一种用于清理血栓的旋切机器人的制作方法

文档序号:23135826发布日期:2020-12-01 13:11阅读:263来源:国知局
一种用于清理血栓的旋切机器人的制作方法

本发明涉及一种血管机器人,具体涉及一种用于清理血栓的旋切机器人。



背景技术:

血管机器人是一种可以进入血管并能够在血管内自由移动的微型机器人,它可以在血管里完成清除血栓、肿瘤切除、投放药物等工作,对防治心血管疾病具有重要的意义。

授权公告号为cn102151162b的发明专利公开了“一种清理血栓的磁控血管机器人”,其通过吸嘴和喷嘴的方式实现血栓的吸取和血液的喷出,存在以下问题:

1、采用吸嘴对血栓进行吸取,对血栓的破坏清除效果不佳,容易导致血栓堵塞机器人中的管道或在血栓收集器中堵塞过滤网。

2、过滤后的血液从喷嘴喷出,难以形成对微型机器人产生前进辅助动力,导致需要增加外部驱动力才能让微型机器人在粘度较大的血液血管中顺利前行。



技术实现要素:

本发明目的在于克服现有技术的不足,提供一种用于清理血栓的旋切机器人,该机器人能有效破坏清理血栓,并且能够稳定地前行移动,有利于提高血栓清除效果。

本发明的目的通过以下技术方案实现:

一种用于清理血栓的旋切机器人,包括微型机器人和外部磁驱动器;其特征在于,所述微型机器人包括呈胶囊状的外壳、设置在外壳内的碎栓收集器、旋切进血件以及尾部排血组件,所述外壳内部嵌有永磁铁;其中,所述旋切进血件固定连接在外壳的前端,所述旋切进血件的前端面上设有多个旋切刀,且旋切进血件上设有连通碎栓收集器进口的进血槽,所述旋切进血件上还设有朝向前方的微型摄像头;所述尾部排血组件包括叶轮、导叶以及驱动叶轮旋转的排血驱动机构,所述导叶固定设置在外壳内;沿着血液的流动方向,所述叶轮设置在导叶的前方,且位于所述碎栓收集器的后方,叶轮与碎栓收集器的出口对应设置;所述外壳的尾部设有排血口。

上述用于清理血栓的旋切机器人的工作原理是:

首先,在外部磁驱动器的作用下,控制微型机器人旋转并按设定方向前进;同时,所述排血驱动机构驱动叶轮旋转,且叶轮的旋转方向与外微型机器人外壳的旋转方向相反;当微型机器人移动至血栓位置处时,位于外壳前端的旋切进血件上的旋切刀对血栓进行旋切,从而将血栓切碎破坏;旋切下来的碎栓通过旋切进血件上的进血槽进入到碎栓收集器中,经过碎栓收集器的过滤后的血液流动至叶轮上,并在叶轮的带动下向叶轮外围呈放射状往后射出,流经导叶,导叶使流入的血液转向至中心流出,血液同时获得动能和压力能,最终经过外壳尾部的排血口排出。在旋切清除血栓过程中,通过旋切刀先对血栓进行切碎破坏,以便进入碎栓收集器中进行过滤,避免堵塞,同时在排血过程中,在叶轮和导叶的作用下,增加了对整个微型机器人的推动力,便于微型机器人在血液中前进以及吸收碎栓。

本发明的一个优选方案,所述外壳表面设有多条等距设置的螺旋螺纹,所述多条螺旋螺纹在外壳表面形成多条螺旋槽。

本发明的一个优选方案,所述碎栓收集器包括呈锥形设置的锥形过滤罩,该锥形过滤罩从前往后逐渐收缩设置,且锥形过滤罩的前端开口与所述进血槽连通设置。

优选地,所述碎栓收集器还包括柱形过滤罩,该柱形过滤罩的前端设有连接开口,所述连接开口连接在所述锥形过滤罩上,所述锥形过滤罩的后端延伸至柱形过滤罩内。

优选地,所述锥形过滤罩的后端设有延伸过滤罩,该延伸过滤罩呈圆柱形设置,且该延伸过滤罩的后端开口设置。

优选地,所述柱形过滤罩的后端呈锥形设置,且从前往后逐渐扩大设置。

本发明的一个优选方案,所述旋切进血件上的旋切刀有两组;其中一组为外部旋切刀,该外部旋切刀呈圆形等距排列设置;另一组为内部旋切刀,该内部旋切刀以旋转排列的方式设置,且位于外部旋切刀内;所述进血槽设有多个,且多个进血槽以旋转排列的方式设置在外部旋切刀和内部旋切刀之间。

