专利名称:哺乳动物端粒酶的制作方法
背景技术:
发明领域本发明涉及人类端粒酶,即一种人类端粒DNA合成中涉及的核蛋白酶。本发明也提供了与分子生物学,化学,药理学,以及医学和诊断技术领域有关的方法和组合物。相关现有技术的描述真核生物染色体的末端或端粒DNA通常是由串联重复的简单序列组成。端粒酶是核蛋白酶,它用包含在酶RNA组分内的序列为模板合成端粒DNA的一条链。参见Blackburn,1992,生物化学年度回顾61113-129,本文一并参考。
虽然已知人类端粒酶合成具有序列5’-TTAGGG-3’的端粒重复单位,但迄今为止的科学文献还没有报道人类端粒酶的RNA组分。参见Morin,1989,细胞59521-529和Morin,1991,自然353454 456,本文一并参考。这一知识还不足以使得能够分离与鉴别人类端粒酶RNA组分核苷酸序列的其余部分。啤酒酵母,四膜虫属的某些种,以及其它纤毛虫如游仆虫属和目录口虫属的端粒酶RNA组分已被测序,并且在科学文献中报道。参见Singer和Gottschling,1994年10月21日,科学266404 409;Lingner等,1994,基因和发展81984-1988;Greider和Blackburn,1989,自然337331-337;Romero和Blackburn,1991,细胞67343-353;和Shippen-Lentz和Blackburn,1990,科学247546-552,各文献本文一并参考。这些纤毛虫端粒酶合成不同于人类中的端粒重复单位。
目前非常需要有关人类端粒酶的更多的信息。尽管端粒DNA的重复单位具有看似简单的性质,但科学家们早已知道端粒在保持染色体结构和功能中具有重要的生物学作用。最近科学家推测丧失端粒DNA可以触发细胞衰老和老化,并且端粒酶的调节作用可以具有重要的生物学含义。参见Harley,1991,突变研究256271-282,本文一并参考。
用于检测端粒酶活性和鉴别调节或影响端粒酶活性的化合物的方法,以及通过控制端粒长度和端粒酶活性治疗和诊断细胞衰老和无限增殖化的方法已有描述。参见PCT专利公开出版物95/13381,1995年5月18日公开;95/13382,1995年5月18日公开;和93/23572,1993年11月25日公开;以及美国专利申请,尚未给予申请号的申请(发明人C.Harley,N.Kim,S.Weinrich),申请日1995年6月7日;08/315,214,申请日1994年9月28日;08/315,216,申请日1994年9月28日;08/288,501,申请日1994年8月10日;08/014,838,申请日1993年2月8日;08/153,051和08/151,477,申请日均为1993年11月12日;08/060,952,申请日1993年5月13日;08/038,766,申请日1993年3月24日;以及07/882,438,1992年5月13日,各文献本文一并参考。
如果包含RNA组分和/或编码端粒酶蛋白质组分的核酸可以以纯化的或可分离的形式获得并且这些核酸的核苷酸序列是已知的,则可以实现和得到端粒酶介导的治疗和端粒酶测定和筛选方法的明显的改进和新的机会。本发明满足了这些和其它需要,并提供这样的改进和机会。
发明概述第一方面,本发明提供了基本上纯化形式的人类端粒酶RNA组分和RNA组分的基因,以及包含人类端粒酶RNA组分核苷酸序列的所有或至少有用部分的核酸。本发明也提供了其它物种的RNA组分核酸,这些核酸具有与人类端粒酶RNA组分基本上的同源性,这些核酸包括但不限于,哺乳动物(如灵长类)RNA组分。本发明的其它有用的核酸包括具有互补于所说RNA组分的序列的核酸;具有相关于但不同于所说RNA组分的核苷酸序列之序列并且以有用的方式与人类端粒酶RNA组分或者RNA组分或蛋白质组分的基因相互作用的核酸;与RNA组分或RNA组分基因不具有明显的序列同源性或互补性但以所需的有用的方式作用于RNA组分上的核酸。如以下详细描述的,本发明的核酸包括DNA和RNA分子两者和两者的修饰类似物,并且用于各种有用的目的。
本发明的有用的核酸的一个类型是反义寡核苷酸,形成三股螺旋的寡核苷酸,或能用于体内和体外抑制人类端粒酶活性的其它寡核苷酸或寡核苷酸模拟物例如反义戊糖核酸(PNA)-肽核酸/聚酰胺核酸,这些寡核苷酸能以许多方式阻断端粒酶活性,包括阻止端粒酶基因的转录(例如经形成三股螺旋),或者以阻止功能性核糖核蛋白端粒酶装配或阻止RNA组分(一旦装配进端粒酶复合物中)作为端粒DNA合成的模板的方式结合端粒酶的RNA组分。典型地,依据作用模式,本发明的这些寡核苷酸包括从约10到约25至200或更多核苷酸的特异性序列,它们同源于或互补于端粒酶的RNA组分或端粒酶RNA组分的基因中的特异性核苷酸序列。
在一个实施方案中,本发明提供了互补于端粒酶RNA组分多核苷酸序列的反义多核苷酸,典型地是互补于基本上相同于(identical to)天然产生的哺乳动物端粒酶RNA组分基因序列之多核苷酸序列的多核苷酸。这样的反义多核苷酸用于抑制各种端粒酶RNA组分的转录和/或稳定性和/或功能,并且进而使细胞(例如患者中的致瘤性细胞)中的各自的端粒酶活性降低。通过抑制正确的端粒复制和细胞修复中所需的功能性(催化活性和高保真性)端粒酶全酶的形成,这样的反义多核苷酸能作为端粒酶调节剂起作用。所说反义多核苷酸能与其它抗肿瘤治疗方式结合,如电离辐射或化疗(例如用DNA破坏剂如博莱霉素,顺氯氨铂,氮芥子气,阿霉素(doxyrubicin),核苷酸模拟物,等)。在敏感的细胞(例如需要DNA修复或复制所需的端粒酶活性的复制细胞)中,反义多核苷酸能促进细胞死亡。所说反义多核苷酸基本上与本文公开的哺乳动物端粒酶RNA序列的互补序列的至少25个邻接核苷酸相同。所说反义多核苷酸典型地是ssDNA,ssRNA,甲基膦酸酯骨架多核苷酸,硫代磷酸酯骨架多核苷酸,混合骨架多核苷酸,聚酰胺核酸,和本领域已知的类似反义结构。在本发明的一个方面中,施用反义多核苷酸以在细胞(如可复制的人类细胞)中抑制端粒酶RNA组分的转录和/或活性和端粒酶活性。
在一个实施方案中,本发明提供了模板错配多核苷酸,所说的多核苷酸具有基本上与哺乳动物端粒酶RNA组分相同的序列,并且包含端粒重复模板序列,该模板序列相对于人类端粒酶重复序列5’-TTAGGG-3’具有至少一碱基错配,其它互补于该序列。在天然产生的模板序列中,模板错配多核苷酸典型地包括单一核苷酸错配,并且在模板序列中可以包括两个核苷酸错配,可以是邻近的错配核苷酸或者其中错配的核苷酸被一个或多个配对(互补)核苷酸分开。本发明的模板错配多核苷酸一般地能够与人类端粒酶多肽组分一起显示出端粒酶活性,并且进而在人类端粒酶重复序列中的选定(错配)的核苷酸位置产生由端粒重复复制,修复,和/或添加而导致的错掺,由此产生依赖于用于基本复制和保持端粒长度的突变的有义端粒酶RNA组分连续存在的端粒。
本发明的另一个有用的核酸类型是能够特异性地切割人类端粒酶RNA组分使该酶失活的核酶。本发明的再一个有用的核酸类型是能够特异性地结合到人类端粒酶RNA组分上并由此可用于例如,检测样品中端粒酶的存在的探针或者引物。最后,本发明的有用的核酸包括产生本发明的核酸的重组表达质粒。这种质粒的一种尤其有用的类型是用于人类基因治疗的质粒。用于人类基因治疗的本发明的有用的质粒有各种类型,不仅包括那些编码反义寡核苷酸或者核酶的那些质粒,而且包括驱动人类端粒酶RNA组分或者人类(或者具有基本上同源于人RNA组分的RNA组分序列的其它物种)端粒酶RNA组分或者其基因的缺失或改变的(突变的)的变体表达的那些质粒。
在一个实施方案中,具有在生理条件下足以特异性杂交的互补于哺乳动物端粒酶RNA组分的部分之多核苷酸来源于在多核苷酸合成期间或合成后经共价键添加化学取代基,从而形成能够特异性地杂交到所说的端粒酶RNA组分上的衍生的多核苷酸。所说的衍生的多核苷酸能定位具有所说的RNA组分的内源端粒酶,其中所说的衍生的多核苷酸产生端粒酶RNA组分和/或蛋白质组分的改变或者化学修饰,从而改变(典型地是降低)端粒酶酶促活性。
在一个实施方案中,本发明提供了适于诊断与异常端粒酶RNA组分丰度和/或者结构相关的疾病之多核苷酸。通过检测端粒酶RNA组分丰度和/或端粒酶RNA组分结构的改变(例如截短,序列变异,缺失或者插入,等)和/或在从病人移植的细胞中端粒酶RNA组分基因的重排或扩增,或者检测特定的哺乳动物端粒酶RNA组分等位基因(例如通过RFLP或等位基因特异性PCR分析),包含基本上相同于或基本上互补于哺乳动物端粒酶RNA组分核苷酸序列之序列的多核苷酸探针可以用于疾病状态(例如,瘤形成或者是预瘤形成)的诊断。虽然可以使用Northern印迹法,斑点印迹法,或者在分离自细胞样品的大量RNA或多聚腺苷酸化(poly A+)RNA上的溶液杂交,也可以是使用利用端粒酶RNA组分特异性引物的PCR或者LCR扩增,但所说的检测通常经采用标记(例如32P,35S,14C,3H,荧光,生物素化,地高辛配基化)的互补于哺乳动物端粒酶RNA组分的反义多核苷酸的原位杂交法进行。与相同细胞类型的非致瘤性细胞比较含有改变量(典型地是明显增加)的端粒酶RNA组分的细胞被鉴别为候选病态细胞,如前致瘤性或者直接致瘤性细胞,并且可以被鉴别为具有转移潜力的细胞。同样地,对细胞样品中端粒酶RNA组分基因座或紧密连锁的基因座的特殊病症的重排或者扩增的检测将鉴别病理状态或者是待发展成病理状态(例如癌,遗传病)的易感性的存在。所说的端粒酶RNA组分多核苷酸探针也用于个体的法医鉴别,例如嫌疑犯或者不明死者的亲权检验或者鉴别。
第二方面,本发明提供了通过将细胞与治疗有效量的改变端粒酶活性的药剂接触以治疗与细胞或者是一组细胞内的端粒酶活性有关的疾病的方法。这些药剂包括编码端粒酶RNA组分的核酸,形成三股螺旋的寡核苷酸,反义寡核苷酸,核酶,以及质粒和其它基因治疗载体(例如腺病毒载体,腺伴随病毒载体,等等),它们是经表达如前所述的端粒酶RNA组分,端粒酶RNA组分的反义RNA,或者错配端粒酶RNA组分来用于人类基因治疗。在一个有关的方面,本发明提供了包含这些治疗药剂以及药学上可接受的载体或其盐的药物组合物,该组合物可以包括用于定向运送治疗药剂的脂转染复合物,脂质体或免疫脂质体中的配制品。本发明也提供了这样的端粒酶介导的治疗剂与其它药物的组合物,所述药物如抗肿瘤剂和其它细胞毒素或细胞抑制剂;抗真菌剂(例如用于爱滋病患者的治疗);核苷酸,核苷,及其类似物;以及适于治疗瘤形成,增生,HIV感染/爱滋病和相关疾病之类的疾病和以异常端粒酶代谢为特征的其他疾病的其它药剂。所说方法包括使用能够特异性地杂交到哺乳动物端粒酶中的端粒酶RNA组分上的衍生的多核苷酸,其中所说的衍生的多核苷酸被传送到具有端粒酶活性的哺乳动物细胞,经定位于端粒酶RNA组分并灭活或抑制端粒酶活性来抑制端粒酶活性。
本发明也提供了抑制瘤形成或编程性细胞死亡的治疗剂,这些治疗剂经抑制或者加强端粒酶RNA组分的形成调节端粒酶功能,这样的药剂可以用作为药物。这些药物可以用于治疗各种人类和兽医疾病,例如瘤形成,增生,神经变性疾病,老化,爱滋病,真菌感染等。在一个实施方案中,所说药剂由能够转录端粒酶RNA组分序列或其补体或者能竞争性地抑制功能性端粒酶全酶形成的酶促失活的端粒酶RNA组分的基因治疗载体组成。
第三方面,本发明提供了用于测定细胞、细胞群、组织样品或任何以上所述的提取物中的人类端粒酶RNA组分,端粒酶或端粒酶活性的水平、数量或存在的诊断方法。在一个有关的方面,本发明提供了用于这些方法的有用的试剂(包括以上指出的引物与探针),任选地包装成试剂盒,该试剂盒附有采用试剂盒实施所述诊断方法的说明。
本发明提供了用于诊断人类患者疾病(例如,瘤形成)的方法,其中一种诊断测定法(例如,特异性地结合人类端粒酶RNA组分或者基因序列的标记的端粒酶RNA组分探针对固定细胞的原位多核苷酸杂交)用于测定人类患者的生物样品中是否存在端粒酶RNA组分的预定的特殊病症的浓度。如果测定表明端粒酶RNA组分的存在在正常范围之外(例如在所预定的特殊病症的浓度之外),则患者被诊断为具有疾病状态或易感性。
在一个实施方案中,本发明的多核苷酸用于诊断涉及瘤形成,增生,早熟或异常的细胞衰老的病理状态或遗传病,或与端粒酶功能有关的其他疾病,特别是涉及端粒酶RNA组分或者基因序列的结构或丰度改变的或者与特殊病症的端粒酶RNA组分等位基因(其可由RFLP和/或等位基因特异性PCR,或其它适合的检测方法检测)连锁的病态和疾病。典型地,所述方法用于诊断人类患者的疾病(例如瘤形成),其中的诊断测定(例如确定端粒酶RNA组分的量和/或结构)用来确定在人类患者生物样品的细胞中是否存在端粒酶RNA组分的预定的特殊病症的浓度或者结构;如果测定表明存在正常范围外(例如在所预定的特殊病症的浓度之外)的特殊病症量的端粒酶RNA组分,则患者被诊断为具有疾病或疾病易感性。
第四方面,本发明提供了重组端粒酶制剂和生产这种制剂的方法。这样,本发明提供了重组人类端粒酶,它包括人类端粒酶蛋白质组分以及哺乳动物物种的端粒酶蛋白质组分以及本发明的重组RNA组分,所述物种具有基本上同源于人类端粒酶RNA组分之RNA组分。本发明的这样的重组RNA组分分子包括不同于天然产生的RNA组分分子的那些RNA组分分子(一个或多个碱基取代,缺失,末端添加和/或插入)以及在重组宿主细胞中产生的与天然产生的RNA组分分子相同的RNA组分分子。用于产生这样的重组端粒酶分子的方法包括用编码本发明的RNA组分分子的重组表达载体转化表达端粒酶蛋白质组分的真核宿主细胞,以及在使得端粒酶蛋白质组分与端粒酶RNA组分表达和装配形成能够添加序列(不必是由天然端粒酶添加的同一序列)至染色体DNA端粒上的活性端粒酶分子的条件下,培养用所说的载体转化的所说的宿主细胞。
在第五方面,本发明提供了纯化人类端粒酶蛋白质组分以及哺乳动物物种的端粒酶蛋白质组分的方法,所述物种具有基本上同源于人类端粒酶RNA组分之RNA组分。本发明也提供了用于分离和鉴别编码这些蛋白质组分的核酸的方法。在相关的方面,本发明提供了纯化的人类端粒酶和纯化的哺乳动物物种(所述物种具有基本上同源于人类端粒酶RNA组分之RNA组分)端粒酶以及编码这样的端粒酶制剂的一种或多种组分的纯化的核酸。本发明也提供了包含作为有效成分的端粒酶蛋白质组分或者核酸的药物组合物,所述核酸编码编码端粒酶蛋白质组分的核酸或者与其相互作用。
在第六方面,本发明提供了用于鉴别调节(即抑制,加强,或改变特异性)哺乳动物端粒酶活性的药剂的方法。这样的端粒酶调节剂常常是小分子(例如小于约3000道尔顿),并且能常常为治疗目的用来体外和体内修饰端粒酶活性,并且用作实验试剂和/或药物。
在一个实施方案中,本发明提供了从药剂库或者文库鉴别候选药剂方法,所述候选药剂通过调节哺乳动物端粒酶RNA组分与端粒酶蛋白质组分的非共价结合调节端粒酶活性。如果需要,所说端粒酶RNA组分能在宿主细胞中从重组模板产生或由化学合成产生。典型地,将哺乳动物端粒酶蛋白质组分(如可以是从端粒酶表达细胞纯化的,也可以是将天然产生的端粒酶RNA组分除去(例如通过RNA酶处理)后的)在适合的水性结合条件下与哺乳动物端粒酶RNA组分接触以便在不存在添加的药剂时(即在对照结合反应中)在RNA和蛋白质组分之间形成非共价结合。将在选自药剂文库或库的一种或多种药剂存在下的端粒酶RNA组分和蛋白质组分之间的非共价相互作用的量值与在包含端粒酶RNA和蛋白质组分并且缺乏药剂的对照结合反应中的非共价相互作用的量值进行比较,使端粒酶RNA和蛋白质组分之间的非共价结合的量值在统计学上明显增加的药剂从而被确定为候选端粒酶调节剂。非共价结合的相对量值可以用任何适合的方法测定,包括特异性结合亲和性的测定(例如通过竞争性结合测定),在合适的端粒重复模板上的端粒酶催化活性的测定,或哺乳动物端粒酶RNA和蛋白质组分之间的功能性非共价相互作用的其它合适的测定法,如凝胶移位或EMSA(电泳迁移率变动分析)。在一个用于检测候选端粒酶调节剂的实施方案中,用合适的可检测标记物标记端粒酶RNA组分或者蛋白质组分之一或两者。在存在和不存在选自药剂文库或库的药剂时分别测定非共价结合。非共价结合的测定包括如下测定所标记的端粒酶组分(RNA组分或蛋白质组分)结合到其关联端粒酶组分(分别为蛋白质组分或者RNA组分)上的程度(所述的关联端粒酶组分单独标记或未标记),所述测定例如包括捕获(例如固定化)包含所说标记端粒酶组分和所说关联端粒酶组分的结合复合物,从所说的结合复合物分离(例如经洗涤)未结合的标记端粒酶组分从而产生分离的结合组分,并且经测定可检测标记物的存在检测分离的结合组分中的结合复合物。产生端粒酶RNA和蛋白质组分之间的非共价结合的量值在统计学上明显降低或增加的药剂从而被鉴别为候选端粒酶调节剂。降低非共价结合的药剂是候选端粒酶抑制因子(或拮抗剂),而增加端粒酶组分非共价结合的药剂是候选端粒酶兴奋剂。
在一个实施方案中,通过其导致哺乳动物端粒酶酶促活性的统计学上明显降低或增加的能力鉴别候选端粒酶调节剂,所说的哺乳动物端粒酶包含纯化的端粒酶蛋白质组分和端粒酶RNA组分。
在一个实施方案中,通过其导致报道基因多核苷酸序列(例如β-半乳糖苷酶基因,萤光素酶基因,HPRT基因)转录的统计学上明显降低或增加的能力鉴别候选端粒酶调节剂,所说报道基因多核苷酸序列可操作连接到代谢活性哺乳动物细胞的哺乳动物端粒酶RNA组分基因(优选地是人类端粒酶RNA组分基因)的转录调节序列上。在一种变化方案中,哺乳动物细胞中的内源端粒酶RNA组分基因用同源定向构建体靶引,以可操作的连接方式将报道基因多核苷酸序列置入内源基因染色体基因座的内源端粒酶RNA组分基因的上游转录调节序列(例如启动子)上。在另一变化方案中,包含报道基因多核苷酸的外源多核苷酸可操作连接到哺乳动物端粒酶RNA组分基因转录调节区(例如启动子和上游转录因子结合位点);将外源多核苷酸转移进哺乳动物细胞,在所述细胞中,它可以非同源地整合进染色体位置和/或作为附加型多核苷酸保持或复制。从而在用所述药剂处理的细胞中产生报道基因多核苷酸的统计学上显著的转录调节的药剂作为候选哺乳动物端粒酶调节剂被鉴别出来。
用于鉴别候选端粒酶调节剂的组合物典型地包括(1)一种哺乳动物端粒酶蛋白质组分,其可以是例如从表达端粒酶的哺乳动物细胞纯化的,优选地是从灵长类(例如人类)细胞纯化的,并且其典型地是用RNA酶处理或其它处理剥离掉任何如果有的相关RNA组分,所说的其它处理与除去RNA组分和保留蛋白质(在合适的结合条件下在存在相关端粒酶RNA组分时)重构端粒酶活性的能力相容,(2)一种哺乳动物端粒酶RNA组分,优选地是经细胞中重组多核苷酸的转录产生的人类RNA组分,和(3)水性结合条件(例如生理条件,端粒酶测定条件),以及任选的(4)包含至少一个可复制或可延伸的哺乳动物端粒酶重复序列的报道基因多核苷酸,其典型地互补于所说RNA组分的端粒重复互补模板部分的序列,和任选的(5)在端粒测定条件之下适合于复制和/或延伸报道基因多核苷酸的所说端粒重复序列之核苷酸;典型地是将一种药剂添加到这种组合物中,与缺乏所说药剂的对照组合物比较非共价结合和/或端粒酶活性而进行评价。
第七方面,本发明也提供了哺乳动物端粒酶RNA组分基因的无效等位基因(nullalleles),其是例如经异源多核苷酸的同源基因靶引进哺乳动物端粒酶RNA组分基因以功能性灭活端粒酶RNA组分基因产生的。本发明也提供了包含端粒酶RNA组分无效等位基因的非人类无效(knockout)动物,在一个变化方案中,本发明提供了纯合端粒酶RNA组分无效无效等位基因和基本上缺乏内源端粒酶活性(由缺乏内源端粒酶RNA组分产生)的非人类无效动物。这样的无效动物用作毒理学筛选的市售受试者,出售给药物研究实验室用以鉴别或研究端粒酶调节剂,用作宠物和农用牲畜等。
