,包括以下步骤:
将手术台中肠镜镜头传出的视频流一分为二,一部分传输到医生的操作平台上,另一部分视频流进行预处理后送到嵌入到肠镜操作系统中的息肉检测模型进行识别;
息肉检测模型对每一帧图像是否出现息肉以及息肉出现概率进行检测;
将息肉检测模型的检测结果返回到医生操作平台显示,若视频流中出现息肉,将息肉框出提示。
2.如权利要求1所述基于深度学习提高结肠镜腺瘤性息肉检出率的方法,其特征在于,所述息肉检测模型通过以下步骤而获得:
从医院数据库中获取在肠镜检查过程中截取的清晰的带有息肉的图像集;
将图像集图像中息肉作为目标检测物标注,将标注好后的图像集分为训练集和测试集:
利用训练集对形成的初始化模型中进行训练,利用测试集进行测试,最终经训练测试而获得所述息肉检测模型。
3.如权利要求1所述基于深度学习提高结肠镜腺瘤性息肉检出率的方法,其特征在于,所述息肉检测模型使用yolov3检测算法构建。