本发明的一个优选方案,所述排血驱动机构包括转轴以及驱动转轴转动的转动动力机构,所述转轴转动设置在外壳的轴线处,所述叶轮设置在转轴上;所述柱形过滤罩内部设有轴向延伸的中心过滤罩,所述转轴穿设在所述中心过滤罩中。所述中心过滤罩穿设在延伸过滤罩内。

本发明的一个优选方案,所述外壳的尾部外凸设置,所述排血口设有多个,该多个排血口呈圆形栅格分布设置在外壳的尾部上。

本发明的一个优选方案,所述外部磁驱动器包括三轴亥姆霍兹线圈以及底座,所述微型机器人设置在所述三轴亥姆霍兹线圈中。

本发明与现有技术相比具有以下有益效果:

1、本发明通过旋切刀先对血栓进行切碎破坏,以便碎栓进入碎栓收集器中进行过滤,避免堵塞,并且有利于提高对血栓的清除效果。

2、在排血过程中,通过叶轮和导叶对过滤后的血液进行主动排出,便于将血液排走,同时增加了对整个微型机器人的推动力,以便微型机器人在血液中前进以及吸收碎栓。

附图说明

图1-图4为本发明的用于清理血栓的旋切机器人的其中一种具体实施方式的结构示意图,其中,图1为立体图,图2为微型机器人的立体图,图3为微型机器人的剖视图,图4为微型机器人的爆炸视图。

具体实施方式

下面结合实施例和附图对本发明作进一步描述,但本发明的实施方式不仅限于此。

参见图1-图4,本实施例的用于清理血栓的旋切机器人,包括微型机器人3和外部磁驱动器,所述外部磁驱动器包括三轴亥姆霍兹线圈1以及底座2,所述微型机器人3设置在所述三轴亥姆霍兹线圈1中;所述微型机器人3包括呈胶囊状的外壳4、设置在外壳4内的碎栓收集器、旋切进血件6以及尾部排血组件,所述外壳4内部嵌有永磁铁21;其中,所述旋切进血件6固定连接在外壳4的前端,所述旋切进血件6的前端面上设有多个旋切刀,且旋切进血件6上设有连通碎栓收集器进口的进血槽9,所述旋切进血件6上还设有朝向前方的微型摄像头10;所述尾部排血组件包括叶轮16、导叶17以及驱动叶轮16旋转的排血驱动机构,所述导叶17固定设置在外壳4内;沿着血液的流动方向,所述叶轮16设置在导叶17的前方,且位于所述碎栓收集器的后方,叶轮16与碎栓收集器的出口对应设置;所述外壳4的尾部设有排血口18。

参见图2-图4,所述外壳4表面设有多条等距设置的螺旋螺纹5,所述多条螺旋螺纹5在外壳4表面形成多条螺旋槽。这样,在外壳4旋转过程中能产生动压润滑膜,实现在血管中悬空运行;同时,在螺旋槽的作用下,便于在血液中产生轴向推力,有利于机器人的悬浮式快速运行。

参见图3和图4,所述碎栓收集器包括呈锥形设置的锥形过滤罩11,该锥形过滤罩11从前往后逐渐收缩设置,且锥形过滤罩11的前端开口与所述进血槽9连通设置。设置锥形过滤罩11,便于碎栓集中过滤,有利于血液从各个方向排出,从而加快过滤速度,避免堵塞。

参见图3和图4,所述碎栓收集器还包括柱形过滤罩12,该柱形过滤罩12的前端设有连接开口,所述连接开口连接在所述锥形过滤罩11上,所述锥形过滤罩11的后端延伸至柱形过滤罩12内。位于锥形过滤罩11中的碎栓,在血液的冲击下容易冲出锥形过滤罩11,此时通过柱形过滤罩12的设置,对冲出的碎栓进行二次过滤和收集,避免重新进入血管,有利于碎栓的收集,增加储存空间。