第八方面,本发明提供了使哺乳动物细胞无限增殖化的方法,所说细胞例如生物反应器中的所需的发酵细胞或具有作为商业性研究受试者的具有有利特性的所需细胞株,该方法包括将表达功能性端粒酶RNA组分的多核苷酸引入到哺乳动物细胞中,所说组分能够在端粒酶蛋白质组分的存在下形成功能性端粒酶。
从附图,本发明的优选的实施方案,实施例,以及权利要求的描述,可以明显看出本发明的特征和优点。定义本文中使用的术语"端粒酶RNA组分多核苷酸"指至少为20个核苷酸的多核苷酸,其中所说的多核苷酸包括至少20个核苷酸的区段,其至少85%相同于天然产生的哺乳动物端粒酶RNA组分序列,典型地是灵长类端粒酶RNA组分,如人类或猴子端粒酶RNA组分。与天然产生的端粒酶RNA组分序列或它的补体相比具有序列变异的某些端粒酶RNA组分的多核苷酸可以适合作为杂交探针,PCR引物,LCR扩增引物,错配RNA组分等。
术语“相应于”本文用来指一个多核苷酸序列与全部或部分参照多核苷酸序列同源(即,相同,不是严格的进化相关),或指一个多肽序列同源于参照多肽序列。相反,术语"互补于"本文用来指互补序列同源于全部或部分参照多核苷酸序列。举例来说,核苷酸序列"TATAC"相应于参照序列"TATAC",并互补于参照序列"GTATA"。
下列术语用来描述两个或更多个多核苷酸序列之间的关系"参照序列","比较窗","序列等同性","序列等同性的百分比",以及"基本上的等同性"。"参照序列"是用作序列比较的基础的限定序列;参照序列可以是一种较大的序列的子集,例如,全长端粒酶RNA组分基因序列的区段。一般地,参照序列至少20个核苷酸长,通常是至少25个核苷酸长,并且常常是至少50个核苷酸长。由于两个多核苷酸各自可以(1)包含两个多核苷酸之间类似的序列(即完整的多核苷酸序列的一部分),和(2)可以进一步包含两个多核苷酸之间不同的序列,所以两个(或更多个)多核苷酸之间的序列比较典型地是通过在"比较窗"上比较两多核苷酸的序列,以鉴别和比较序列类似的局部区域。
本文使用的"比较窗"指至少25个邻接核苷酸位置的概念性区段,其中多核苷酸序列可以与至少25个邻接核苷酸的参照序列比较,且其中就两个序列的优化对比而言比较窗中的多核苷酸序列的部分与参照序列(这种序列不包括添加或缺失)比较可以包含20%或更少的添加或缺失。用于对比比较窗的优化序列对比可以采用Smith和Waterman(1981),Adv.Appl.Math.2482的局部同源算法,Needleman和Wunsch(1970),分子生物学杂志48443的同源对比算法,Pearson和Lipman(1988),Proc.Natl.Acad.Sci.(U.S.A.)852444的相似性检索方法,通过计算机化实施这些方法(威斯康星遗传学软件包7.0中的GAP,BESTFIT,FASTA和TFASTA,遗传学计算机小组,575科学Dr.,Madison,WI),或通过检查,选择由各种方法产生的最好的对比(例如在比较窗上产生最高同源性百分比)。
术语"序列等同性"意指两个多核苷酸序列在比较窗上相同(即以逐个比较核苷酸为基础),术语“序列等同性的百分比”是经以下步骤计算的,在比较窗中比较两个优化对比序列,确定在两个序列中出现相同核酸碱基(即A,T,C,G,U或I)的位置的数量,用配对位置的数量除以比较窗中的位置的总数(即窗的大小),将所得结果乘以100即得序列等同性的百分比。术语“基本上的等同性”本文用来指多核苷酸序列的特征,其中在至少20个核苷酸位置的比较窗(常常是在至少30-50个核苷酸位置的比较窗)上,其中的多核苷酸包括与参照序列比较具有至少80%序列等同性的序列,更优选地至少85%等同性,常常是89-95%序列等同性,更常见的是至少99%的序列等同性,序列等同性的百分比通过将参照序列与多核苷酸序列进行比较而计算,所说多核苷酸序列可以包括在比较窗上的与参照序列比较总共20%或更少的缺失或者添加。参照序列可以是一种较大序列的子集,例如本文公开的全长端粒酶RNA组分基因序列的一个区段。
特异性杂交本文定义为在探针多核苷酸(例如可以包括取代、缺失和/或添加的本发明的多核苷酸)和特异性靶多核苷酸(例如端粒酶RNA组分或者基因组基因序列)之间形成杂合子,其中所说的探针优选地杂交到特异性靶上,以便例如可以在从合适的细胞源(例如表达端粒酶RNA组分的体细胞)制备的RNA的Northern印迹上鉴别相应于端粒酶RNA组分基因的一个或多个RNA种类(或特异性切割或加工的端粒酶RNA组分种类)的单个带。特异性地杂交到哺乳动物端粒酶RNA组分或者人类端粒序列上的本发明的多核苷酸可以在本文提供的序列数据基础上按照本领域中已知的方法和热力学原理制备,所述方法和原理在Maniatis等,分子克隆实验室手册,第二版,(1989),ColdSpring Harbor,N.Y.和Berger和Kimmel,酶学方法,第152卷,分子克隆技术指南,学院出版公司(Academic Press,Inc.),San Diego,CA中有描述,这些文献本文一并参考。
本文使用的术语"合适的结合条件"指水性条件,其中哺乳动物端粒酶RNA组分与其关联蛋白质组分结合,并且从一种包含端粒重复单位适合模板形成有能力催化复制,修复,和/或添加端粒重复单位的酶促活性端粒酶全酶;这样的端粒重复模板可以存在或不存在。通常,合适的结合条件可以是生理条件。本文使用的"生理条件"指温度,pH值,离子强度,粘度等生物化学参数,它们与存活的有机体相容和/或典型地在活培养的哺乳动物细胞中胞内存在,特别是在所说的哺乳动物细胞核中存在的条件。例如,在典型的实验室培养条件下培育的哺乳动物细胞中的核内或胞质条件是生理条件。体外转录混合物的合适的体外反应条件一般是生理条件,并且可以由各种本领域已知的核提取物例证性说明。一般来说,体外生理条件可以包括50-200mM NaCl或KCl,pH值6.5-8.5,20-45℃和0.001-10mM二价阳离子(例如镁离子,钙离子);优选地是大约150mMNaCl或KCl,pH值7.2-7.6,5mM二价阳离子,并且常常包含0.01-1.0%非特异性蛋白质(例如BSA)。通常存在非离子除垢剂(Tween,NP-40,Triton X-100),存在量通常为大约0.001至2%,典型地为0.05-0.2%(V/V)。具体的水性条件可以由操作者按照常规方法选择。作为一般指导,下列缓冲水性条件可以使用10-250mM NaCl,5-50mMTris HCl,pH值5-8,任选地加入二价阳离子和/或金属螯合剂和/或非离子除垢剂和/或膜组分和/或消泡剂和/或闪烁剂。
本文使用的术语"标记物"或“标记的”指可检测的标记物的掺入,例如,掺入放射性标记的氨基酸或在多肽上结合生物素部分,该生物素部分可由标记的抗生物素蛋白(例如,可由光学的或calorimetric方法检测的包含荧光标记或酶促活性的链霉抗生物素蛋白)检测。标记多肽和糖蛋白的各种方法是本领域已知的并且可以使用的。多肽的标记的例子包括但不限于放射性同位素(例如,3H,14C,35S,125I,131I),荧光标记(例如,FITC,碱性蕊香红,镧系元素磷光体),酶促标记(例如,辣根过氧物酶,β-半乳糖苷酶,萤光素酶,碱性磷酸酶),生物素基团,被第二报道者(例如,亮氨酸拉链结构对序列,第二抗体结合位点,转录激活剂多肽,金属结合区,表位标记)识别的预定的多肽表位。在一些实施方案中,经各种长度的间隔臂连接标记以减少潜在的位阻。
本文使用的术语"统计学上显著的"意指一般在至少3次分开的对照试验读出测定的平均值之上或之下至少两个标准偏差的结果(即测定读出),和/或由Student’s T-检验或其它统计学上显著性的本领域接受的测定法测定时为统计学上显著的结果。
本文使用的术语"特殊病症浓度","特殊病症的量",以及"特殊病症杂交模式"分别指样品中的端粒酶RNA组分的浓度,量,或定位模式,其指示发展为致瘤性疾病如癌,肉瘤,或白血病等的病理(例如,致瘤性的,衰老的,免疫缺陷的,神经变性的,炎性的等)状态和易感性的存在。特殊病症量是在细胞或细胞样品中的落在由预测性和/或回顾性统计临床研究建立正常的临床值的范围之外的端粒酶RNA组分的量,该量在。一股地,具有致瘤性疾病(例如癌,肉瘤,或白血病)的个体将显示出细胞或组织样品中的端粒酶RNA组分的量在表征为正常的非病态个体的浓度范围外;典型地特殊病症浓度至少是在平均正常值外大约一个标准偏差,更常见的至少是在平均的正常值之上大约两个标准偏差或更高。然而,几乎所有临床诊断性试验均产生一定百分比的假阳性和假阴性。诊断测定的灵敏性和选择性必须足以满足诊断的目标与任何有关的调节的需要。一般来说,本发明的诊断方法用于鉴别可能患有疾病的个体,在由合格的保健医生所作的区分疾病诊断中提供额外的参数。
本文使用的术语"疾病等位基因"指能够产生可识别疾病的基因的等位基因。疾病等位基因可以是显性的或隐性的,并且可以直接产生疾病,或者与特定的遗传背景或预先存在的病理状态结合起来产生疾病。疾病等位基因可以是基因库中存在的或在个体中经体细胞突变从头产生的。
术语"抗肿瘤剂"本文用来指在人类中有抑制(通常包括抑制转移或转移性潜力)肿瘤发展或扩散的功能性性质的药剂。
本文使用的术语"可操作连接"指功能关系中多核苷酸元件的连接。当一种核酸被置入另一核酸序列的功能关系中时,其是"可操作连接"的。例如,如果启动子或增强子影响编码序列的转录,则它们是可操作连接到编码序列上的。可操作连接意指所连接的DNA序列典型地是邻接的并且当需要连接两个蛋白质编码区时是邻接的并在阅读框架中。然而,因为增强子一般在由几千碱基与启动子分开时起作用,并且内含子序列可以是可变长度的,所以某些多核苷酸元件可以是可操作连接的但是不是邻接的。结构基因(例如HSV tk基因)是可操作连接到相应于内源基因转录调节序列的多核苷酸序列上的,其一般以基本上与天然产生的基因相同的时序和细胞类型特异性模式被表达。
本文使用的术语"转录单位"或"转录复合物"指包含下列基因或序列的多核苷酸序列结构基因(外显子)、顺式作用连接启动子和对结构序列有效转录必需的其它顺式作用序列、对结构序列的适当的组织特异性和发育转录必需的远侧调节元件、对有效转录和翻译重要的附加顺式序列(例如,聚腺苷酸化位点,mRNA稳定性控制序列)。
本文使用的术语"转录调节"指提高或抑制顺式连接的结构序列转录的能力;这样的提高或抑制作用可以是在特异性事件发生时(如用诱导剂刺激)伴随发生的和/或仅在一定的细胞类型中是显然的。
本文使用的术语"转录调节区"指包含功能性启动子和任何相关的转录元件(例如增强子,CCAAT盒,TATA盒,SP1位点,等等)的DNA序列,所述元件是可操作连接到转录调节区上的多核苷酸序列转录必需的。
本文使用的术语"无效等位基因"指基因座包括突变或者结构改变,使得其基本上不能指导功能性基因产物的有效表达。"无效细胞"是具有至少一个内源基因的无效等位基因的细胞,典型地是无效等位基因纯合的。这样,例如,无效细胞可以是在端粒酶RNA组分基因座上的无效等位基因纯合的,以使这样的无效细胞基本上不能表达功能性端粒酶RNA组分。附图简要描述
图1.在各种反应条件下用常规测定方法测定表达突变模板的TRC3 DEAE-琼脂糖凝胶分级分离提取物(其来源于突变TRC3表达稳定的转化子)之细胞的端粒酶活性。在下列条件下测定表达MuC+17 TRC3(1,4,7,10,13,16道,标为C*)、MuC TRC3(2,5,8,11,14,17道,标为C)或MuA TRC3(3,6,9,12,15,18道,标为A)的细胞提取物在正常反应条件下(1-6道),正常加0.5mM ddCTP(7-9道),正常减dTTP加0.5mM ddTTP(10-12道),或正常减dATP加0.5mM ddATP(13-18道)。1-9道的测定反应含有8μM总dGTP,其中1μM是32P-dGTP(800Ci/mmol)。为了有利于突变端粒酶检测,10-18道的测定反应含有8μM总dGTP,其中2μM是32P-dGTP(800 Ci/mmol)。在端粒酶测定前,用无DNA酶的RNA酶处理提取物(25微克/毫升,30℃10分钟)(1-3,16-18道)。
图2.用定量RT-PCR测定端粒酶RNA组分(hTR)和GAPDH RNA的稳态水平。对照显示所有PCR定量直到25个循环都在线性范围内。对5个正常的端粒酶阴性细胞系(1-5)和5个肿瘤端粒酶阳性细胞系(6-10)进行RT-PCR分析1)初级胎肺;2)初级胎手皮肤;3)成人初级前列腺;4)初级窦道(sinovial)成纤维细胞;5)包皮成纤维细胞;6)黑素瘤LOX;7)白血病U251;8)NCIH23肺癌;.9)结肠肿瘤SW620;10)乳腺肿瘤MCF7。PCR产物以32P标记,在6%PAGE上分离,用PhosphorImager定量测定。相对转录以任意单位表示。
图3.在端粒酶RNA组分反义和载体对照细胞中平均TRF长度。在潮霉素和嘌呤霉素培养基中选择能稳定表达10-3-hTR反义或者载体对照的HeTe7细胞,并且在23PDL转染后收集。纯化核DNA,用HinfI和RsaI切割,在0.5%琼脂糖凝胶上分离。在凝胶中用(TTAGGG)3寡核苷酸探查DNA以标记端粒末端限制片段(TRF)。用分子动力学PhosphorImager扫描凝胶,按Allsopp等(1992)Proc.Natl.Acad.Sci.(USA)8910114的描述定量测定平均TRF。虚线表示反义和对照组平均的平均TRF。
图4是原位PCR方法的示意图。优选实施方案的描述本发明提供了与核蛋白人类端粒酶有关的方法,试剂,遗传工程修饰的动物和细胞,以及药物组合物。
此后使用的名称和以下描述的细胞培养,分子遗传学,核酸化学和杂交中的方法可以是本领域已知的和普遍使用的。标准的技术用于重组核酸方法,多核苷酸合成,以及微生物培养和转化(例如电穿孔,脂转染)。所述技术和方法按照本领域和提供这些方法和技术的各种一般性参考文献(一般可参见,Sambrook等,分子扩增实验室手册,第二版,(1989)Cold Spring Harbor实验室出版社,Cold Spring Harbor,N.Y.,此文献本文一并参考)中的常规方法进行。
按照制造商提供的说明可以在应用生物系统寡核苷酸合成仪上合成寡核苷酸。
现有技术中描述了用于PCR扩增的方法(PCR技术DNA扩增的原理和应用,编者GA Erlich,Freeman出版社,纽约NY(1992);PCR方案方法和应用指南,编者Innis,Gelfland,Snisky,and White,学院出版社,San Diego,CA(1990);Mattila et等(1991)核酸研究,194967;Eckert,K.A.和Kunkel,T.A.(1991)PCR方法和应用,117;PCR,编者McPherson,Quirkes,和Taylor,IRL出版社,牛津大学;美国专利4,683,202,这些文献本文一并参考)。
总述本发明一部分涉及人类端粒酶RNA组分和该RNA组分的基因(包括相关转录控制元件)的克隆与分离。人类端粒酶RNA组分的核苷酸序列示于如下。为方便起见,用核糖核苷酸的标准缩写(A是核糖腺嘌呤,G是核糖鸟嘌呤,C是核糖胞苷,并且U是尿苷)表示序列。本领域技术人员清楚以下所示序列也代表cDNA的序列,只是在其中核糖核苷酸由脱氧核糖核苷酸代替(由胸苷代替尿苷)。‘ ‘‘‘‘ 50GGGUUGCGGAGGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUC‘ ‘‘‘‘ 100UAACCCUAACUGAGAAGGGCGUAGGCGCCGUGCUUUUGCUCCCCGCGCGC‘ ‘‘‘‘ 150UGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCU‘ ‘‘‘‘ 200UCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUC‘ ‘‘‘‘ 250GCCCCUCCCGGGACCUGCGGCGGGUCGCUGCCCAGCCCCCGAACCCCGCC‘ ‘‘‘‘ 300UGGAGGCCGCGGUCGGCCGGGGCUUCUCCGGAGGCACCCACUGCCACCGC‘ ‘‘‘‘ 350GAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGU‘ ‘‘‘‘ 400UCACCGUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCGCGCGCGGC‘ ‘‘‘‘ 450GCGAUUCCCUGAGCUAUGGGACGUGCACCCAGGACUCGGCUCACACAUGC‘ ‘‘‘‘ 500AGUUCGCUUUCCUGUUGGUGGGGGGAACGCCGAUCGUGCGCAUCCGUCAC‘ ‘‘‘‘ 550CCCUCGCCGGCAGUGGGGGCUUGUGAACCCCCAAACCUGACUGACUGGGC‘ 559CAGUGUGCU以上序列以5’-3’方向示出,并且给出了供参考的编号。据信RNA组分的模板序列在由第50-60位核苷酸(5’-CUAACCCUAAC-3’)所限定的区域内,其互补于由约三分之一至三分之二的端粒序列重复单位组成的端粒序列。
这一序列源于cDNA克隆和RNA组分的基因组克隆。当RNA组分首先从相应的基因转录时,至少某些产生的RNA转录物比以上所示的约560个核苷酸的序列长得多,并且事实上可以包含1000个以上的核苷酸。然而,从由以上所示的约560个核苷酸序列组成的转录物可以装配完整功能性端粒酶分子。据信天然端粒酶中的RNA组分的3’末端在由以上序列的第514-559位核苷酸所限定的区域内;一种分析表明3’末端可以是第538位核苷酸的U残基。包含少于以上所示序列的1-559位核苷酸的重组RNA组分分子也可以用于制备活性端粒酶。
从插入到λ载体FIXII中的人类DNA的基因组文库鉴别和分离基因组克隆,包含RNA组分基因序列的基因组克隆含有约15kb插入物,被称为克隆28-1。所述基因位于染色体3的q臂的远端上。以下用标准的脱氧核糖核苷酸缩写字母以5’-3’方向示出了从该约15kb插入物的一端的SauIIIA1限制性内切酶识别位点至内HindIII限制性内切酶识别位点的序列信息,所述序列包含所有成熟RNA组分序列以及RNA组分基因的转录控制元件。‘ ‘‘‘‘ 50GATCAGTTAGAAAGTTACTAGTCCACATATAAAGTGCCAAGTCTTGTACT‘ ‘‘‘‘ 100CAAGATTATAAGCAATAGGAATTTAAAAAAAGAAATTATGAAAACTGACA‘ ‘‘‘‘ 150AGATTTAGTGCCTACTTAGATATGAAGGGGAAAGAAGGGTTTGAGATAAT‘ ‘‘‘‘ 200GTGGGATGCTAAGAGAATGGTGGTAGTGTTGACATATAACTCAAAGCATT‘ ‘‘‘‘ 250TAGCATCTACTCTATGTAAGGTACTGTGCTAAGTGCAATAGTGCTAAAAA‘ ‘‘‘‘ 300CAGGAGTCAGATTCTGTCCGTAAAAAACTTTACAACCTGGCAGATGCTAT‘ ‘‘‘‘ 350GAAAGAAAAAGGGGATGGGAGAGAGAGAAGGAGGGAGAGAGATGGAGAGG‘ ‘‘‘‘ 400GAGATATTTTACTTTTCTTTCAGATCGAGGACCGACAGCGACAACTCCAC‘ ‘‘‘‘ 450GGAGTTTATCTAACTGAATACGAGTAAAACTTTTAAGATCATCCTGTCAT‘ ‘‘‘‘ 500TTATATGTAAAACTGCACTATACTGGCCATTATAAAAATTCGCGGCCGGG‘ ‘‘‘‘ 550TGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCGAAGCGGGT‘ ‘‘‘‘ 600GGATCACTTGAGCCCTGGCGTTCGAGACCAGCCTGGGCAACATGGTGAAA‘ ‘‘‘‘ 650CCCCCGTCTCTACTAAAAACACAAAAACTAGCTGGGCGTGGTGGCAGGCG‘ ‘‘‘‘ 700CCTGTAATCCCAGCTACTCAGGAGGCTGAGACACGAGAATCGCTTGAACC‘ ‘‘‘‘ 750CGGGAGCAGAGGTTGCAGTGAGCCGAGATCACGCCACTAGACTCCATCCA‘ ‘‘‘‘ 800GCCTGGGCGAAAGAGCAAGACTCCGTCTCAAAAAAAAAAAATCGTTACAAT‘ ‘‘‘‘ 850TTATGGTGGATTACTCCCCTCTTTTTACCTCATCAAGACACAGCACTACT‘ ‘‘‘‘ 900TTAAAGCAAAGTCAATGATTGAAACGCCTTTCTTTCCTAATAAAAGGGAG‘ ‘‘‘‘ 950ATTCAGTCCTTAAGATTAATAATGTAGTAGTTACACTTGATTAAAGCCAT‘ ‘‘‘‘ 1000CCTCTGCTCAAGGAGAGGCTGGAGAAGGCATTCTAAGGAGAAGGGGGCAG‘ ‘‘‘‘ 1050GGTAGGAACTCGGACGCATCCCACTGAGCCGAGACAAGATTCTGCTGTAG‘ ‘‘‘‘ 1100TCAGTGCTGCCTGGGAATCTATTTTCACAAAGTTCTCCAAAAAATGTGAT‘ ‘‘‘‘ 1150GATCAAAACTAGGAATTAGTGTTCTGTGTCTTAGGCCCTAAAATCTTCCT‘ ‘‘‘‘ 1200GTGAATTCCATTTTTAAGGTAGTCGAGGTGAACCGCGTCTGGTCTGCAGA‘ ‘‘‘‘ 1250GGATAGAAAAAAGGCCCTCTGATACCTCAAGTTAGTTTCACCTTTAAAGA‘ ‘‘‘‘ 1300AGGTCGGAAGTAAAGACGCAAAGCCTTTCCCGGACGTGCGGAAGGGCAAC‘ ‘‘‘‘ 1350GTCCTTCCTCATGGCCGGAAATGGAACTTTAATTTCCCGTTCCCCCCAAC‘ ‘‘‘‘ 1400CAGCCCGCCCGAGAGAGTGACTCTCACGAGAGCCGCGAGAGTCAGCTTGG‘ ‘‘‘‘ 1450CCAATCCGTGCGGTCGGCGGCCGCTCCCTTTATAAGCCGACTCGCCCGGC‘ ‘‘‘‘ 1500AGCGCACCGGGTTGCGGAGGGAGGGTGGGCCTGGGAGGGGTGGTGGCCAT‘ ‘‘‘‘ 1550TTTTTGTCTAACCCTAACTGAGAAGGGCGTAGGCGCCGTGCTTTTGCTCC‘ ‘‘‘‘ 1600CCGCGCGCTGTTTTTCTCGCTGACTTTCAGCGGGCGGAAAAGCCTCGGCC‘ ‘‘‘‘ 1650TGCCGCCTTCCACCGTTCATTCTAGAGCAAACAAAAAATGTCAGCTGCTG‘ ‘‘‘‘ 1700GCCCGTTCGCCCCTCCCGGGACCTGCGGCGGGTCGCTGCCCAGCCCCCGA‘ ‘‘‘‘ 1750ACCCCGCCTGGAGGCCGCGGTCGGCCGGGGCTTCTCCGGAGGCACCCACT‘ ‘‘‘‘ 1800GCCACCGCGAAGAGTTGGGCTCTGTCAGCCGCGGGTCTCTCGGGGGCGAG‘ ‘‘‘‘ 1850GGCGAGGTTCACCGTTTCAGGCCGCAGGAAGAGGAACGGAGCGAGTCCCG‘ ‘‘‘‘ 1900CGCGCGGCGCGATTCCCTGAGCTATGGGACGTGCACCCAGGACTCGGCTC‘ ‘‘‘‘ 1950ACACATGCAGTTCGCTTTCCTGTTGGTGGGGGGAACGCCGATCGTGCGCA‘ ‘‘‘‘ 2000TCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAACCCCCAAACCTGACT‘ ‘‘‘‘ 2050GACTGGGCCAGTGTGCTGCAAATTGGCAGGAGACGTGAAGGCACCTCCAA‘ ‘‘‘‘ 2100AGTCGGCCAAAATGAATGGGCAGTGAGCCGGGGTTGCCTGGAGCCGTTCC‘ ‘‘‘‘ 2150TGCGTGGGTTCTCCCGTCTTCCGCTTTTTGTTGCCTTTTATGGTTGTATT‘ ‘‘‘‘ 2200ACAACTTAGTTCCTGCTCTGCAGATTTTGTTGAGGTTTTTGCTTCTCCCA‘ ‘‘‘‘ 2250AGGTAGATCTCGACCAGTCCCTCAACGGGGTGTGGGGAGAACAGTCATTT‘ ‘‘‘‘ 2300TTTTTTGAGAGATCATTTAACATTTAATGAATATTTAATTAGAAGATCTA‘ ‘‘‘‘ 2350AATGAACATTGGAAATTGTGTTCCTTTAATGGTCATCGGTTTATGCCAGA‘ ‘‘‘‘ 2400GGTTAGAAGTTTCTTTTTTGAAAAATTAGACCTTGGCGATGACCTTGAGC‘ ‘‘‘‘ 2425AGTAGGATATAACCCCCACAAGCTTRNA组分序列在碱基1459上开始。在该序列上的各种转录控制元件被鉴别。在第1431-1436位核苷酸上发现一个A/T盒共有序列;在第1406-1414位核苷酸以及第1508-1526位核苷酸上发现荧光PSE共有序列;在第1399-1406位核苷酸上发现一个CAAT盒共有序列;在第1354-1359位核苷酸上发现一个SP1共有序列;在第1234-1245位核苷酸上发现一个β/γ-干扰素反应元件共有序列。当第1159位核苷酸上游序列在稳定转染进细胞的载体中缺失时,在人类细胞如HT1080中的人类端粒酶RNA组分的稳态转录(端粒酶表达)基本上不改变。
松鼠猴(其被认为属于遗传上与人类最有差异的非人类灵长类动物之一)的DNA包含端粒酶RNA组分基因,其可用由相应于或互补于所公开的人类端粒酶RNA组分多核苷酸序列之序列组成的PCR引物进行扩增。其它非人类灵长类也被认为具有端粒酶RNA组分基因,该基因也可用源于人类端粒酶RNA组分基因的序列的PCR引物进行扩增。
端粒酶RNA组分多核苷酸哺乳动物端粒酶RNA组分序列和其基因的公开(如以上所示的有关人类端粒酶和图5中所示出的有关松鼠猴端粒酶)使构建包含至少15个邻接的核苷酸(典型地至少20至25个邻接的多核苷酸)序列的分离的多核苷酸成为可能,所述的序列基本上与哺乳动物端粒酶RNA组分序列或哺乳动物RNA组分基因序列相同。此外,哺乳动物端粒酶RNA组分(和基因)序列使得构建核酸杂交探针和PCR引物成为可能,所述探针和引物可以用于检测细胞,细胞样品,组织切片,反应载体,杂交膜等中的关联端粒酶RNA组分和/或基因的RNA和DNA序列。
包含哺乳动物端粒酶RNA组分序列的多核苷酸可以包含有利于转录的序列(表达序列),RNA稳定序列等,鉴于本发明所公开的序列信息和本发明的指导,构建这些多核苷酸的一般原理是本领域公知的,并且在Maniatis等,分子克隆实验室手册,第二版,(1989),Cold Spring Harbor,N.Y.中有描述。这样的多核苷酸例如但不限于可以包含启动子,任选的用于真核表达宿主表达的增强子,和任选的载体复制必需的序列。典型的真核表达盒包括多核苷酸序列,当其被转录时产生哺乳动物端粒酶RNA组分转录物;这样的多核苷酸序列被连接到合适启动子例如HSV tk启动子或者pgk(磷酸甘油酸激酶)启动子(所述启动子任选地可操作连接到增强子上)的下游(即5’到3’转录方向)。
另外,在不需要功能性端粒酶RNA组分的表达时,本发明的多核苷酸不需转录功能性端粒酶RNA组分转录物。本发明的多核苷酸可以用作检测端粒酶RNA组分RNA或者DNA序列的杂交探针和/或PCR引物(扩增引物)和/或LCR寡聚物。
另外,本发明的多核苷酸可以作为检测相关基因的RNA或DNA序列,或相关物种(典型地是哺乳动物物种)的端粒酶RNA组分基因的杂交探针或引物。对于这样的杂交和PCR用途,本发明的多核苷酸不需转录功能性端粒酶RNA组分。这样,本发明的多核苷酸可以包含基本上的缺失,添加,核苷酸取代和/或转座,只要哺乳动物端粒酶RNA组分序列的特异性杂交或特异性扩增被保留。
可以用基于本文公开的核苷酸序列设计的杂交探针由常规杂交筛选方法(例如,Benton WD和Davis RW(1977)科学196180;Goodspeed等(1989)基因761)从克隆文库(例如得自Clontech,Palo Alto,CA)分离哺乳动物端粒酶RNA组分和相应基因序列的基因组克隆或者cDNA克隆。当cDNA克隆是所需的时,包含源于体细胞RNA或者其它表达端粒酶RNA组分的细胞RNA的cDNA的克隆文库是优选的。另外,可以经寡核苷酸化学合成构建相应于所有或部分本文公开的序列的合成多核苷酸序列。另外,采用基于本文公开的序列数据之引物的聚合酶链反应(PCR)可以用来从基因组DNA,RNA库,或cDNA克隆文库扩增DNA片段。美国专利4,683,195和4,683,202描述了PCR方法。
这些多核苷酸具有各种用途,包括作为端粒酶RNA组分探针,作为在细胞中生产功能性或非功能性端粒酶RNA组分的模板,作为标准化端粒酶RNA组分检测测定的商业诊断试剂,作为施用于动物的基因治疗多核苷酸;在其其它用法中,这些多核苷酸也可以用作食物,易燃的能源,UV-吸收太阳筛试剂,和增加粘性的溶质。
本文描述的在人类端粒酶RNA组分和RNA组分的基因的克隆期间构建的质粒是本发明的重要的方面。这些质粒可以用来以基本上纯化的形式生产人类端粒酶的RNA组分及其基因,这是本发明的另一个重要的方面。此外,本领域技术人员清楚基本上纯化的形式的各种其它质粒,以及非质粒核酸是本发明提供的有用的材料,所述质粒和非质粒核酸包括人类端粒酶RNA组分的核苷酸序列的全部或至少其有用部分。
一般来说,就本发明的核酸和包含该核酸的制剂而言,本领域技术人员清楚,本发明的核酸包括DNA和RNA分子两者,及其合成的非天然产生的类似物,以及脱氧核糖核苷酸,核糖核苷酸,和/或两者的类似物的异源多聚体。本发明的核酸或核酸类似物的具体的组合物取决于使用所述材料的目的和所述材料所置入的环境。修饰的或者合成的,非天然产生的核苷酸设计来用于各种目的并在各种环境中保持稳定,如存在核酸酶的环境,这是本领域公知的。与天然产生的核糖核苷酸或脱氧核糖核苷酸比较,修饰的或者合成的非天然产生的核苷酸在核苷酸碳水化物(糖),磷酸酯连接键,或碱基部分可以是不同的,或在某些情况下甚至可以包含非核苷酸碱基(或根本没有碱基)。参见,例如,Arnold等,PCT专利出版物WO 89/02439,名称为"核苷酸探针的非核苷酸连接试剂",本文一并参考。正因为本发明的核酸可以包含各种核苷酸,所以可以利用那些核酸的宽范围的各种功能。
关联基因的分离如以上描述所表明的,包含人类端粒酶RNA组分序列的纯化的核酸的获得提供了有价值的诊断和治疗方法和试剂,以及其它重要的益处。本发明的一种重要的益处是本发明的方法与试剂可以用于从任何哺乳动物物种分离端粒酶RNA组分和RNA组分的基因,所述物种具有基本上同源于本发明的人类RNA组分的RNA组分。术语"基本上同源"指人类RNA组分的寡核苷酸或核酸序列与另一种哺乳动物物种的RNA组分序列的核酸序列特异性杂交所需的同源程度。给定这样的基本上的同源性,本领域普通技术人员能够使用本发明的核酸和寡核苷酸的引物和探针鉴别和分离基本上同源的序列。
例如,人们可以探查基因组或者cDNA文库以检测同源的序列。人们也可以在低的或中等严格的条件下用相应于RNA组分序列区域的引物和PCR扩增法从哺乳动物物种的RNA或者DNA制剂扩增特异性同源的核酸序列。通过采用这些和其它类似的技术,普通技术人员不仅可以容易地从人类细胞分离变体RNA组分核酸,而且也可以从其它哺乳动物细胞分离同源的RNA组分核酸,所述的哺乳动物细胞如灵长类细胞,兽医目标哺乳动物(即,牛,羊,马,狗,以及猫)细胞,以及啮齿类(即,大鼠,小鼠,以及仓鼠)细胞。同样这些核酸可以用于制备转基因动物,该动物对筛选和测定调节端粒酶活性的药物具有极大的价值。例如,通过用本发明的质粒,人们可以在mus spretus胚干细胞中使RNA组分基因"无效"或用重组诱导型基因代替天然RNA组分基因,然后产生转基因小鼠,该小鼠可用作为与老化或衰老有关的疾病的研究模型或检验系统,以下实施例9说明这样的方法怎样用于鉴别和分离灵长类的RNA组分序列。
用包含人类或猴子端粒酶RNA组分或者基因多核苷酸序列的约至少20个邻接核苷酸(或其补体)之序列的多核苷酸探针,通过筛选合适的非人类哺乳动物基因组或者cDNA克隆文库(例如来源于小鼠、大鼠、兔、天竺鼠、仓鼠、犬、牛、羊、狼、猪)或在合适载体如酵母人工染色体,粘粒,或噬菌体λ(例如,λCharon 35)中的其它基因组文库或者cDNA文库可以鉴别和分离人类和猴子端粒酶RNA组分和/或关联基因的其它哺乳动物同系物。典型地,按照常规杂交方法,在高度严格的条件进行杂交和洗涤。分离阳性克隆并测序。说明性地但非限制性地,相应于人类端粒酶RNA组分的559个核苷酸的全长多核苷酸序列可被标记并用作从λEMBL4或λGEM11(Promega公司,Madison,威斯康星)中的非人类基因组克隆文库分离基因组克隆的杂交探针。噬斑筛选的典型的杂交条件(Benton和Davis(1978)科学196180;Dunn等(1989)生物化学杂志26413057)可以是50%甲酰胺,5XSSC或SSPE,1-5X Denhardt’s溶液,0.1-1%SDS,100-200微克剪切的异源DNA或者tRNA,0-10%葡聚糖硫酸盐,1×105到1×107cpm/ml具有约1×108cpm/μg比活性的变性探针,在42℃-37℃温育约6-36小时。除了不包括探针和温育时间典型地减少外,预杂交条件基本上相同。洗涤条件典型地是1-3X SSC,0.1-1%SDS,45-70℃在约5-30分钟更换洗涤溶液。对于用人类端粒酶RNA组分多核苷酸探针分离非人类端粒酶RNA组分多核苷酸而言,在较低严格条件下杂交常是优选的,如大约39℃,并且按下列步骤温度顺序洗涤室温,37℃,39℃,42℃,45℃,50℃,55℃,60℃,65℃,以及70℃,在进行每步后中止并检测背景探针信号(如果使用放射性标记的探针,通过放射自显影照片和/或磷光体图象任选地检测信号),当经验性测定获得适合的信/噪比时,终止洗涤的步骤。
包含大约至少30-50个核苷酸,优选地至少100核苷酸的序列的多核苷酸可以用作鉴别和分离相应于所公开的基因和RNA组分序列的种系基因之PCR引物和/或杂交探针,所说多核苷酸相应于或互补于本文所示的人类与猴子端粒酶RNA组分序列。这样的种系基因可以由本领域各种常规方法分离,包括但不限于,经杂交筛选噬菌体λ中的基因组文库或粘粒文库,经用源于本文公开的序列的引物扩增基因组序列。人类基因组文库是公众可获得的或可以从人类DNA从头构建。
对本领域技术人员明显的是核苷酸取代,缺失,以及添加可以掺入本发明的多核苷酸。核苷酸序列变化可以产生自各种等位基因等的序列多态性。然而,这样的核苷酸取代,缺失,以及添加基本上不应破坏多核苷酸在产生特异性杂交的足够严格的条件下杂交到本文所示的一个全长人类或猴子端粒酶RNA组分多核苷酸序列上的能力。
哺乳动物端粒酶RNA组分多核苷酸可以是短的寡核苷酸(例如20-100个碱基长),例如用作杂交探针和PCR(或LCR)引物。所说多核苷酸序列也可以包括较大的多核苷酸的一部分(例如包含端粒酶RNA组分克隆的克隆载体),并且可以与另一个多核苷酸序列经多核苷酸连接键融合。典型地,端粒酶RNA组分多核苷酸包括至少25个连续核苷酸,其基本上与天然产生的端粒酶RNA组分或基因序列相同,更常见的是端粒酶RNA组分多核苷酸包括至少50至100个连续核苷酸,其与天然产生的哺乳动物端粒酶RNA组分序列基本上相同。然而,本领域技术人员会认识到,对端粒酶RNA组分靶序列的特异性杂交所需的端粒酶RNA组分多核苷酸的最小长度将取决于若干因素G/C含量,错配碱基(如果有任何错配碱基的话)的位置,与靶多核苷酸群相比较序列唯一性的程度,以及多核苷酸的化学性质(例如甲基膦酸酯骨架,聚酰胺核酸,硫代磷酸酯等)等。
如果需要,可以由操作者凭借判断力选择用于扩增基本上全长cDNA拷贝的PCR扩增引物。同样地,可以选择用以扩增端粒酶RNA组分基因(猴子或人类)的部分的扩增引物。
这些序列的各种均可用作杂交探针和PCR扩增引物,以检测端粒酶RNA组分的存在,例如,诊断以细胞中端粒酶RNA组分水平升高或降低为特征的致瘤性疾病,或进行组织分型(即鉴别以表达端粒酶RNA组分为特征的组织)等。这些序列也可以用于检测在DNA样品中的基因组端粒酶RNA组分基因序列,例如法医DNA分析(例如通过RFLP分析,PCR产物长度分布,等等),或用于诊断以端粒酶RNA组分基因的扩增和/或重排为特征的疾病。
作为举例但不作为限制,以下一对寡核苷酸引物可以用来扩增端粒酶RNA组分多核苷酸序列(例如cDNA),或作为杂交探针(例如作为生物素化的或者末端标记的寡核苷酸探针)5’-AGCACACTGGCCCAGTCAGTCAGGTTTG-3’和5’-GGGTTGCGGAGGGAGGGTGGGCCTGGGA-3’鉴于本文所公开的和能够由其得到的端粒酶RNA组分序列,其它合适的PCR引物,LCR引物,杂交探针,以及引物等对本领域技术人员是显而易见的。人类端粒酶RNA组分多核苷酸及其补体可以用作检测哺乳动物端粒酶RNA组分的RNA或DNA序列的杂交探针或引物。只要人类端粒酶RNA组分序列的特异性杂交或特异性扩增被保留,这样的杂交和PCR应用就可能包含基本上的缺失,添加,核苷酸取代和/或转座。然而,这样的核苷酸取代,缺失,以及添加基本上不应破坏多核苷酸在产生特异性杂交的足够严格的条件下杂交到端粒酶RNA组分或基因序列上的能力。
作为举例但不作为限制,人类端粒酶RNA组分多核苷酸可以包括从第48位核苷酸到第209位核苷酸的序列,其被认为在端粒酶蛋白质组分的存在下足以重构人类端粒酶全酶5′-UCUAACCCUAACUGAGAAGGGCGUAGGCGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUCGCCCCUCCC-3′或作为DNA为5′-TCTAACCCTAACTGAGAAGGGCGTAGGCGCCGTGCTTTTGCTCCCCGCGCGCTGTTTTTCTCGCTGACTTTCAGCGGGCGGAAAAGCCTCGGCCTGCCGCCTTCCACCGTTCATTCTAGAGCAAACAAAAAATGTCAGCTGCTGGCCCGTTCGCCCCTCCC-3′.人类端粒酶RNA组分多核苷酸也可以包含第1-559位核苷酸或由它们组成,并且可以包含其它核苷酸或者核苷酸序列的末端添加。无规模板(template-scrambled)变体由第48-209位核苷酸组成,但其中端粒重复模板序列被改变,就结合到端粒酶蛋白质组分以重构端粒酶全酶而言,其能够与由野生型序列48-209组成的截短的RNA组分竞争。