参见图3和图4,所述锥形过滤罩11的后端设有延伸过滤罩13,该延伸过滤罩13呈圆柱形设置,且该延伸过滤罩13的后端开口设置。通过延伸过滤罩13的设置,使得碎栓进入到锥形过滤罩11后,延伸锥形过滤罩11的内壁导向移动到延伸过滤罩13中,并通过延伸过滤罩13进入到柱形过滤罩12中,让碎栓能够进入到柱形过滤罩12的内部中心,延长碎栓移动距离,让血液能够充分通过锥形过滤罩11上的通孔流出;同时,也能够避免碎栓堆积在锥形过滤罩11的后端部,保持血液的流动性,提高过滤效果。

参见图3和图4,所述柱形过滤罩12的后端呈锥形设置,且从前往后逐渐扩大设置。通过设置这样的柱形过滤罩12,有效避免碎栓堆积在柱形过滤罩12的后端上,从而避免堵塞;另外,碎栓移动到柱形过滤罩12的后端时,沿着锥形设置的后端部,逐渐向各个方向散开移动,从而有利于提高过滤效果。

参见图2和图3,所述旋切进血件6上的旋切刀有两组;其中一组为外部旋切刀7,该外部旋切刀7呈圆形等距排列设置;另一组为内部旋切刀8,该内部旋切刀8以旋转排列的方式设置,且位于外部旋切刀7内;所述进血槽9设有多个,且多个进血槽9以旋转排列的方式设置在外部旋切刀7和内部旋切刀8之间。通过设置这样的旋切刀,便于在接触血栓后充分地将血栓切碎破坏,同时让碎栓从设置在旋切刀之间的进血槽9进入碎栓收集器中进行过滤。

参见图3和图4,所述排血驱动机构包括转轴15以及驱动转轴15转动的转动动力机构,所述转轴15转动设置在外壳4的轴线处,所述叶轮16设置在转轴15上;所述转轴15的后端向后延伸穿过导叶17且连接在外壳4尾部;所述柱形过滤罩12内部设有轴向延伸的中心过滤罩14,所述转轴15穿设在所述中心过滤罩14中。所述中心过滤罩14穿设在延伸过滤罩13内。通过转轴15便于叶轮16和导叶17的安装,实现对叶轮16的旋转驱动。转轴15穿设在中心过滤罩14中,能在转轴15转动时让中心过滤罩14以及柱形过滤罩12中的碎栓也保持一定的动态,避免堆积堵塞,且有利于提高过滤效果。本实施例中,所述转动动力机构为电机19,该电机19和微型机器人3的控制模块设置在转轴15的前端上。本实施例中,所述叶轮16的叶片与导叶17外壳内壁靠近设置,所述叶轮16的轮盘与导叶17外壳内壁之间设有通血槽20。本实施例中,所述导叶17与外壳4内壁固定连接,且导叶17与外壳4之间同样设有通血槽22,所述导叶17能利于血流扩散通过,增加微型机器人3推进力。

参见图3和图4,所述外壳4的尾部外凸设置,所述排血口18设有多个,该多个排血口18呈圆形栅格分布设置在外壳4的尾部上。

参见图1-图4,本实施例的用于清理血栓的旋切机器人的工作原理是:

首先,在外部磁驱动器的作用下,控制微型机器人3旋转并按设定方向前进;同时,所述排血驱动机构驱动叶轮16旋转,且叶轮16的旋转方向与外微型机器人3外壳4的旋转方向相反;当微型机器人3移动至血栓位置处时,位于外壳4前端的旋切进血件6上的旋切刀对血栓进行旋切,从而将血栓切碎破坏;旋切下来的碎栓通过旋切进血件6上的进血槽9进入到碎栓收集器中,经过碎栓收集器的过滤后的血液流动至叶轮16上,并在叶轮16的带动下向叶轮16外围呈放射状往后射出,流经导叶17,导叶17使流入的血液转向至中心流出,血液同时获得动能和压力能,最终经过外壳4尾部的排血口18排出。在旋切清除血栓过程中,通过旋切刀先对血栓进行切碎破坏,以便进入碎栓收集器中进行过滤,避免堵塞,同时在排血过程中,在叶轮16和导叶17的作用下,增加了对整个微型机器人3的推动力,便于微型机器人3在血液中前进以及吸收碎栓。

上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1