对人类端粒酶RNA组分的结构分析指示出具有形成二级结构的倾向的区域,如发夹环。例如,人类端粒酶RNA组分的约第200位核苷酸到第350位核苷酸的区域具有基本的发夹环特点。端粒酶RNA组分其它部分也具有明显二级结构的特点,就提到的二级结构而言,通过计算机分析预料的采用类似的二级结构形式的其它核苷酸序列可以由技术人员取代。虽然多种计算机程序适于测定采取基本上等同的二级结构的核苷酸序列,但可以使用UWGCG序列分析软件包程序FOLD,SQUIGGLES,CIRCLES,DOMES,NOUNTAINS,以及STEMLOOP。同样地,非核苷酸结构模拟物(如肽核酸,等)可由分子模拟程序设计,以模仿出具有所需的人类端粒酶RNA组分区特征性二级结构的模拟物。这些结构模拟物可以用于治疗或者各种用途(例如竞争性拮抗剂,等等)。
反义本发明的一种特别有用的核酸类型是反义寡核苷酸,其可以用于体内或体外抑制人类端粒酶活性。反义寡核苷酸包含从大约10到大约25至200个或更多个(即,如果需要,大到足以形成稳定的双链,小到根据输送模式足以体内施用)核苷酸的特异序列,该序列互补于人类端粒酶RNA组分中的核苷酸的特定序列。这些寡核苷酸的作用机制可以涉及结合RNA组分以阻止功能性核糖核蛋白端粒酶的装配或阻止RNA组分作为端粒DNA合成的模板,使端粒酶RNA组分不稳定并降低其半衰期,和/或抑制端粒酶RNA组分基因的转录。
用于体内和/或体外抑制端粒酶活性的例证性的本发明的反义寡核苷酸包括以上提到的寡核苷酸,它们与确定克隆pGRN7是否包含人类端粒酶RNA组分的cDNA的试验相关。使用了以上提到的三种这样的寡核苷酸用于体外证明端粒酶活性的抑制作用。这些寡核苷酸各自的序列示于如下。T3 5’-CTCAGTTAGGGTTAGACAAA-3’P3 5’-CGCCCTTCTCAGTTAGGGTTAG-3’TA35’-GGCGCCTACGCCCTTCTCAGTT-3’这些寡核苷酸也可用于在人类细胞中抑制端粒酶活性。本领域技术人员会认识到本发明提供了宽范围的能够抑制端粒酶活性的反义寡核苷酸。本发明的另一类有用的反义寡核苷酸是寡核苷酸Tel-Au,其具有序列5’-CAGGCCCACCCTCCGCAACC-3’,与本发明的任何反义寡核苷酸一样,它可以用硫代磷酸酯核苷酸,手性甲基膦酸酯,天然产生的核苷酸,或它们的混合物合成以赋予稳定性和所需的Tm。本领域技术人员清楚,各种修饰的核苷酸类似物如O-甲基核苷酸,硫代磷酸酯核苷酸和甲基膦酸酯核苷酸可以用来生产本发明的核酸,其与用天然产生的核苷酸生产的核酸相比具有更多所需性质(即核酸酶抗性,更紧密结合性,等等)。提供寡核苷酸核酸酶抗性的其它技术包括在PCT专利出版物94/12633中所描述的那些。
涉及调节端粒酶活性的其他实施方案包括采用互补于全部或部分人类端粒酶RNA组分(hTR)序列的特异性反义多核苷酸的方法,所说反义多核苷酸例如人类端粒酶RNA组分基因或其转录的RNA的反义多核苷酸,包括可能与端粒酶全酶相关的截短的形式。这样的互补反义多核苷酸可以包括核苷酸取代,添加,缺失,或转座,只要特异性结合到相应于端粒酶RNA组分或其基因的相关靶序列上被保留为所说多核苷酸的一种功能性性质即可。互补反义多核苷酸包括可溶性反义RNA或者DNA寡核苷酸,它们可以特异性地杂交到端粒酶RNA组分物种上,并阻止端粒酶RNA组分基因的转录(Ching等(1989)Proc.Natl.Acad.Sci.美国8610006;Broder等(1990)Ann.Int.Med.113604;Loreau等(1990)FEBS Letters 27453;Holcenberg等WO91/11535;U.S.S.N.07/530,165;WO91/09865;WO91/04753;WO90/13641;和EP 386563,各文献本文一并参考)。因此,所说的反义多核苷酸抑制功能性端粒酶RNA组分的产生。因为端粒酶RNA组分表达(转录速率和/或RNA稳定性)与端粒酶全酶的激活和酶促活性有关,所以阻止相应于端粒酶RNA组分的RNA的转录和/或端粒酶RNA组分与人类端粒酶蛋白质组分的相互作用和/或端粒酶RNA组分与端粒序列的相互作用的反义多核苷酸可以抑制端粒酶活性和/或反转表型,例如,在不存在反义多核苷酸的情况下,表达端粒酶活性的细胞的无限增殖化或致瘤性转化。如果需要,包含治疗有效剂量的端粒酶RNA组分反义多核苷酸的组合物可以用来治疗其发病机理需要端粒酶活性的疾病(例如瘤形成),或抑制配子产生或保持(如作为避孕剂)。虽然这样的多核苷酸典型地包含约至少25个连续核苷酸的序列,但可以产生各种长度的反义多核苷酸,所说的序列基本上互补于天然产生的端粒酶RNA组分多核苷酸序列,典型地,其完美地互补于人类端粒酶RNA组分序列,常常是互补于与端粒重复序列互补的端粒酶RNA组分的序列或与端粒酶RNA组分的接触端粒酶多肽亚单位的部分互补。
可以从转染细胞或转基因细胞中的异源表达盒生产反义多核苷酸。所说异源表达盒可以是基因治疗载体,如腺病毒或者腺伴随病毒载体,或其它基因治疗载体的一部分。所说异源盒可以在多核苷酸上,这种多核苷酸不能独立复制,并用任何本领域技术人员已知的各种适合的方法转移进细胞(例如脂转染,biolistics,脂质体,免疫脂质体,电穿孔,等等)。另外,所述多核苷酸可以包括被施用到外环境,即在体外的培养基中或体内应用时为间质腔和体液(例如,血液,CSF)中的可溶性寡核苷酸。在外部环境中的可溶性反义多核苷酸表现出可接近细胞质并抑制特异性的RNA物种。在一些实施方案中,反义多核苷酸包括甲基膦酸酯部分,C-5丙烯基部分,2’氟代核糖(fluororibose),或聚酰胺核酸(戊糖核酸)(Egholm等(1992)美国化学会杂志1141895;Wittung等(1994)自然368561;Egholm等(1993)自然365566;Hanvey等(1992)科学2581481,本文一并参考)。有关反义多核苷酸的一般方法参见《反义RNA和DNA》,(1988),D.A.Melton编辑,Cold Spring Harbor实验室,Cold Spring Harbor,NY)。
除本发明的反义寡核苷酸之外,人们可以构建结合到在折叠的RNA组分中或在RNA组分基因中的双联核酸上的寡核苷酸,形成抑制端粒酶活性的含三股螺旋的核酸或三联核酸。用形成三股螺旋的碱基配对规则和RNA组分的核苷酸序列构建本发明的这些寡核苷酸(Cheng等(1988)生物化学杂志26315110;Ferrin和Camerini-Otero(1991)科学3541494;Ramdas等(1989)生物化学杂志26417395;Strobel等(1991)科学2541639;Hsieh等(1990)op.cit.;Rigas等。(1986)Proc.Natl.Acad.Sci.(美国)839591,本文一并参考)。这些寡核苷酸可以以多种方式阻断端粒酶活性,包括阻止端粒酶基因的转录或以阻止RNA组分形成功能性核蛋白端粒酶或作为端粒DNA合成的模板的方式结合到端粒酶RNA组分的双螺旋区。典型地,取决于作用方式,本发明的三螺旋形成寡核苷酸包含从大约10到大约25至200或更多个(即,如果需要,大到足以形成稳定的三螺旋,小到根据输送方式足以体内施用)核苷酸的特异序列,该特异序列“互补”(在此,互补意味着能够形成稳定的三股螺旋)于端粒酶RNA组分或者端粒酶RNA组分基因中的特异序列。
除了本发明的反义寡核苷酸和形成三股螺旋的寡核苷酸之外,与人类端粒酶RNA组分至少一部分序列相同的有义寡核苷酸也可以用于抑制端粒酶活性。本发明的这种类型的寡核苷酸的特征是包含(1)少于形成功能性端粒酶所需的RNA组分的全序列,或(2)形成功能性端粒酶所需的RNA组分的全序列以及使得形成的RNA无功能的一个或多个核苷酸取代或者插入。由于"突变"RNA组分结合人类端粒酶蛋白质组分形成失活的端粒酶分子,在两种情况下都观察到端粒酶活性的抑制作用。因此,这些寡核苷酸的作用机制涉及装配非功能性核蛋白端粒酶或者阻止功能性核蛋白端粒酶的装配。一个例子是由核苷酸48-209组成的但其中端粒酶重复模板序列被改变的无规模板变体,这种无规模板变体能够竞争结合到端粒酶蛋白质组分上。本发明的这种类型的有义寡核苷酸典型地包含约20、50、100、200、400、500或更多个核苷酸的特异序列,其与人类端粒酶RNA组分中的特异核苷酸序列相同。
此外,反义多核苷酸可以包括衍生的取代基,它基本上不干扰对哺乳动物端粒酶RNA组分的杂交。已用附加的化学取代基修饰的反义多核苷酸可以被引入到代谢活性的真核细胞中以便与细胞中的端粒酶的端粒酶RNA组分杂交。典型地,分别在多核苷酸合成期间或其后衍生这样的反义多核苷酸,添加化学取代基,这样它们定位于端粒酶RNA组分中的互补序列,在那里它们产生对局部DNA序列和/或端粒酶蛋白质组分的改变或化学修饰。优选的连接的化学取代基包括铕(III)texaphyrin,交联剂,补骨脂素,金属螯合物(例如铁催化断裂的铁/EDTA螯合物),拓扑异构酶,内切核酸酶,外切核酸酶,连接酶,磷酸二酯酶,光动力卟啉,化学治疗药物(例如亚德里亚霉素,doxirubicin),插入剂,碱基修饰剂,免疫球蛋白链,以及寡核苷酸。铁/EDTA螯合物是特别优选的化学取代基,其中多核苷酸序列的局部断裂是所需的(Hertzberg等(1982)J.Am.Chem.Soc.104313;Hertzberg和Dervan(1984)生物化学233934;Taylor等(1984)四面体40457;Dervan,PB(1986)科学232464)。虽然链亲和素/生物素和地高辛配基/抗地高辛配基抗体连接方法也可以使用,但优选的吸附化学法包括直接连接,例如,经由一个附加的反应性氨基(Corey和Schultz(1988)科学2381401,这些文献本文一并参考)和其它直接连接化学法,在美国专利5,135,720,5,093,245和5,055,556(这些文献本文一并参考)中提供了连接化学取代基的方法。其它连接化学法可以由操作者判断使用。相应于哺乳动物端粒酶RNA组分全部或实质性部分的多核苷酸(即"有义"多核苷酸)也可以是衍生化的,可以用于与基因组中端粒重复序列反应,并在染色体的端粒区产生对化学环境的加合或其它修饰。
错配模板这样,本发明的另一种有用的寡核苷酸包括人类端粒酶RNA组分的改变或突变的序列。Yu等,1990,自然344126指出四膜虫端粒酶RNA组分的突变形式可以掺入四膜虫细胞的端粒酶中,并且这种掺入对那些细胞具有有害作用。人类端粒酶RNA组分的突变形式的掺入可以对具有端粒酶活性的人类细胞具有类似的效应,而不影响没有端粒酶活性的正常的人类细胞。这样的突变形式包括其中序列5’-CTAACCCCTA-3’突变成5’-CAAACCCAA-3’,5’-CCAACCCCAA-3’,或5’-CTCACCCTCA-3’的那些突变形式。这些改变的RNA组分序列改变掺入染色体DNA的端粒重复单位,由此影响染色体结构和功能。这样的寡核苷酸可以设计成包含限制性内切酶识别位点,用在经限制性内切酶消化端粒DNA或延伸的端粒酶底物诊断改变的RNA组分的存在的诊断方法中。
为了说明本发明的这一方面,用质粒(命名为pGRN33,从美国典型培养物保藏中心获得,保藏号ATCC75926)进行位点特异性诱变,所述质粒包含λ克隆28-1的约2.5kbHindIII-SacI片段(参见以下实施例7)以及SV40复制起点(但是没有启动子活性)。将所形成的质粒,命名为pGRN34(包含5’-CAAACCCAA-3’),pGRN36(包含5’-CCAACCCCAA-3’)以及pGRN37(包含5’-CTCACCCTCA-3’),转化进真核宿主细胞(表达SV40大T抗原的293衍生细胞株)并用转化子细胞抽提物进行端粒酶测定。
所述测定显示细胞中的端粒酶活性导致形成包含改变的序列的核酸,表明基因组克隆包含一个功能性RNA组分基因,以及质粒包含一个改变的但是有功能的RNA组分基因。这些结果说明本发明提供了用于生产重组端粒酶制剂的方法和这样的制剂。本发明提供了重组人类端粒酶,它包含与本发明的重组RNA组分的功能性相结合的人类端粒酶蛋白质组分。本发明的这样的重组RNA组分分子包括由一个或多个碱基取代、缺失或插入而导致的不同于天然产生的RNA组分分子的那些RNA组分分子,以及与在重组宿主细胞中产生的天然产生的RNA组分分子相同的那些RNA组分分子。用于产生这样的重组端粒酶分子的方法包括用编码本发明的RNA组分分子的重组表达载体转化表达端粒酶蛋白质组分的真核宿主细胞,以及培养用所述载体转化的所述宿主细胞,所述的培养是在使所述蛋白质组分与RNA组分表达和装配形成活性端粒酶分子的条件下进行的,其中所说的活性端粒酶分子能够使序列(不必是与由天然端粒酶添加的序列相同的序列)添加至染色体DNA端粒上。这样的重组DNA表达载体(或质粒)的其它有用的实例包括下述一些质粒,这些质粒包含人类端粒酶RNA组分的基因,其具有使基因无功能的缺失,插入或其它修饰。尽管需要高效转化与重组系统,但这些质粒使内源RNA组分基因“无效”(使处理过的细胞不可避免地死亡)的人类基因治疗来说尤其有用。
核酶实施方案本发明的称为核酶的其它寡核苷酸也可以用于抑制端粒酶活性。不同于以上描述的反义和其它寡核苷酸(其结合到RNA,DNA,或端粒酶蛋白质组分上),核酶不仅结合而且特异性地切割进而潜在地失活靶RNA,如人类端粒酶RNA组分。这样一种核酶可以包含互补于端粒酶RNA的5’-和3’末端序列。依赖切割位点,核酶可以使端粒酶酶失活。参见PCT专利出版物93/23572,同上。基于回顾人类端粒酶RNA组分的RNA序列本领域技术人员会注意到存在几个有用的核酶靶位点,它们易于被例如锤头基序核酶切割。本发明的这种类型的例证性核酶包含以下的核酶,它们是具有以下序列的RNA分T15’-UAGGGUUACUGAUGAGUCCGUGAGGACGAAACAAAAAAU-3’;25’-UUAGGGUCUGAUGAGUCCGUGAGGACGAAAGACAAAA-3’;35’-UCUCAGUCUGAUGAGUCCGUGAGGACGAAAGGGUUA-3’和45’-CCCGAGACUGAUGAGUCCGUGAGGACGAAACCCGCG-3’。用于核酶介导的酶活性的抑制作用的其它优选的靶位点可以按以下文献描述的方法确定Sullivan等PCT专利出版物94/02595和Draper等,PCT专利出版物93/23569,两者本文一并参考。如Hu等PCT专利出版物94/03596(本文一并参考)所描述的,反义和核酶功能可以结合在一种寡核苷酸中。此外,核酶可以包含一个或多个修饰的核苷酸或修饰的核苷酸间连接键,如以上以及有关本发明的反义寡核苷酸的说明性描述所描述的。一方面,修饰RNA酶的催化亚单位P(人类或大肠杆菌)(参见,Altman S(1995)生物技术13327)产生相应于哺乳动物端粒酶RNA组分的部分(其碱基配对于端粒重复序列)的指导序列;这样的RNA酶P变体可以切割端粒序列。一方面,修饰RNA酶的催化亚单位P(人类或大肠杆菌)产生互补于哺乳动物端粒酶RNA组分的部分的指导序列,以使所说的RNA酶P变体可以切割端粒酶RNA组分。这样的工程核酶可以在细胞中表达并可以用各种方法(例如脂质体,免疫脂质体,biolistics,直接摄入进细胞等)转移。基于所公开的催化裂解人类端粒酶RNA组分和/或人类端粒重复序列的端粒酶RNA组分序列信息,对其它形式的核酶(I组内含子核酶(Cech T(1995)生物技术13323);锤头核酶(Edgington SM(1992)生物技术10256)可以进行基因工程操作。
由此,本发明提供了各种抑制端粒酶活性的寡核苷酸。这些寡核苷酸可以用于本发明的治疗疾病的治疗方法,该方法包括具有对患者施用治疗有效量的本发明的端粒酶抑制剂或激活剂。应用在以上提到的依存的美国专利申请和PCT专利出版物93/23572中描述的测定方法,人们可以测定端粒酶抑制作用或激活作用以确定应当以治疗有效量施用的药剂的量。如以上讨论的那些应用中所指出的,端粒酶活性的抑制作用使无限增殖细胞死亡,而端粒酶活性的激活可以增加细胞的复制寿命。端粒酶抑制疗法是针对涉及无限增殖细胞的失控生长的癌的一种有效的治疗方法,端粒酶激活是预防细胞衰老的一种有效的治疗方法。抑制或者阻断端粒酶活性的药剂的运送可以阻止端粒酶的作用,并且最终导致处理的细胞的衰老和死亡,所述药剂如反义寡核苷酸,形成三股螺旋的寡核苷酸,核酶,或驱动端粒酶突变RNA组分表达的质粒。
治疗和预防方面此外,本发明提供了保证正常的细胞必定死亡的治疗方法;例如,可以用标准的遗传工程方法修饰RNA组分,以便经遗传重组缺失编码所述组分(例如经体外诱变)的全部或部分天然基因。这方法在基因治疗中有用,其中,修饰成包含表达质粒的正常细胞被引入患者中,同时人们想要确保癌细胞不被引入;或者,如果将这样的细胞引入,就使那些细胞不可避免地死亡。
因为端粒酶仅在肿瘤,种系,和生血系统的某些干细胞中是活性的,所以其它正常的细胞不受到端粒酶抑制疗法的影响。也可以采取措施以避免端粒酶抑制剂与种系或于细胞接触,虽然这不是必需的。例如,因为种系细胞表达端粒酶活性,端粒酶抑制可能负性影响精子发生和精子生存力,说明端粒酶抑制剂可以是有效的避孕药或不育剂。然而这些避孕药的作用可能不是为了治疗癌症接受本发明的端粒酶抑制剂的患者所需的。在这种情况下,人们可以以保证所述的抑制剂仅在治疗期间产生以便对种系细胞的负性影响仅仅是瞬时的之方式施用本发明的端粒酶抑制剂。
本发明的其它治疗方法使用本发明的端粒酶RNA核酸刺激端粒酶活性和延长复制细胞寿命。这些方法可以通过向细胞施用本发明的功能性重组端粒酶核蛋白进行。例如,核蛋白可以在脂质体中向细胞输送,或人类端粒酶RNA组分基因(或具有不同调节元件的重组基因)可以在真核表达质粒(具有或不具有编码端粒酶蛋白质组分表达的序列)中应用,以在各种正常的人类细胞中激活端粒酶活性,所述的正常人类细胞因为端粒酶RNA组分或蛋白质组分的低水平表达,而缺乏可检测的端粒酶活性。如果端粒酶RNA组分不足以刺激端粒酶活性,则RNA组分可以与表达端粒酶蛋白质组分的基因一同转染以刺激端粒酶活性。这样,本发明提供了治疗与细胞或细胞组中端粒酶活性有关的疾病的方法,该方法通过将细胞与治疗有效量的在细胞中改变端粒酶活性的药剂接触。
掺入端粒酶RNA基因的额外的拷贝的细胞可以显示出端粒酶活性增加和相关的延长的复制寿命。这种疗法可以在来自体内的后来要引入到宿主的细胞上进行或者在体内进行。通过添加来自体内的外源端粒酶基因至正常的二倍体细胞中以稳定化或增加端粒长度的优点包括端粒稳定可以阻止细胞衰老,并且允许细胞潜在地无限扩增;并且具有延长的寿命的正常的二倍体细胞可以体外培养,以用于药物试验,病毒制造,或其它有用的目的。此外,各种类型的体外扩增干细胞可以用于特殊疾病的细胞疗法,如以上所指出的。
通过在细胞邻近危象时阻止端粒关键性地变短,端粒稳定作用也可以在复制细胞中抑制癌发生。在危象时,由于失去端粒帽子的保护效应,产生大量基因组不稳定性。"遗传覆盖物"被改组,几乎所有细胞死亡。从这一过程逃生的少有的细胞典型地是具有许多基因重排的典型的非整倍体,并且通过表达端粒酶在它们的端粒中产生再建的稳定性。如果通过保持端粒的长度可以阻止危象,则也可以阻止与危象有关的基因组不稳定性,从而限制个体细胞经历形成转移性癌需要的所需数量的遗传突变的机会。
可以被端粒酶基因治疗(涉及增加靶细胞的端粒酶活性的疗法)靶向的细胞包括但不限于生血干细胞(爱滋病和化疗后),血管内皮细胞(心和脑部血管病),皮肤成纤维细胞和基部的皮肤角质形成细胞(愈伤和烧伤),软骨细胞(风湿性关节炎),人脑星形细胞和小神经胶质细胞(阿耳茨海默氏疾病),成骨细胞(骨质疏松),视黄醛细胞(眼睛疾病),和胰岛细胞(I型糖尿病)。
典型地,本发明的治疗方法包括施用寡核苷酸,这种寡核苷酸在体内生理条件下通过抑制或者刺激端粒酶活性起作用,并且在那些条件下稳定。如以上所指出的,修饰的核酸可以在赋予这样的稳定性和保证输送所述寡核苷酸到所需的组织,器官,或细胞中有用。在用于治疗目的的寡核苷酸的输送中有用的方法在Inouye等美国专利5,272,065(本文一并参考)中描述。
尽管寡核苷酸可以作为合适药物配制品中的药物直接被输送,人们也可以用本发明的基因治疗和重组DNA表达质粒输送寡核苷酸。一种这样的例证性质粒在以下实施例8中描述,一般来说,这样的质粒包含用于驱动寡核苷酸转录的启动子和任选的增强子(与包含在启动子序列之内的任何序列分开),和提供高水平转录的附加型保持或染色体整合的其它调节元件(如果需要)。基于腺病毒的载体经常用于基因治疗,并且适合于与本发明的试剂和方法一起使用。参见PCT专利出版物94/12650;94 12649;和9412629。用于这种目的有用的启动子包括金属硫蛋白启动子,组成型腺病毒的主要晚期启动子,地塞米松诱导型MMTV启动子,SV40启动子,MRP polIII启动子,组成型MPSV启动子,四环素诱导型CMV启动子(如人类立即早期CMV启动子),和组成型CMV启动子。基因治疗有用的质粒可以包含其它功能性元件,如可选择的标记,识别区,和其它基因。重组DNA表达质粒也可以用于制备经非基因治疗的各种方法输送的本发明的寡核苷酸,虽然用体外化学合成制造短的寡核苷酸更经济。
在相关的方面,本发明提供了包含治疗有效量的本发明的端粒酶抑制剂和端粒酶激活剂的药物组合物。本发明的端粒酶抑制剂的药物组合物包含人类端粒酶突变RNA组分,结合人类端粒酶RNA组分或RNA组分基因的反义寡核苷酸或形成三股螺旋的寡核苷酸,或能够切割人类端粒酶RNA组分的核酶,或它们的组合,或在药学上可接受的载体或盐中的其它药物。其它本发明的药物组合物包含端粒酶激活剂制剂,例如纯化的人类端粒酶或者端粒酶蛋白质组分的mRNA和端粒酶RNA组分,用来治疗衰老相关疾病。在一个方面,将突变的有义哺乳动物端粒酶RNA组分施用于细胞群;与人类端粒酶重复序列相对,所说的突变有义端粒酶RNA组分包含至少一个碱基错配,但是能够与人类端粒酶多肽组分一起显示出端粒酶活性,在人类端粒酶重复序列中的选定核苷酸位置产生错掺,进而产生依赖于实质性复制用突变有义端粒酶RNA组分的连续存在的端粒。提供了一种治疗方法,其中将突变的有义端粒酶RNA组分施用于细胞群体足够长的时间,以引入基本上不能作为天然产生的哺乳动物端粒酶RNA组分的模板的端粒序列,接着撤去突变的有义端粒酶RNA组分,其在细胞群中导致平均端粒长度的迅速丧失,并且加速衰老或细胞死亡率。
所述的治疗药剂可以以适合于肠胃外,鼻,口,或其它方式施用的配制品提供。参见PCT专利出版物93/23572,见上。
诊断方法除以上描述的药物配制品与治疗方法之外,本发明提供了诊断方法和试剂。本发明提供了用于测定细胞,细胞群或组织样品中的人类端粒酶RNA组分、端粒酶或端粒酶活性的水平,含量,或存在的诊断方法。在一个有关的方面,本发明提供了这些方法有用的试剂,任选地可与实施所述诊断的方法的说明书一道包装成试剂盒。如上有关用来确定克隆pGRN7包含人类端粒酶RNA组分cDNA的试验所指出的,在肿瘤细胞中RNA组分的水平是升高的。这样,RNA组分的检测对于诊断肿瘤细胞是有用的。
此外,特异性地结合到人类端粒酶RNA组分(或其基因的每条链)上的探针或者引物可以用于检测样品中端粒酶核酸存在的诊断方法中。引物和探针是互补于并因此将结合靶核酸的寡核苷酸。虽然引物和探针可以在序列和长度方面不同,首要的区别因素是一种功能引物用于起始DNA合成,如在PCR扩增中,而探针典型地仅用于结合靶核酸。引物或者探针的典型的长度可以从8至20至30或更多个核苷酸。引物或者探针也可以被标记以便有利于检测(即,用于这个目的典型的是放射性或荧光分子)或纯化/分离(即,生物素或抗生物素蛋白经常用于这一目的)。
本发明的一种尤其优选的诊断方法涉及从怀疑患有癌的患者中采集的细胞和组织样品中的端粒酶RNA组分序列的检测。该方法典型地涉及在仅完全配对(互补)的序列相互结合(杂交)的条件下,将标记的探针或引物与RNA组分序列结合。结合至样品RNA上的标记的材料的检测将与端粒酶活性的存在和癌细胞的存在有关。由于缺乏端粒酶蛋白质组分的表达,一些细胞可以表达端粒酶RNA组分但是仍然保持端粒酶阴性。如果人们需要检测这样的细胞中的端粒酶活性的存在,则首先分离蛋白质,然后确定蛋白质组分是否包含端粒酶RNA组分,这将标志端粒酶活性存在。本发明的诊断方法在原位检测端粒酶活性在组织活检和组织切片中的存在中尤其有用,该方法典型地在用本发明的特异性PCR引物对端粒酶RNA组分进行扩增之后进行。
本发明也提供了用于诊断疾病状态(例如,瘤形成或预瘤形成)的端粒酶RNA组分多核苷酸探针,其用来检测从患者移植的细胞中端粒酶RNA组分,或端粒酶RNA组分基因的重排或扩增,或检测特殊病症的端粒酶RNA组分等位基因(例如,通过RFLP或等位基因特异性PCR分析)。虽然可以使用Northem印迹法,斑点印迹法,或者分离自细胞样品的大量RNA或poly A+RNA的溶液杂交,以及采用端粒酶RNA组分特异性引物的PCR或者LCR扩增,但所说的检测典型地是采用标记的(例如32P,35S,14C,3H,荧光,生物素化地高辛配基化)端粒酶RNA组分多核苷酸的原位杂交法。与相同细胞类型的非致瘤性细胞比较含有改变量的端粒酶RNA组分的细胞作为候选病态细胞(如前致瘤性或者直接致瘤性细胞)被鉴别,并且可以作为具有转移潜力的细胞被鉴别。同样地,对细胞样品中端粒酶RNA组分基因座或紧密连锁的基因座的特殊病症重排或者扩增的检测将证实病理状态或者是待发展成病理状态(例如癌,遗传病)之易感性的存在。所说的多核苷酸探针也用于法医鉴定,例如嫌疑犯或者不明死者的亲权检验或者鉴别。
人群中,可以存在端粒酶RNA组分的基本主要序列的小的改变,包含等位变体,限制位点多态性,以及与遗传病相关的先天性端粒酶RNA组分疾病的等位基因。
如果需要,可以由操作者经判断选择扩增基本上全长端粒酶RNA组分拷贝的PCR扩增引物。同样地,可以选择扩增端粒酶RNA组分基因或RNA的部分的扩增引物。
端粒酶RNA组分表达依据包含人类端粒酶RNA组分之序列的引物,探针,或其它核酸的长度和预期的功能,本发明的表达质粒可以是有用的。例如,本发明的全长RNA组分的重组生产可以用本发明的重组DNA表达质粒进行,这种表达质粒含有一种核酸,该核酸包含用于在适合的启动子控制下转录的RNA组分的核苷酸序列。这样的质粒的宿主细胞可以是任何原核或真核细胞,启动子以及选来掺入表达质粒的其它调节元件和选择标记将取决于生产方法使用的宿主细胞。
完整的RNA组分基因,即在所述基因5’区包括任何调节序列的启动子和RNA组分编码区,可以用来在人类细胞中表达RNA组分,所述人类细胞包括由病毒转化或癌而导致的无限增殖化的人类细胞。RNA组分基因的启动子可以被调节,然而,因这一和其它原因人们可能想要表达不同的启动子控制之下的RNA组分。另一方面,RNA组分基因的启动子可离开RNA组分编码序列独立地应用而表达其它感兴趣的编码序列。例如,人们可以通过将RNA组分基因的启动子与报道基因编码序列之编码序列融合研究对RNA组分基因的转录调节作用,所述编码序列例如β-半乳糖苷酶或其它酶或蛋白质(其表达可以容易地监测)的编码序列。由此,人类端粒酶RNA组分的基因的启动子和其它调节元件不仅可以用来表达RNA组分而且可以用来在人类细胞中表达人类端粒酶蛋白质组分,反义或者其它寡核苷酸,和其它感兴趣的基因产物。包含人类端粒酶RNA组分完整基因的表达质粒对各种目的(包含基因治疗)来说尤其有用。本领域技术人员清楚各种表达质粒可以用来生产本发明的有用的核酸,本文使用的术语"质粒"指可以用来把特异性遗传信息携带至宿主细胞之中并且保持所述信息一段时间的任何类型的核酸(来源于噬菌体,病毒,染色体,等等)。
端粒酶蛋白质组分的分离本发明的药剂使得可以克隆与分离编码人类和其它哺乳动物端粒酶的蛋白质组分的核酸,从前它们是不可获得的。获得这些核酸提供了与由包含人类端粒酶RNA组分的核酸序列之核酸提供的益处互补的益处。例如,如以上所指出的,在一些实例中通过采用纯化的人类端粒酶蛋白质组分的制剂和获得其编码的核酸,本发明的治疗益处可以增强。本发明的编码人类端粒酶RNA组分的核酸可以用于分离编码人类端粒酶蛋白质组分的核酸,从而获得这样的益处。这样,本发明提供了用于分离和纯化人类端粒酶蛋白质组分以及鉴别和分离编码人类端粒酶蛋白质组分的核酸的方法。在相关的方面,本发明提供了纯化的人类端粒酶,纯化的编码人类端粒酶蛋白质组分的核酸,人类端粒酶蛋白质组分的重组表达质粒。本发明也提供了以人类端粒酶蛋白质组分或者如下核酸作为有效成分的药物组合物,所述核酸编码人类端粒酶蛋白质组分或者与编码人类端粒酶蛋白质组分的核酸相互作用,如以上所述的任何反义寡核苷酸,形成三股螺旋的寡核苷酸,核酶,或重组DNA表达质粒。
克隆的人类端粒酶RNA组分可以用于鉴别和克隆编码核蛋白端粒酶的蛋白质组分的核酸。若干不同的方法可以用于完成蛋白质组分的鉴别和克隆。例如,人们可以用采用亲和性配体的酶或部分变性的酶的亲和性捕获,所述配体为(1)互补于RNA组分的核苷酸序列以结合完整的酶的RNA组分;或(2)结合部分或完全变性酶的蛋白质组分的RNA组分。配体可被附着到固体支持物上或经化学修饰(例如生物素化)以便尔后在固体支持物上的固定化。与包含人类端粒酶的细胞抽提物接触,其后洗涤和洗脱结合到支持物上的端粒酶给出高度纯化的端粒酶制剂。然后,可以任选地进一步纯化蛋白质组分或直接通过蛋白质测序分析。测定的蛋白质序列可以用于制备引物和探针以克隆cDNA或者鉴别包含编码端粒酶蛋白质组分的核酸的基因组库中的克隆。
采用工程RNA组分的端粒酶亲和性捕获也可以用体外转录的端粒酶RNA和端粒酶活性的重建系统实施。参见Autexier和Greider,1994,基因和发展8563-575,本文一并参考。所述RNA经基因工程操作包含标记物,类似于蛋白质表位标记。标记物可以是可获得紧密结合配体的RNA序列,例如,RNA序列特异性抗体,序列特异性核酸结合蛋白,或一种紧密结合到特异性RNA序列上的有机染料。可以用标准的方法试验端粒酶对标记物序列与位置的容忍度。这种方法的改变的RNA组分的合成和重建步骤也可以在体内进行。然后,利用RNA标记物固定化配体的亲和性捕获可以用于分离酶。
表达筛选也可以用于分离端粒酶的蛋白质组分。在这种方法中,cDNA表达文库可以用标记的端粒酶RNA筛选,编码特异性地结合到端粒酶RNA的蛋白质的cDNA可被鉴别。采用翻译抑制作用的一种分子遗传方法也可以用于分离编码端粒酶蛋白质组分的核酸。在这种方法中,端粒酶RNA序列将被融合到一个选择性标记的上游。当在一个适合的系统中表达时,选择标记将是有功能的。当编码端粒酶RNA结合蛋白质的cDNA被表达时,蛋白质将结合其识别序列,进而阻断选择性标记的翻译,由此使得可以鉴别编码蛋白质的克隆。在这种方法的其它实施方案中,选择标记的阻断的翻译将允许转化细胞生长。可以被使用的其它系统包括在PCT专利出版物WO 94/10300中描述的“相互作用阱系统”;在Li和Herskowitz 1993年12月17日,科学2621870-1874和Zervos等,1993年1月29日,细胞72223-232中描述的"一杂种"系统;和市售的由Clontech提供的"两杂种"系统。
用于检测特异性结合蛋白质和活性的端粒酶RNA结合或者端粒酶活性测定可以用来促进端粒酶的纯化和编码所述酶的核酸的鉴别。例如,包含RNA组分序列的核酸可以用作亲和试剂以分离、鉴别和纯化与RNA组分所含序列特异结合的肽类,蛋白质或其它化合物,如人类端粒酶蛋白质组分。对检测这种结合和分离特异性地结合到RNA组分上的组分而言,可以利用几种不同的方式,包括凝胶移位、滤膜结合、足迹法、Northwestern(蛋白质印迹的RNA探针)和光交联。这些测定可以用于鉴别结合蛋白质,跟踪结合蛋白质的纯化,确定RNA结合位点,测定结合蛋白质的分子大小,标记蛋白质以便制备性分离并后续用于免疫动物产生抗体,以获得在偶联的转录/翻译系统中用于分离蛋白质或鉴别编码该蛋白质的核酸的抗体。
哺乳动物端粒酶蛋白质组分的纯化哺乳动物端粒酶蛋白质组分可以用常规的生物化学方法从表达端粒酶的细胞纯化,如HT1080细胞,293细胞,和其它适合的无限增殖化细胞系。例如但不限于,人类端粒酶可基本上按照美国专利申请08/288,501(1994年8月10日申请,本文一并参考)中描述的方法从细胞抽提物分离。哺乳动物端粒酶抽提物可以通过用RNA酶活性或其它适合的方法处理除去端粒酶RNA组分,所述方法分解和/或降解端粒酶RNA组分而留下基本上完整的端粒酶蛋白质组分,该组分可以由添加外源端粒酶RNA组分重构,如可以经重组等产生。这样纯化的端粒酶蛋白质组分(可任选地除去内源端粒酶RNA组分)可以用于本文描述的药剂筛选测定和其它用途。
基因治疗将外源遗传物质转移进细胞(即DNA介导的转染)是用于细胞生物学和分子遗传学基础研究的必要的方法,和开发用于人类基因治疗的有效方法的基础。
迄今为止,在美国大多数批准的基因转移试验依赖于携带作为逆转录病毒基因组一部分的治疗性多核苷酸的复制缺陷逆转录病毒载体(Miller等(1990)分子细胞生物学104239;Kolberg R(1992)NIH研究杂志443;Cometta等(1991)人类基因治疗2215)。腺病毒载体在人类基因治疗中潜在的用途也有描述(Rosenfeld等(1992)细胞68143)。
已批准的用于人类的其它基因转移方法是脂质体中的质粒DNA直接向肿瘤细胞原位的物理转移。不同于病毒载体必须在培养的细胞中繁殖,质粒DNA可以是纯化至均一性的,由此致病污染的可能性降低。在一些情况下(例如肿瘤细胞),不需要外源DNA稳定地整合进转导的细胞,因为瞬时的表达可以足够杀灭肿瘤细胞。脂质体介导的DNA转移以由许多研究者描述(Wang和Huang(1987)生物化学生物物理研究通讯147980;Wang和Huang(1989)生物化学289508;Litzinger和Huang(1992)生物化学生物物理学报1113201;Gao和Huang(1991)生物化学生物物理研究通讯179280;Felgner WO91/17424;WO91/16024)。
免疫脂质体也已作为外源多核苷酸的载体被描述(Wang和Huang(1987)Proc.Natl.Acad.Sci.(美国)847851;Trubetskoy等(1992)生物化学生物物理学报1131311)。通过包含特异性抗体(其预计结合到特异性细胞类型表面抗原上),与脂质体比较,可以期待免疫脂质体具有改进细胞类型特异性。Behr等(1989)Proc.Natl.Acad.Sci.(美国)866982报道用脂多胺作为调节自身转染的试剂,不再需要添加任何磷脂形成脂质体。
因此,将基本上与端粒酶RNA组分序列或其补体的至少25个核苷酸,优选地是50至100个或者更多个核苷酸相同的多核苷酸可操作连接到异源启动子以形成能够在人类细胞中表达端粒酶RNA组分或者反义端粒酶RNA组分多核苷酸的转录单位。这样一种转录单位可以包括在转基因,腺病毒载体,或其它基因治疗法中,以便输送到人类细胞中,用于例如端粒酶相关疾病(例如瘤形成)的治疗。端粒酶RNA组分有义或反义表达构建体的合适的输送方法由操作者考虑可接受的实施和调节的需要进行选择。
转基因动物实施方案哺乳动物端粒酶RNA组分的基因组克隆,特别是基本上与小鼠端粒酶RNA组分相同的端粒酶RNA组分基因可用于构建同源定向构建体,其用于产生具有至少一个功能被破坏的端粒酶RNA组分等位基因的细胞和转基因非人类动物。现有技术可以找到构建同源定向构建体的指导文献,包括Rahemtulla等(1991)自然353180;Jasin等(1990)基因进展4157;Koh等(1992)科学2561210;Molina等(1992)自然357161;Grusby等(1991)科学2531417;Bradley等(1992)生物/技术10534,本文一并参考。同源定向可以用来产生所谓的“无效”小鼠,其是失活端粒酶RNA组分等位基因杂合或纯合的。这样的小鼠可以作为为免疫的系统发展,瘤形成,精子发生研究的实验动物商业性出售,也可以用作宠物,可以用作动物蛋白质(食物),和其它用途。
按照下文中的描述衍生嵌合小鼠Hogan等,操纵小鼠胚实验室手册,ColdSpring Harbor实验室(1988)和畸形癌和胚干细胞实施方法,E.J.Robertson编,IRL出版社,华盛顿,D.C.,本文一并参考的(1987)。胚干细胞是按照出版的方法操作(畸形癌和胚干细胞方法,E.J.Robertson编,IRL出版社,华盛顿,D.C.(1987);Zjilstra等(1989)自然342435;和Schwartzberg等(1989)科学246799,各文献本文一并参考)。
另外,端粒酶RNA组分cDNA或基因组基因拷贝可以用于构建转基因,其以高水平和/或在转录控制序列(不是天然产生的,与端粒酶RNA组分基因邻近)的转录控制下表达端粒酶RNA组分。例如但不限于,可将组成型启动子(例如HSV-tk或pgk启动子),或细胞-谱系特异性转录调节序列(例如CD4或CD8基因启动子/增强子)可操作连接到端粒酶RNA组分多核苷酸序列上形成转基因(典型地与选择标记如neo基因表达盒结合)。这种转基因可以引入到细胞(例如,ES细胞,生血干细胞),并且可以按照常规方法获得转基因细胞和转基因非人类动物。转基因细胞和/或转基因非人类动物可以用来筛选抗肿瘤剂和/或筛选潜在的致癌因子,因为端粒酶RNA组分的过度表达或者端粒酶RNA组分的不适当的表达可以导致预致瘤或致瘤状态。
药剂筛选测定参照实验实施例实施端粒酶RNA组分多核苷酸,端粒酶蛋白质组分制剂,端粒重复模板,和结合反应等。一般地,端粒酶蛋白质组分由从表达端粒酶的哺乳动物细胞常规纯化获得,并且在其用于本文所描述的测定中之前除去相关的RNA组分。具体水性条件可以由操作者按照常规方法选择。作为一般性指导,下列缓冲水性条件可以使用10-250mM NaCl,5-50mM Tris HCl,pH值5-8,任选地添加二价阳离子和/或金属螯合剂和/或非离子除垢剂和/或膜组分。对这些基本条件可以进行增加、减少、修改(如pH值)和替换(如KCl替换NaCl或缓冲液替换)是本领域技术人员了解的。对基本结合条件可以修改,只要在对照反应中形成特异性端粒酶全酶和/或出现端粒酶活性。在对照反应(不包含药剂)中不允许特异性结合和断裂的条件不适合用于结合测定中。
优选地,为测定端粒酶RNA组分对固定化的端粒酶蛋白质组分的结合,用可检测的标记物标记端粒酶RNA组分,典型地是使用生物素基团,荧光部分,或放射性标记掺入的核苷酸。端粒酶蛋白质组分合适的标记法包括但不限于通过掺入放射性标记的氨基酸(例如14C-标记的亮氨酸,3H-标记的甘氨酸,35S标记的甲硫氨酸)进行放射性标记,通过用125I或131I翻译后放射性碘化(例如Bolton-Hunter反应和氯胺T)进行放射性标记,通过用P翻译后磷酸化(例如,磷酸化酶和无机放射性标记的磷酸盐)进行标记,通过掺入荧光标记物(例如,荧光素或碱性蕊香红)进行荧光标记,或通过本领域已知的其它常规方法标记。在一种多肽通过连接到底物上而固定化的实施方案中,其它组分一般用可检测的标记物标记。
使标记的端粒酶RNA或者蛋白质组分分别与固定化的端粒酶蛋白质或RNA组分接触,药剂可以改变标记组分的量,这种组分是固定化的(即,其结合关联端粒酶组分,并且被捕获)。可以改变结合反应的时间和温度,只要选择的条件允许特异性结合在不存在药剂的对照反应之中发生。优选实施方案使用的反应温度至少15℃,更优选地是35至42℃,和大约至少15秒的培养时间,虽然在一些实施方案中为得到结合平衡更长的时间是优选的。结合复合物的动力学和热力学稳定性决定可用的时间,温度,盐,pH值,和其它反应条件的变化的程度。然而,对于任何特殊的实施方案,所需结合反应条件可以由本领域的操作者用常规方法容易的校准,这可以包括采用Scatchard分析,Hill分析和其它方法(蛋白质,结构和分子原理(1984)Creighton(编者),W.H.Freeman andCompany,纽约)的结合分析。
通过包含非标记的竞争蛋白质(例如清蛋白)和/或非标记的RNA分别测定标记的端粒酶蛋白质组分与固定化的端粒酶RNA组分的特异性结合。在结合反应完成后,检测特异性地结合固定化物种的标记物种的量。举例性的但不是限制性的,在合适的结合温育期后,除去含有非固定化标记的端粒酶蛋白质组分的水相,用合适的缓冲液(任选地含有阻断剂)洗涤含有固定化结合的端粒酶全酶物种的底物和任何与之结合的标记的端粒酶蛋白质组分,除去洗涤缓冲液。洗涤后,测定保持特异性结合到固定化标记组分上的可检测标记的量(例如经光学,酶促,放射自显影,或其它放射化学方法)。
在一些实施方案中,包括添加抑制非特异性结合的非标记的阻断剂。这样的阻断剂的例子包括但不限于下列小牛胸腺DNA,鲑精DNA,酵母RNA,各种长度寡核苷酸的混合序列(随机或假随机序列),牛血清清蛋白,非离子除垢剂(NP-40,吐温,曲通X-100等),脱脂乳蛋白,Denhardt’s试剂,聚乙烯吡咯烷酮,Ficoll,和其它阻断剂。操作者可以根据其判断选择阻断剂包含在结合试验中的合适浓度。
在端粒酶RNA组分或者端粒酶蛋白质组分是固定化的实施方案中,可以使用对底物的共价或者非共价连接。共价键化学方法包括但不限于本领域熟知的方法(Kadonaga和Tijan(1986)Proc.Natl.Acad.Sci.(美国)835889)。一个非限制性的例子是对用溴化氰衍生的底物(如CNBr-衍生的琼脂糖凝胶4B)的共价连接。用间隔基减少底物的潜在的位阻是合乎需要的。对底物的蛋白质非共价结合包括但不限于,蛋白质对带电表面的结合和与特异性抗体结合。
在一个实施方案中,根据其阻断端粒酶蛋白质组分与端粒酶RNA组分的结合鉴别候选治疗剂。
尽管如果突变端粒酶RNA组分在对照测定条件下(例如生理条件)结合到端粒酶蛋白质组分上所以有时使用突变端粒酶RNA组分序列,但典型地,这些方法中使用的端粒酶RNA组分包括天然产生的哺乳动物端粒酶RNA组分序列(例如人类RNA组分)。
在一个实施方案中,通过其在代谢活性哺乳动物细胞中统计学上明显降低或增加报道基因多核苷酸序列(例如β-半乳糖苷酶基因,萤光素酶基因,HPRT基因)的转录的能力来鉴别候选端粒酶调节剂,所述报道基因序列可操作连接到哺乳动物端粒酶RNA组分基因,优选地是人类端粒酶RNA组分基因上。报道基因(例如HPRT)可以插入到哺乳动物端粒酶RNA组成的ds cDNA的限制位点或平头末端位点中,以产生同源定向构建体或转基因,其中在存活的哺乳动物细胞中,报道基因在内源端粒酶RNA组分基因启动子和相关转录控制元件的转录控制下。由此产生报道基因剂量依赖性转录调节的药剂作为候选端粒酶调节剂被鉴别。
在一种变化方案中,用同源定向构建体靶引哺乳动物细胞中的内源端粒酶RNA组分基因,以便以可操作的键将报道基因多核苷酸序列与内源基因染色体基因座的内源端粒酶RNA组分基因的上游转录调节序列(例如启动子)相连。在另一变化中,包含报道基因多核苷酸的外源多核苷酸可操作地连接到哺乳动物端粒酶RNA组分基因转录调节区(例如启动子和上游转录因子结合位点);外源多核苷酸被转移进哺乳动物细胞,其中其可以非同源整合进染色体位置和/或作为附加型多核苷酸被保持或复制。由此,在用药剂处理过的细胞中产生报道基因多核苷酸的统计学上的明显转录调节的药剂作为候选哺乳动物端粒酶调节剂被鉴别出来。
降低细胞修复端粒损害或抑制端粒复制(例如经竞争性抑制内源性天然产生的端粒酶)能力的端粒酶调节剂是候选抗肿瘤剂或者使细胞(例如致瘤细胞)对端粒损害剂(例如烷基化试剂和电离辐射)敏感的致敏剂。
然后进一步在试验中试验候选抗肿瘤剂的抗肿瘤活性,所述试验通常用于预测用作人类抗肿瘤药物的适宜性。这些试验的例子包括但不限于(1)候选药剂抑制不依赖于贴壁的转化细胞在软琼脂中生长能力的能力,(2)降低移植进nu/nu小鼠的转化细胞的致肿瘤性的能力,(3)逆转转化细胞形态转化的能力,(4)在nu/nu小鼠中降低移植瘤生长的能力,(5)抑制自发或化学诱发致癌作用动物模型中瘤或肿瘤前细胞形成的能力,和(6)在施用药剂的转化细胞中诱导更加不同表型的能力。
用于检测药剂抑制或增强端粒酶蛋白质组分端粒酶RNA组分结合和/或端粒酶酶促活性的测定提供来高效率地筛选药剂库(例如化合物文库,肽文库等)以鉴别端粒酶拮抗剂或者兴奋剂。这样的拮抗剂和兴奋剂可以调节端粒酶活性,并且进而调节端粒修复能力和复制潜力。
对患者施用有效剂量的特异性抑制端粒酶活性的药剂可以用于治疗病理状态(例如癌,炎症,淋巴增殖性疾病,自身免疫性疾病,神经变性疾病等)的治疗性或预防性方法中,所述病理状态经调节端粒酶活性和DNA修复和复制有效地治疗。
阅读本发明说明书公开的内容后,本领域技术人员会清楚,本发明提供了与人类端粒酶有关的有价值的药剂,和各种有用的治疗和诊断方法。以上必需的描述提供了这些方法的有限的例子,但这并不构成对本发明范围的限制。从下列实施例与权利要求可以明显看出本发明的其它特点与优点。
下列实施例描述本发明的具体的方面,用来说明本发明和提供用于本领域技术人员分离和鉴别人类端粒酶RNA组分之方法的描述。实施例并不构成对本发明的限制,因为实施例仅提供对理解和实施本发明有用的特定方法。实验实施例总述人类端粒酶RNA组分的克隆需要涉及的阴性选择和阳性选择循环的新方法,描述如下。然而,最初尝试了用逆转录克隆RNA组分和克隆cDNA 5’末端的称作5’-RACE的PCR扩增的方法。逆转录反应首先用与人类端粒DNA的单链部分的重复单位相同的引物开始,该引物由此互补于一种被认为存在于人类端粒酶RNA组分中的序列,所述引物在其5’-末端也包含相应于限制性内切酶识别位点的序列。然而,当由逆转录反应和PCR扩增产生的cDNA用凝胶电泳和存在于凝胶中的核酸带的核苷酸序列分析检测时,仅发现核糖RNA序列。当用嵌套引物尝试这一5’-RACE方法的变化方法时,也遇到类似的问题。
成功的克隆努力开始于从纯化的人类端粒酶制剂和具有人类端粒酶活性的细胞系以及不具有可检测的人类端粒酶活性的细胞系制备cDNA。在以下实施例1中详细描述了用于制备cDNA的方法。两个阴性选择步骤和连续的阳性选择循环与两种人类细胞系的cDNA制剂结合使用,以降低不需要的序列的浓度,并且提高所需的RNA组分序列的浓度。
阴性选择步骤涉及生物素化的PCR产物的制备,所述产物是从由没有可检测的端粒酶活性之人类细胞系制备的cDNA制备的。将生物素化的PCR产物变性,然后在包含很低浓度的非生物素化PCR产物的溶液中再杂交(100生物素化的产物1非生物素化的产物),所述非生物素化产物是从由没有可检测的端粒酶活性之人类细胞系制备的cDNA制备的。考虑到存在端粒酶阴性细胞株可能包含某些低含量的RNA组分的可能性,实施杂交步骤以仅针对在两种细胞系中大量表达的RNA进行区别或选择。在对Cot(选来允许最丰富表达的RNA杂交)杂交后,通过结合到链亲和素化的磁性颗粒上除去不需要的材料;收集颗粒后剩下的上清液包含所需的人类端粒酶RNA组分cDNA。cDNA的PCR扩增的方法在以下实施例2中描述。
经接下来的阳性选择循环进一步富集所需的cDNA。在阳性选择步骤中,将互补于人类端粒酶RNA组分中预期的模板序列的生物素化探针与PCR产物杂交,所述PCR产物来源于具有端粒酶活性的人类细胞系之PCR扩增的cDNA富集(经阴性选择)样品。在杂交之后,将探针/靶复合物结合到亲和素化的磁性小珠上,然后收集该复合物并用作在进一步的阳性选择循环中富含RNA组分序列的核酸的来源。阳性选择方法在以下实施例3和4中更详细地描述。
在阳性选择的第三个循环之后,由凝胶电泳分离扩增产物,移去相应于大小约200 bp的核酸的凝胶凝胶段。从凝胶段洗脱核酸,并经PCR扩增。PCR扩增产物以限制性内切酶NotI消化,然后经连接插入到质粒pBluescriptIISK+(从Stratagene购得)的NotI位点。将所形成的质粒转化进大肠杆菌宿主细胞,分离单独的菌落,并且用作进一步分析和DNA测序的核酸的来源。然后一些在这种试验中阳性的克隆由DNA测序和各种其它试验分析。
这些其它的试验包括下列(1)测定互补于推定的RNA组分的反义寡核苷酸是否在已知包含端粒酶的人类细胞抽提物中抑制端粒酶活性;(2)测定对推定的RNA组分克隆序列具有特异性的PCR引物是否可以用来扩增在端粒酶样品中存在的核酸,和观察到的产物(如果有的话)是否在端粒酶纯化期间跟踪端粒酶活性;和(3)测定对推定的RNA组分克隆序列具有特异性的PCR引物是否可以用来扩增在已知端粒酶活性高的细胞(即肿瘤细胞)抽提物中以较高的量(与已知不产生或仅产生低量端粒酶活性的细胞抽提物比较)存在的核酸。命名为质粒pGRN7的克隆在这一试验中产生的结果与证实该质粒包含相应于人类端粒酶RNA组分的cDNA的测定一致。
这样,相应于pGRN7的推定的RNA组分序列之序列的反义寡核苷酸显示出体外端粒酶抑制作用。同样地,当端粒酶是用下述方法从细胞抽提物纯化的时,对pGRN7的推定的RNA组分序列具有特异性的PCR引物扩增出适当大小的核酸,且扩增产物的量与在收集的组分中观察到的端粒酶活性的量很好地相关,所述纯化方法包括(1)DEAE层析;(2)Sephadex S300层析;和(3)甘油梯度,SP琼脂糖凝胶,或苯基琼脂糖凝胶分离和组分收集。最后,基于用对包含在pGRN7中的推定的RNA组分特异的引物进行的逆转录和PCR扩增(RT-PCR),正常(没有可检测的端粒酶活性)和癌(端粒酶活性存在)以及精巢(端粒酶活性存在)的细胞抽提物,细胞显示出相应的PCR产物量。关于RT-PCR方案在以下实施例5和6中描述。
上述结果提供了人类端粒酶RNA组分已被克隆的令人信服的证据,因此随后将质粒pGRN7用于分离人类细胞系RNA组分基因组克隆,如以下实施例7的描述。该基因组克隆从购自Stratagene的插入到λ载体FIXII中的人类DNA基因组文库中鉴别和分离。包含RNA组分基因序列的所需的克隆包含约15kb插入物,命名为克隆28-1。该克隆保藏在美国典型培养物保藏中心,可以以保藏号75925获得。从这种噬菌体亚克隆各种限制片段并测序。基因也定位到染色体3的q臂远端。以上示出了λ克隆28-1的从约15kb插入物一个末端的SauIIIA1限制性内切酶识别位点至内部HindIII限制性内切酶识别位点获得的序列信息,其包含RNA组分基因的所有成熟RNA组分序列和转录控制元件。
实施例1制备可PCR扩增的cDNA经硫氰酸胍抽提从293和IMR-90细胞或经酚/氯仿抽提从纯化的端粒酶组分获得RNA。在2%琼脂糖凝胶上按大小分级分离293细胞的总RNA,分离出大小不到500bp的RNA。
用从Besda研究实验室(BRL)获得的SuperscriptRMII逆转录酶进行第一链cDNA合成。在11微升总体积时在水中将约0.5至1.0微克RNA与约40纳克随机引物(6聚体;pdN6)混合。在95℃加热溶液10分钟。然后在冰上冷却5-10分钟。由离心收集变性核酸。通过以下顺序的添加重悬变性RNA和引物混合物4微升5x第一链合成缓冲液;2微升0.1M二硫苏糖醇(DTT);1微升RNAsin(Pharmacia);和1微升dNTP(2.5mM各储备溶液)。在42℃温育反应混合物1分钟,然后,添加1微升SuperscriptTMII RTase(BRL)(200单位),并且混合进反应液中,然后在42℃温育60分钟。将包含新合成的cDNA的反应混合物放置在冰上直到进行第二链合成。
第二链cDNA合成按如下进行。将第一链cDNA合成反应混合物(从上)的约20微升反应混合物与下列组分以所示顺序混合111.1微升水;16微升10x大肠杆菌DNA连接酶缓冲液;3微升dNTP(2.5mM各贮液);1.5微升大肠杆菌DNA连接酶(得自BRL,15单位);7.7微升大肠杆菌DNA聚合酶(得自Pharmacia,40单位);和0.7微升大肠杆菌RNA酶H(BRL)。轻轻混合形成的溶液,在16℃温育2小时,这时向反应试管中添加1微升(10单位)T4 DNA聚合酶,在相同的温度(16℃)下继续温育5分钟。而后停止反应,通过以酚/氯仿提取反应物两次,以乙醇沉淀核酸,和离心反应混合物沉淀核酸来收集核酸。
在20微升TE缓冲液中重悬由离心收集的cDNA沉淀,并连接到称为"NotAB"的寡核苷酸上,所说的寡核苷酸由两种寡核苷酸组成(NH2是氨基阻断基团)NotA 5′-pATAGCGGCCGCAAGAATTCA-NH2NotB 5’-TGAATTCTTGCGGCCGCTAT-3’按以下方法制备双链寡核苷酸在46.25微升水中把50微升NotA寡核苷酸(100pmol)与50微升NotB寡核苷酸(100pmol)混合,在95℃加热形成的溶液5分钟,当溶液仍然是热的时添加3.75微升20xSSC缓冲液。然后将含混合物的试管放置在含热水的烧杯中(大约70-75℃的温度),将温度缓慢降低至15℃之下,以便两种寡核苷酸可以杂交形成双链寡核苷酸NotAB。由沉淀和离心收集形成的核酸。
将双链NotAB寡核苷酸重悬在约30微升TE缓冲液中,然后经在总体积20微升中于16℃温育反应混合物过夜连接到反应混合物中的cDNA上,所说反应混合物包含10微升以上描述的cDNA制剂;约50pmol NotAB(由OD260计算);2微升10x T4 DNA连接酶缓冲液;1.2微升T4 DNA连接酶;0.2微升10mMATP;和水。通过在65℃加热反应混合物10分钟热终止反应。将约1至2微升所形成的混合物典型地用于PCR扩增;如实施例2所述可以扩增连接混合物10至15个循环(94℃,45秒;60℃,45秒;和72℃,1.5分),并作为贮存液保存。
实施例2cDNA的PCR扩增通过制备扩增反应混合物常规扩增cDNA,所述反应混合物的组成为5微升10X PCR缓冲液(500mMKCl;100mMTris,pH8.3;和20mMMgCl2;5-8微升dNTP(各2.5mM);1微升Taq聚合酶(Boehringer-Mannheim);0.1微升基因32蛋白质(Boehringer-Mannheim);6微升Not B引物(20μM贮存液);2微升cDNA(按实施例1的描述制备),和水。然后以50至100微升矿物油覆盖这一混合物,PCR扩增进行10至15个循环,94℃,45秒;60℃,45秒;和72℃,1.5分。在扩增之后,反应混合物以酚/氯仿提取,用乙醇沉淀扩增的核酸,并且离心收集。然后将沉淀溶解在TE缓冲液中制备贮液。
实施例3用于扣除杂交和循环选择的PCR扩增为制备用于扣除杂交和循环选择的PCR产物,在如实施例2所述制备的(除进行21-24个循环的引物退火,延伸,和产物变性外)50微升PCR反应混合物中扩增如实施例2所述制备的约1微升贮存液。在扩增之后,反应混合物以酚/氯仿提取,乙醇沉淀,并且由离心收集。产物产量通过小份反应混合物的凝胶电泳之后的溴化乙锭染色估计。对于扣除杂交,在生物素化的dUTP存在下扩增来自端粒酶阴性细胞(IMR-90)的cDNA文库。以端粒酶阴性细胞(IMR-90)的cDNA对端粒酶阳性细胞(293)的cDNA的100比1比率完成扣除杂交。在65℃采用标准条件48-72小时。典型地,约2微克部分纯化的cDNA和阴性选择材料的核酸产物用于至少2圈循环选择。
在循环选择后,如实施例4的描述,约1至2微升选择的“拉下(pull-down)”产物(从总体积20微升中取出)按实施例2描述进行PCR扩增22个循环,用乙醇沉淀,并且离心收集,供进一步循环选择。
实施例4PCR扩增的cDNA的阳性选择对于用于克隆人类端粒酶RNA组分的循环选择方法的阳性选择步骤而言,用25微升TE缓冲液稀释约2微克PCR扩增的cDNA,然后与1.25微升20X SSC混合,形成的溶液加热至95℃维持3分钟。温度降低至60℃维持5分钟,加入1微升(0.1微克/微升)R2或R4生物素化的探针。这些探针的序列如下所示。所述探针是O-甲基-RNA探针,因此U是O-甲基尿苷,A是O-甲基核糖腺嘌呤,G是O-甲基核糖鸟嘌呤,I是次黄苷。
R25’-UUAGGGUUAGII-生物素R45’-AUUGGGUUAUII-生物素R2探针对端粒重复是特异性的,R4探针对RNA酶P是特异性的,其用来跟踪循环选择方法的有效性与效率。通过实施对RNA酶P RNA(已知序列的分子)的同时但分别的循环选择,就目标分子(在这种情况下是人类端粒酶RNA组分)而言,人们对循环选择方法是合适地起作用可以有更大的信心。
在65℃R2或R4探针添加到混合物中之后,将杂交反应混合物的温度降低至30℃,接着在这一温度下温育混合物5分钟,然后,将反应混合物的温度进一步降低至14℃温育60分钟。最后,混合物在4℃温育2-12小时。
将每一样品(R2或R4)的整个杂交反应混合物在4℃添加至400微升0.5X SSC中,再添加到冰冷的磁性小珠(从Promega购买,在使用之前以0.5x SSC预洗涤4次)试管中。在4℃将形成的混合物温育30分钟确保完全结合到磁性小珠上。然后在室温下在磁性仪器(Promega)上短暂温育每一反应试管以拉下小珠。把小珠重悬于冷的0.5X SSC(600微升)中并置入冰上(在试管中)。用0.5X SSC以这种方式洗涤样品三次以上。在把小珠置回磁性仪器上收集之前在65℃通过将小珠重悬于100微升水中并温育5分钟从小珠洗脱核酸。将这一方法重复三次以上;最后一次,在把小珠放到磁性仪器上收集之前在65℃温育重悬的小珠5分钟。收集所有100微升上清液(各样品)并在SpeedVacTM离心机中干燥成20微升。然后,PCR扩增回收的DNA另一个扩增和选择循环。在每一扩增之后,PCR产物用酚-三氯申烷抽提两次,用乙醇沉淀,并在20微升TE缓冲液中重悬。
典型地,PCR扩增由凝胶电泳证实。此外,用各种对照监测循环选择方法。作为一种对照,PCR"臂"(作为引物杂交位点的限定序列的寡核苷酸)被放置到包含赋予新霉素抗性基因的核酸上,将形成的核酸与PCR扩增的cDNA混合,并在各选择中用定量PCR监测。作为另一种对照,用RNA酶P跟综RNA酶P选择的文库和端粒酶RNA组分选择的文库。
实施例5RT-PCR方案基本上依据实施例1描述的方法制备第一链cDNA,RNA从包含0.1至1微克RNA的端粒酶组分纯化;典型地,使用从300微升组分制备的RNA的约三分之一至五分之一。将RNA与10微升中的40至80纳克随机六聚体混合。在95℃(用热循环仪器)变性10分钟并冰冷。将变性RNA和6聚体添加到反应混合物中,所述反应混合物包含4微升5X第一链合成缓冲液,其由逆转录酶(RTase,从BRL购得)的制造厂商提供,2微升0.1M二硫苏糖醇,1微升10mMdNTP(各种),1微升RNA酶抑制剂(Pharmacia)和水,总体积为9微升。将合并的混合物放置到42℃水浴中。在温育1-2分钟之后,将SuperscriptTMII RTase(BRL)添加到混合物中,继续在42℃温育60分钟。通过在95-98℃加热试管10分钟停止反应。第一链cDNA由短暂离心收集,等分到新的试管,迅速在干冰中冻结,并且在-80℃存储或立即使用。
实施例6用特异性引物组PCR扩增cDNA
对使用放射活性标记的核苷酸的20微升PCR反应,将1微升按照实施例5的方法制备的cDNA与下列物质混合20pmol引物1,20pmol引物2,2.5微升2.5mMdNTP,5μCiα-32P-dATP,2单位(Boehringer-Mannheim)Taq聚合酶,0.2微克T4基因32蛋白质(Boehringer-Mannheim),2微升10x缓冲液(500mM Kcl,100mM Tris-HCl-pH8.3和20mM MgCl2)和水至总体积20微升。然后向试管中加一滴矿物油。
端粒酶RNA组分克隆的PCR扩增条件是94℃45秒,60℃45秒,72℃1.5分钟。循环次数依用于RNA制备的纯化材料的类型而不同,但是典型地在18至25个循环的范围内。就所有定量RT-PCR而言,每个样品进行具有不同循环数的几个反应,以确定PCR扩增在何时变得饱和和非线性。
对于RNA酶P用作对照而言,PCR扩增的条件是94℃45秒,50℃45秒,和72℃1.5分。同样,循环次数从15至22,取决于样品的性质。用于RNA酶P扩增的引物的序列显示如下P35’-GGAAGGTCTGAGACTAG-3’P45’-ATCTCCTGCCCAGTCTG-3’以这两种引物获得的PCR产物大小约110bp。
在PCR之后,产物(5至10微升反应混合物)装载到6%天然聚丙烯酰胺凝胶上并电泳。在电泳之后,干燥凝胶并露置于PhosphorImagerTM盒或者放射自显影胶片进行分析。
实施例7克隆人类端粒酶RNA组分的基因如Maniatis等(实验室分子克隆手册)的描述实施用于克隆人类端粒酶RNA组分基因的方法。插入到噬菌体λ载体FIXII中的来自人肺成纤维细胞细胞系WI-38的DNA的基因组DNA文库从Stratagene购得。将噬菌体以每平板大约25,000噬斑的浓度平板接种到三套15(150mm)平板上。平板是以NZY琼脂和NZY顶级琼脂糖铺成的;用于噬菌体转化的细胞是XLlBlueMRAP2细胞;转化体在37℃过夜培养大约16小时。然后把平板在4℃冷却大约1小时,然后将噬斑移至C/P尼龙环形物(Bio Rad来源的滤纸)。重复这一方法以获得与所述滤纸相同的一套滤纸。将滤纸(双份)变性,中和,在6x SSC缓冲液中平衡,露置于UV照射下,使核酸交联到滤纸上,然后在印迹纸上干燥。
在50%甲酰胺缓冲液中37℃预杂交一小时。滤纸用约218bp的放射性标记的克隆pGRN7的NotI片段探查,所述片段已在经电泳分离后用电洗脱从5%聚丙烯酰胺凝胶分离,并按照制造商的说明采用切口翻译试剂盒(来源于Boehringer-MannheimBiochemicals)用α-32P-dCTP切口翻译。每个滤纸用约25纳克(约10μCi标记)探针,杂交在50%甲酰胺杂交缓冲液中于37℃进行一夜。在杂交之后,滤纸在室温下洗涤六次;前3次洗涤用含0.1%SDS的6x SSC,后3次洗涤只用6x SSC。在将几个双份滤纸起始露置于PhosphorImager盒中检查杂交效率和信号强度后,滤纸在0.5x SSC中于65℃洗涤。然后用两个强化屏将滤纸置入柯达XARS胶卷下,使其在-70℃露置在胶卷下大约100小时。
从含噬菌体的滤纸发出一个强信号,后来命名为28-1,其含人类端粒酶RNA组分的基因。相应于在滤纸上观察到的信号的噬斑用于制备第二平板,以便可以培养分离的噬斑(通过以标记的pGRN7核酸探查确认)以用于大规模分离噬菌体DNA。噬菌体28-1从美国典型培养物保藏中心可以获得(保藏号75925),包含约15kb插入物并包含几个限制片段,这些片段含有与pGRN7上RNA组分序列杂交的序列,这些片段为4.2kbEcoRI限制性内切酶片段;4.2kb ClaI限制性内切酶片段,和2.5kb HindIII-SacI限制性内切酶片段。后一片段包含以上所示的RNA组分的整个约560个核苷酸的序列,并被认为包含RNA组分的完整的基因。包含pBluescript载体中的2.5kb HindIII-SacI限制性内切酶片段的质粒命名为质粒pGRN33,从美国典型培养物保藏中心可以获得(保藏号ATCC______)。在人类基因可以包含不是2.5kb片段上的那些序列的程度内,那些序列可以从噬菌体28-1或从其它通过以2.5kb片段探针(或本发明的另一个探针)探查识别的噬菌体克隆分离。以上提到的限制性内切酶片段是在单独限制性内切酶消化物中制备的;消化产物在0.7%琼脂糖凝胶上电泳分离,或者仅仅对于2.5kb组分,用3%聚丙烯酰胺凝胶电泳分离;从凝胶切下所需的带并制备用来供亚克隆,制备采用GeneCleanTM试剂盒II(来源于Biol0l公司)或在0.1x TBE中,100V 2小时电洗脱进Spectropor#2透析管(仅用于约2.5kb片段)。
将这些限制性内切酶片段亚克隆进大肠杆菌表达/诱变质粒,这些质粒源于基于pUC的质粒或源于pBluescriptII质粒,这些质粒也包含SV40复制起点(但没有SV40启动子活性)。形成的质粒可以用于制备改变的(突变的)RNA组分核酸,以供为各种目的引入到人类或其它真核细胞,如以上优选的实施方案描述中所描述的。
实施例8
人类端粒酶RNA组分的反义质粒用下列引物组经PCR扩增RNA组分cDNA制备反义表达质粒(1)NotB和G1,其产生小于质粒中cDNA插入物的反义核酸;和(2)NotB和R3C,其产生全长(相对于质粒中的插入物)反义核酸。NotB的核苷酸序列在以上实施例1中示出;G1与R3C引物的核苷酸序列显示如下。
G15’-GAGAAAAACAGCGCGCGGGGAGCAAAAGCA-3’R3C5’-GTTTGCTCTAGAATGAACGGTGGAAG-3’在PCR扩增后,扩增片段在PmlI位点被克隆进约10kb表达质粒;该质粒包含作为选择标记的赋予嘌呤霉素抗性,DHFR和赋予潮霉素B抗性的基因,SV40复制起点;配置来表达人类端粒酶RNA组分基因的反义链的诱导型人类金属硫蛋白基因启动子(人们也可以用更强的启动子获得更高的表达水平)和SV40晚期poly A添加位点。
将形成的质粒,命名为PGRN42(NotB/G1产物)和pGRN45(NotB/R3C产物),用磷酸钙方法(参见Maniatis等,同上)转染进纤维肉瘤细胞系HT1080。HT1080细胞通常是无限增殖的;人类端粒酶RNA组分的反义RNA的表达应该阻止人类端粒酶RNA组分与蛋白质组分的结合,阻断活性端粒酶形成并使细胞死亡。
实施例9从非人类哺乳动物鉴别和分离RNA组分核酸为了说明本发明的药剂如何用于从其它哺乳动物物种鉴别和分离基本上同源的核酸,使用与人类RNA组分序列互补的PCR引物在PCR中扩增同源的序列。用于说明本发明的这一方面的一个例证性的引物对由引物+10(具有序列5’-CACCGGGTTGCGGAGGGAGG-3’)和引物R7(具有序列5’-GGAGGGGCGAACGGGCCAGCA-3’)组成。基因组DNA是从黑猩猩,松鼠猴,猕猴,和狒狒组织制备的,以大约0.5-4mg/ml浓度溶解在TE缓冲液中。
对于每一种组织类型,制备PCR混合物,该混合物包含1微升基因组DNA,48微升Master Mix(其组成为1x TaqExtenderTM缓冲液,购自Stratagene,200μM各种dNTP和0.5μM各引物)和0.5微升Taq聚合酶(5单位/微升,Boehringer Mannheim)Tth聚合酶(TaqExtenderTM聚合酶,Stratagene)1∶1混合物。反应试管装载在热循环器上,该热循环器设定为首先于94℃加热反应混合物5分钟,然后完成在94℃30秒钟,63℃10秒钟和72℃45秒钟的27个循环。扩增反应完全之后,将约10微升各反应混合物装载在2%琼脂糖凝胶上进行电泳。电泳后,使凝胶染色,用UV照射,人们可以观察到每一种反应混合物均包含预计大小(约200bp)的带。从这些带可以克隆核酸并测序,可以按以上有关人类端粒酶RNA组分基因的描述克隆各种这样的哺乳动物物种的RNA组分基因其余部分。此后的实施例14描述松鼠猴端粒酶RNA组分基因测序的实施例。
实施例10突变的有义人类端粒酶RNA组分序列这一实施例说明在模板区改变端粒酶RNA组分序列会改变人类端粒酶合成的序列,导致染色体端粒酶重复中的变化。
为了确定重新编程TRC3模板区是否产生导致人类端粒酶活性中合成的端粒重复部分中相应的变化,将表达整个端粒酶RNA组分(TRC3)基因序列的基因片段克隆并诱变处理。Southern印迹分析显示TRC3杂交到人类基因组中的单拷贝基因上。从λ噬菌体文库分离TRC3的基因组拷贝,其显示出与在基因组Southern印迹上用TRC3探查时观察到的相同的限制图谱。将2.6kb HindIII-Sacl片段亚克隆进pBluescript的修饰形式,产生基因组TRC3质粒pGRN33。用引物延伸,RACE PCR和RT-PCR绘制所述RNA的5’和3’末端图。RNA转录物的大小为约550个碱基,与它在Northern印迹上的迁移一致。TRC3转录区在具有1.4kb上游序列的基因组克隆的中央。
将从纯化的端粒酶制剂提取的RNA用于下列实验。5’RACE在32P-dATP存在下用反义TRC3引物(R3B5’-CAACGAACGGCCA GCAGCTGACATT)制备第一链cDNA,用PAGE分离延伸产物并经放射自显影鉴别,切下并抽提。用T4 RNA连接酶将寡核苷酸(NotA5’-pATAGCGGCCGCTT GCCTTCA-NH2)连接到这些第一链产物,然后用嵌套引物R3c(5-GTTTGCTCTAGAATGAACGGTGGAAG),和与NotA寡核苷酸互补的寡核苷酸(NotB5′-TGAATTCTTGCGGCCGCTAT)进行PCR。PCR产物在琼脂糖凝胶上分离,切下带并用寡核苷酸Gl(5’-AGAAAAACAGCGCGCGGGGAGCAAAGCA)为引物直接测序。3’末端作图尝试完成3’RACE未获成功。其后,使用RT-PCR策略,其中使用一系列与基因组DNA序列互补的反义引物用于引导第一链cDNA合成。在这系列中的引物从转录物5’末端开始向3’末端每大约150bp被间隔。然后用第一链引物和其序列在已知的TRC3转录物内部(F3b5-TCTAACCCTAACTGAGAAGGGCGTAG)的引物进行PCR。当使用由设计为+100-+450(相对于5’的编号)之间的所有引物而不是用设计为+558-+950的任何引物制备的cDNA时,观察到预料大小的逆转录酶敏感性PCR带。其将成熟TRC3转录物的推定的3’末端置入+450和+558之间。此后的引物设计和RT-PCR被限制在+545和+558间隔之间。
经基因组质粒pGRN33的体外诱变(基本上按照Perez等,生物化学杂志26922485的描述完成),预料的TRC3模板序列从CUAACCCUA改变成CCAACCCCA(MuC)或CAAACCCAA(MuA)。如果掺入功能性端粒酶,这些突变RNA应当能作为合成TTGGGG(MuC)或TTTGGG(MuA)而不是野生型重复TTAGGG的模板。这些突变端粒酶活性可以容易地与野生型活性区别,因为它们表现出活性不再需要dATP,且仅野生型活性对ddATP的终止敏感。双重突变体(MuC+17)也被制备,其中除MuC模板之外在+180bp存在17bp插入。这一突变允许用探针探查17bp的插入或按大小特异性检测改变的RNA。
基因组序列的2.6kb足以体内表达TRC3。用MuC+17质粒瞬时转染细胞,用17bp插入序列作为引物在逆转录步骤中经RT PCR检测转染的DNA。在MuC+17转染细胞而不是模拟转染细胞中检测到RNA,表明2.6kb基因组克隆足以表达TRC3。用HT1080细胞的磷酸钙转染与pCMVneo一同从这三种突变质粒衍生稳定的转化体。在G418中选择抗性克隆,经RT-PCR(Irving等(1992)实验细胞研究202161)证实MuC+17 RNA的表达。
为试验突变端粒酶活性,测定未转染细胞和具有整合的MuC*,MuC或MuA载体(图1中C*,C,或A)的三个稳定转化体的抽提物。由于突变体抽提物预期包含野生型和突变型端粒酶活性,采用各种测定条件以区别它们。在正常的反应条件(dTTP,32P-dGTP和dATP)下,来自突变构建体系列的所有三种抽提物显示出对RNA酶敏感的野生型端粒酶活性(图1,第1-6道)。如预期的,当ddCTP包含在反应中时,这一活性不受影响(图1,7-9道),但被ddTTP消除(10-12道)。相反,当ddATP代替dATP时,C(14道)和A(15道)抽提物仍然显示对RNA酶敏感的端粒酶活性(17和18道),而C*(13道)和对照抽提物不显示这一活性。这些结果表明ddATP抗性活性代表的端粒酶由MuC或MuA TRC3 RNA重构。相反,在C*中的17bp插入物抑制重构,说明端粒酶重构对TRC3序列是非常特异性的。
为了确认由突变MuA合成的序列是(GGGTTT)n,我们改进了扩增添加到单一端粒酶引物上的端粒酶重复(Kim等(1994)科学2662011)的现有的PCR方法。用合成的引物,我们鉴别出反应条件,其中具有序列d(CCCAAACCCAAACCCAA)的3’引物仅扩增(TTTGGG)n重复,而不扩增包含(TTAGGG)n的重复。
为了区别由野生型与突变端粒酶添加的端粒酶重复,将两步测定与限制端粒酶反应应用的核苷酸的策略结合。由于MuA和MuC将分别产生(TTTGGG)n和(TTGGGG)n的端粒重复序列,所以首先将细胞抽提物在室温下在仅存在dTTP和dGTP时用TS底物温育10分钟,使得可以添加端粒酶重复。然后剩余端粒酶活性通过煮沸抽提物5分钟破坏。然后如Kim等(1994,同上)所述,在存在所有4种dNTP和痕量32P-dCTP时用合适的反向引物经PCR检测具有特异性DNA序列的端粒酶产物。对检测MuA产物而言,反向引物是(ACCCAA)4,PCR条件是94℃10秒,60℃30秒和72℃30秒,20个循环。对检测MuC产物而言,分别使用三个反向引物(CCCCAA)3,(CCAACC)3和(CCAACC)3,其给出具有相应的迁移率变动(与端粒酶产物退火的预期的位置一致)的PCR产物。除退火温度是50℃而外,使用的PCR条件与以上相同。在相同的条件下,没有端粒酶产物从亲本细胞或用野生型TRC-3基因转染的细胞产生。在我们的PCR扩增条件特异性试验中,含(TTTGGG)n和(TTGGGG)n的合成寡核苷酸分别产生具有(ACCCAA)4或(CCCCAA)3反向引物的适当的6nt阶梯PCR产物,而(TTAGGG)n寡核苷酸不产生任何具有(ACCCAA)4或(CCCCAA)3反向引物的PCR产物。
用这些条件,在修饰的端粒酶测定中,从MuA而不是从MuC或野生型细胞抽提物产生了产物,表明包含MuA的细胞的端粒酶产生(TTTGGG)n重复。类似方法用来分析MuC突变,其合成(TTGGGG)n重复。上述数据一起有力地证明TRC3基因编码人类端粒酶RNA组分,由此我们已将TRC3重新命名为hTR,用来指人类端粒酶RNA。
实施例11在致死细胞和无限增殖细胞中的端粒酶RNA组分大多数癌细胞高水平表达端粒酶活性,而在大多数正常的人类体细胞中检测不到端粒酶(Kin等(1994)同上)。为了确定在无限增殖癌细胞系中端粒酶RNA组分水平是否提高,在五种致死原代细胞株(其缺乏可检测的端粒酶活性)和具有高水平的端粒酶活性的五种无限增殖癌细胞系中用RT-PCR分析端粒酶RNA组分和GAPDH转录物水平。当比较GAPDH的水平时,在肿瘤细胞系中的端粒酶RNA组分转录物的稳定状态水平比原代细胞中的高3-12倍(图2A)。在高水平表达端粒酶的无限增殖癌细胞中端粒酶RNA组分水平增加,有趣的是,在致死原代细胞中也存在低的但可检测水平的端粒酶RNA组分,而不具有可检测的端粒酶活性(1-5道)。
也在各种正常的人类组织中用Northern印迹分析检查端粒酶RNA组分水平。睾丸和卵巢具有端粒酶RNA组分的最高水平,这是所预料到的,因为这些组织表达高水平的端粒酶活性。然而,一些其它组织也表达端粒酶RNA组分(图2B和2C),这些包括正常的肾,前列腺,和成人的肝脏,这些均缺少可检测水平的端粒酶活性。这些结果证实了来源于细胞系的数据(图2A)并且提示端粒酶RNA可能在一些人类组织中存在但是是失活的。类似的RNA表达的组织特异性区别在小鼠组织中见到;然而,许多正常的小鼠组织是端粒酶活性阳性的。在人类细胞中的端粒酶活性的明显增加的抑制作用可以帮助解释为什么小鼠细胞自发地在培养中无限增殖,而人类细胞不是如此。
实施例12反义hTR(人类端粒酶RNA组分)转录物在HeLa细胞中的表达而导致的细胞危象和细胞死亡为了测定端粒酶在无限增殖化细胞中的功能,将反义hTR表达构建体引入HeLa细胞。将包含人类端粒酶RNA组分cDNA克隆(TRC3)的1至193bp的200bp EcoRI DNA组分分别插入到p10-3与pBBS212的EcoRI位点上以便产生质粒p10-3-hTR和pBBBhTR。质粒p10-3-hTR在四环素调节的CMV基本启动子(相对于两种不同方向上游的5个Tet操纵基因)转录控制下表达反义端粒酶RNA组分(如Gossen等(1992)Proc.Natl.Acad.Sci.(USA)895547中所述)。质粒pBBS-hTR在MPSV启动子(Lin等(1994)基因147287)的控制之下表达反义hTR。平行地,也使缺乏反义hTR编码序列的对照表达载体经电穿孔进入HeLa细胞。在三个单独实验中选择包含反义或者对照质粒的克隆。最初,表达反义hTR的41个培养物与具有对照质粒的细胞一样培养。然而,在23至26群体倍增水平转染后,41个反义表达培养物中的33个经历危象(表I)。在这些培养物中的细胞危象的特征是显著地抑制细胞生长(从20到26PD),其后在一周期限内长并且细胞从平板脱离。在经历危象的33个培养物的28个中,在大多数细胞死亡后三周之内观察到很少(1%)的回复突变集落。回复突变细胞可以代表从反义hTR构建体的抑制作用逃逸的变异体。与反义克隆相反,载体对照细胞系在50倍增内的生长和死亡没有任何变化。
表I反义hTR导致较短的平均TRF和细胞危象进行三个独立实验,其中HeTe7细胞(高水平表达四环素抑制子VP16嵌合蛋白的HeLa细胞)用以下两个质粒分别经电穿孔转染,所述质粒是在四环素-VP16诱导型CMV基本启动子控制下表达反义hTR的质粒p10-3-hTR,和在MPSV启动子(54)的控制下表达反义hTR的质粒pBBs-hTR。[在这些实验中没有四环素调节作用被观察到,用p10-3-hTR的实验典型地在不存在四环素的情况下进行,因为四环素-VP16诱导型CMV基本启动子控制下的萤光素酶或反义hTR的对照实验表明在HeTe7细胞中存在或不存在四环素对萤光素酶或反义hTR表达几乎没有影响。事实上,在HeTe7细胞中的反义hTR构建体的早期的实验中,在四环素的存在下,在23至26 PDL时细胞仍然经历危象]。作为对照,HeTe7细胞也在相同的条件之下用亲代载体转染。从各转染系列分离11至18个稳定的克隆。直到20PDL,所有分离物的克隆都显示出相同的形态和生长曲线,此时,大多数反义表达克隆的生长明显减慢(10-3-hTR和pBBs-hTR)。到23-26PDL,这些细胞经历危象,其特征是出现变大的和变圆的细胞。然而并非所有由pBBs-hTR转染HeTe7细胞产生的克隆都经历危象;8个表达反义hTR的克隆继续类似于对照培养物生长。在PDL 23时收获所有的克隆细胞并测定平均TRF长度。用非配对t-检验法计算P值。对各系列,示出了经历危象的克隆的比例。
为了说明反义表达克隆中端粒长度和端粒酶抑制作用是否与细胞危象相关,在23PDL时测定了在几个前危象对照和实验集落中的端粒长度和端粒酶活性。所有包含对照载体的集落具有类似于亲本细胞系(3.15kb)的平均TRF长度(3.22和3.27kb),而经历危象的包含反义载体构建体的克隆具有在2.39和2.72kb之间的或比亲本系短17至26%的平均TRF长度(图3)。这些数据与在包含反义克隆中由于端粒酶活性的抑制作用失去的端粒重复一致。为了直接试验这一点,在14个克隆中测定端粒酶活性。端粒酶活性在许多反义克隆中一般较低但可检测,虽然因为平均TRF从3.22降至2.39kb(P=0.0008),变短的端粒说明水平不足以保持端粒长度。在8个包含反义载体(pBBS-hTRb)的没有经历危象的克隆中,端粒长度未明显地改变(3.03对3.33 P=0.355),并且端粒酶活性类似于对照。这些结果共同证明,一旦端粒达到关键的长度,端粒丧失就导致危象和细胞死亡。
在表达反义端粒酶RNA组分的HeLa细胞中的细胞危象进一步支持端粒酶抑制作用可以对人类癌症提供特异性的和有效的治疗。
实施例13原位扩增和检测端粒酶RNA原位检测A.荧光原位杂交(FISH)可以经靶向端粒酶RNA组分的标记探针的原位杂交进行在细胞或组织混合种群中端粒酶阳性细胞的鉴别。细胞样品的组织固定在微载玻片,充分浸透,并用于原位杂交。人类端粒酶RNA(hTR)的原位杂交的一个例子是首先将载玻片浸没在预温至70-74℃的70%去离子化甲酰胺/2X SSC溶液中2-3分钟使核酸变性。然后将载玻片转移到70%冰冷EtOH中,然后到95%EtOH中,再到100%EtOH中(在各溶液中均4分钟)。干燥100-200纳克(每片)标记的htRNA探针(用生物素,地高辛配基,放射性同位素,荧光标记物标记的约500bp DNA探针),重悬于100%去离子化甲酰胺,在75℃温育8分钟变性,并且立即在冰上冷却。将10微升2X杂交缓冲液(4X SSC;4X Denhardt’s溶液;20%葡聚糖硫酸盐;100mMTris,pH值7.5)加入到10微升重悬的探针中。把探针/杂交混合物(20微升)加入到固定的样品上,以盖玻片遮掩,并且用胶接剂或钉子密封盖玻片。37℃温育样品8-48小时。在杂交之后,撤走盖玻片,于37℃以2XSSC/50%去离子化甲酰胺洗涤样品两次;然后于37℃在2X SSC中洗涤两次(每次5分钟)。接着在显微镜下观察样品。B.引物原位标记(PRINS)传统的原位杂交检测方法的另一种变化的方法是引物(Primed)原位标记(PRINS)。经PRINS的hTR检测包括首先经逆转录酶(RT)合成hTR的cDNA,接着用hTR-特异性寡核苷酸探针和链延长掺入标记核苷酸经PRINS检测。可以用各种方法完成hTR的RT反应。RT反应的一个实例是采用GeneAmp耐热rTth逆转录酶RNA PCR试剂盒(Perkin Elmer)。按这种方法,将10微升RT混合物(10mMTris-HCI pH值8.3;90mMKCl;1mM MnCl2;200μM dNTPs;2.5UrTth DNA聚合酶;0.4μM反向引物[例如,R7G5′-GGAGGGGCGAACGGGCCAGCAG-3’])置入固定并浸透的样品上,用盖玻片密封,用指甲油固定,用矿物覆盖,在70℃温育30分钟。然后,通过在二甲苯中洗涤5分钟和接着在100%EtOH中洗涤5分钟除去矿物油。取下盖玻片,用DepC水短暂洗涤,然后用100%EtOH洗涤,在空气中干燥5分钟。将10微升PRINS混合物(5%(V/V)甘油;10mMTris-HCl,pH值.3;100mM KCl;0.05%(W/V)吐温20;0.75mMEGTA;2.5mMMgCl2;0.4μM正向引物[例如,U3b5’-GCCTGGGAGGGGTGGTGGCTATTTTTTG-3’];200μMdA,dG,dCTP;110μMdTTP;90μM标记的dUTP)置入样品上。用盖玻片密封,用指甲油固定,用矿物油覆盖,在70℃温育30分钟到3小时。然后将样品在加热到70℃的洗涤缓冲液(4X SSC;0.05%Tween20)中洗涤2分钟。然后观察信号。C.原位RT-PCRhTR的RT-PCR检测包括经逆转录酶反应(病毒逆转录酶或经耐热DNA聚合酶的内在的RT活性)合成靶RNA的cDNA,接着经原位PCR扩增靶cDNA。各种RT反应(包含在11.B部分中讨论的RT方案)可以用于hTR的cDNA合成。此外,用于PRINS检测方法中的相同的缓冲条件和引物也可以用于RT-PCR,但将最终的温育改为70℃30分钟到3小时。将样品在热循环仪上扩增30-40个循环(94℃/40秒钟,55℃/90秒钟)(参见11.B部分)。PCR后,将样品在加热到70℃的洗涤缓冲液(4X SSC;0.05%Tween20)中洗涤3次,每次2分钟。然后观察信号。
另一种可供选择的方法是采用GeneAmp原位PCR系统1000和GeneAmp原位PCR核心试剂盒(Perkin Elmer)扩增起始RT反应产生的cDNA。
在固定并浸透的样品上的原位RT-PCR的一个步骤可以用GeneAmp EZ rTth RNAPCR方案与GeneAmp原位PCR系统1000(Perkin Elmer)结合来完成。这一方法包括按照制造商的方案(GeneAmp原位PCR系统1000,Perkin Elmer),将40-50微升EZ RNAPCR缓冲液混合物(50mM N-二甘氨酸;115mM醋酸钾;8%(W/V)甘油,pH值8.2;300μM脱氧腺苷,脱氧鸟苷,dCTP;165μM dTTP;135μM标记的dUTP;5-10U rTth DNA聚合酶;2.5mM Mn(OAc)2;0.45-1μM htRNA特异性引物例如,R7和U3b)置入到在显微镜载玻片上的固定并浸透的样品上,并且用硅化腈密封衬垫与夹子密封。然后将样品放置在GeneAmp原位PCR仪中于94℃加热120秒钟,接着扩增30-40个循环(94℃45秒,60℃45秒)。扩增后,按以上所述洗涤和显影样品。
为了在PCR扩增期间减少可能起因于荧光标记的直接掺入的背景信号,可以使用间接检测法,该方法为用非标记的dNTP进行PCR扩增,接着用对扩增产物特异性的标记杂交探针进行原位杂交。这种方法中,信号由以上描述的任何RT-PCR方法扩增(不用标记dNTP或引物),扩增产物经原位杂交检测。D.应用产物延伸引物进行原位PCR原位PCR的成功取决于阻止细胞基质内的扩增产物的渗漏到胞外。因此,一般的实际情况是小于500bp的PCR产物是原位PCR所不期望的。为了阻止小于500bp的PCR产物从细胞基质渗漏,通常采用将“大的”dNTP(例如,生物素,荧光标记物,地高辛配基标记的dUTP)掺入PCR产物。另一种阻止原位PCR中小产物渗漏的方法是将产物延伸引物掺入原位PCR方案。
所述方法包括在原位PCR中,使用在5’末端包含3-4个6bp重复顺序的引物(例如,[5’-TTTCCC-3’]3-4],接着是对靶特异性的序列(参见图4引物1),与合适的反向引物(引物2)以及仅由重复序列构成的第三引物(引物3,例如,[5’-TTTCCC-3’]4)一起扩增特异性靶。由于引物3对靶PCR产物的3’端的交错(staggered)结合,引物3的存在将延长PCR产物。可以通过降低起始PCR条件的退火温度诱导PCR产物延长。
例如,如果在引物1中的靶序列的退火的温度是60℃,样品将最初被扩增15-20个循环(94℃/45℃和60℃/45℃),然后是被扩增15-20个循环(94℃/45℃和50℃/45℃)。在第二PCR步骤中降低的退火温度将有利于通过增加引物3对重复序列的交错结合机会来产生延长的PCR产物。所形成的延长的PCR产物不易于从细胞基质渗漏,由此,在原位PCR分析中,产生更好的信号保持。
实施例14非人灵长类端粒酶RNA组分为了说明可以用基于人类RNA组分的引物获得其它哺乳动物端粒酶RNA组分序列,将人类序列PCR引物用于从松鼠猴(其被认为属于遗传上与人类最有差异的非人灵长类物种之一)基因组DNA扩增端粒酶RNA组分序列。
用引物F3b(5’-TCTAACCCTAACTGAGAAGGGCGTAG-3’)和H3+20(5’-CTCAAGGTCATCGCCAAGGT-3’)如所述扩增松鼠猴基因组DNA。观察到一个单一DNA带,接着将其克隆进载体pBluesc如tII SK(Stratagene San Diego,CA)。用采用反向通用引物(5’-AACAGCTATGACCATG-3’),引物210-3’(5’-TCACGTCTCCTGCCAATTTGC-3’)或引物H3+20的PCR方法部分测序所形成的克隆,获得的松鼠猴端粒酶RNA组分的部分序列是5′-GGCGCGCTTCCCTGAGCTGTGGACGTGCACCAGGACTCGGCTCACACATGCAGTTCGCTTTCCTGCTGGTGGGGGGACGCCGATCGTGGCCATCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAATCCCTAAATCTGACTGA-3′和5′-TTTTGAGAGATCATTAAGTATTTAATGAATATTTAGCTAGAAGATCTAAACGAAAATTCAAGTTGTGTTCCTTTAGTGGTCATCGGTTTATGCCGAAGGTTACAAATTTCTTCTTTGAAAAATTAGACCATTGGCGATGATCCTTGA-3′当与人类端粒酶RNA组分基因序列对比时,获得下列对比结果,其中采用人类端粒酶RNA组分基因的编号惯例(连字号“-”是为了优化序列对比所引入的间隙)1900人 CGCGCGGCGCGATTCCCTGAGCTATGGGACGTGCACCCAGGACTCGGCTC猴 GGCGCGCTTCCCTGAGCTGT-GGACGTGCACC-AGGACTCGGCTC1950人 ACACATGCAGTTCGCTTTCCTGTTGGTGGGGGGAACGCCGATCGTGCGCA猴 ACACATGCAGTTCGCTTTCCTGCTGGT-GGGGGGACGCCGATCGTGGCCA2000人 TCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAACCCCCAAACCTGACT猴 TCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAATCCCTAAATCTGACT2050人 GACTGGGCCAGTGTGCTGCAAATTGGCAGGAGACGTGAAGGCACCTCCAA猴 GA和 2300人 TTTTTTGAGAGATCATTTAACATTTAATGAATATTTAATTAGAAGATCTA猴 TTTTGAGAGATCATTAAGTATTTAATGAATATTTAGCTAGAAGATCTA2350人 AATGAACATTGGAAATTGTGTTCCTTTAATGGTCATCGGTTTATGCCAGA猴 AACGAAAATT-CAAGTTGTGTTCCTTTAGTGGTCATCGGTTTATGCCGAA2400人 GGTTAGAAGTTTCTTTTTTGAAAAATTAGACC-TTGGCGATGA-CCTTGAGC猴 GGTTACAAATTTCTTCTTTGAAAAATTAGACCATTGGCGATGATCCTTGA以上实施例描述了本发明的各个方面以及怎样制备本发明的某些核酸。这些实施例无意于提供权利要求所包含的本发明的许多不同的实施方案的毫无遗漏的描述。
权利要求
1.一种基本上纯化形式的哺乳动物端粒酶RNA组分。
2.一种哺乳动物端粒酶RNA组分,该组分包含基本上与以下序列相同的多核苷酸GGGUUGCGGAGGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGGCGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUCGCCCCUCCCGGGACCUGCGGCGGGUCGCUGCCCAGCCCCCGAACCCCGCCUGGAGGCCGCGGUCGGCCGGGGCUUCUCCGGAGGCACCCACUGCCACCGCGAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGUUCACCGUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCGCGCGCGGCGCGAUUCCCUGAGCUAUGGGACGUGCACCCAGGACUCGGCUCACACAUGCAGUUCGCUUUCCUGUUGGUGGGGGGAACGCCGAUCGUGCGCAUCCGUCACCCCUCGCCGGCAGUGGGGGCUUGUGAACCCCCAAACCUGACUGACUGGGCCAGUGUGCU.
3.权利要求1的RNA组分,该组分具有以下序列GGGUUGCGGAGGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGGCGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUCGCCCCUCCCGGGACCUGCGGCGGGUCGCUGCCCAGCCCCCGAACCCCGCCUGGAGGCCGCGGUCGGCCGGGGCUUCUCCGGAGGCACCCACUGCCACCGCGAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGUUCACCGUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCGCGCGCGGCGCGAUUCCCUGAGCUAUGGGACGUGCACCCAGGACUCGGCUCACACAUGCAGUUCGCUUUCCUGUUGGUGGGGGGAACGCCGAUCGUGCGCAUCCGUCACCCCUCGCCGGCAGUGGGGGCUUGUGAACCCCCAAACCUGACUGACUGGGCCAGUGUGCU.
4.一种基本上纯化形式的寡核苷酸,该寡核苷酸包含与权利要求3的RNA组分的长度为10至500个核苷酸的邻接序列相同或精确互补的序列。
5.权利要求4的寡核苷酸,该寡核苷酸是寡脱氧核糖核苷酸。
6.权利要求4的寡核苷酸,该寡核苷酸是寡核糖核苷酸。
7.权利要求5的寡核苷酸,该寡核苷酸在结合到入端粒酶RNA组分上时抑制或阻断所述端粒酶活性。
8.权利要求5的寡核苷酸,该寡核苷酸是质粒pGRN33。
9.权利要求5的寡核苷酸,该寡核苷酸是λ克隆28-1。
10.一种重组表达质粒,该质粒包含权利要求5的寡核苷酸,并且还包含配置来驱动序列与所说寡核苷酸相同或互补的RNA的转录的启动子。
11.权利要求10的重组表达质粒,其中所说的质粒在真核宿主细胞中起作用产生所说的寡核苷酸。
12.权利要求11的重组表达质粒,其中所说的质粒在原核宿主细胞中起作用产生所说的寡核苷酸。
13.权利要求11的重组表达质粒,其中所说的质粒包含人类端粒酶RNA组分的人类基因。
14.权利要求13的重组表达质粒,其中所说的基因包含以下核苷酸序列5′-GATCAGTTAGAAAGTTACTAGTCCACATATAAAGTGCCAAGTCTTGTACTCAAGATTATAAGCAATAGGAATTTAAAAAAAGAAATTATGAAAACTGACAAGATTTAGTGCCTACTTAGATATGAAGGGGAAAGAAGGGTTTGAGATAATGTGGGATGCTAAGAGAATGGTGGTAGTGTTGACATATAACTCAAAGCATTTAGCATCTACTCTATGTAAGGTACTGTGCTAAGTGCAATAGTGCTAAAAACAGGAGTCAGATTCTGTCCGTAAAAAACTTTACAACCTGGCAGATGCTATGAAAGAAAAAGGGGATGGGAGAGAGAGAAGGAGGGAGAGAGATGGAGAGGGAGATATTTTACTTTTCTTTCAGATCGAGGACCGACAGCGACAACTCCACGGAGTTTATCTAACTGAATACGAGTAAAACTTTTAAGATCATCCTGTCATTTATATGTAAAACTGCACTATACTGGCCATTATAAAAATTCGCGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCGAAGCGGGTGGATCACTTGAGCCCTGGCGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCCCGTCTCTACTAAAAACACAAAAACTAGCTGGGCGTGGTGGCAGGCGCCTGTAATCCCAGCTACTCAGGAGGCTGAGACACGAGAATCGCTTGAACCCGGGAGCAGAGGTTGCAGTGAGCCGAGATCACGCCACTAGACTCCATCCAGCCTGGGCGAAAGAGCAAGACTCCGTCTCAAAAAAAAAAATCGTTACAATTTATGGTGGATTACTCCCCTCTTTTTACCTCATCAAGACACAGCACTACTTTAAAGCAAAGTCAATGATTGAAACGCCTTTCTTTCCTAATAAAAGGGAGATTCAGTCCTTAAGATTAATAATGTAGTAGTTACACTTGATTAAAGCCATCCTCTGCTCAAGGAGAGGCTGGAGAAGGCATTCTAAGGAGAAGGGGGCAGGGTAGGAACTCGGACGCATCCCACTGAGCCGAGACAAGATTCTGCTGTAGTCAGTGCTGCCTGGGAATCTATTTTCACAAAGTTCTCCAAAAAATGTGATGATCAAAACTAGGAATTAGTGTTCTGTGTCTTAGGCCCTAAAATCTTCCTGTGAATTCCATTTTTAAGGTAGTCGAGGTGAACCGCGTCTGGTCTGCAGAGGATAGAAAAAAGGCCCTCTGATACCTCAAGTTAGTTTCACCTTTAAAGAAGGTCGGAAGTAAAGACGCAAAGCCTTTCCCGGACGTGCGGAAGGGCAACGTCCTTCCTCATGGCCGGAAATGGAACTTTAATTTCCCGTTCCCCCCAACCAGCCCGCCCGAGAGAGTGACTCTCACGAGAGCCGCGAGAGTCAGCTTGGCCAATCCGTGCGGTCGGCGGCCGCTCCCTTTATAAGCCGACTCGCCCGGCAGCGCACCGGGTTGCGGAGGGAGGGTGGGCCTGGGAGGGGTGGTGGCCATTTTTTGTCTAACCCTAACTGAGAAGGGCGTAGGCGCCGTGCTTTTGCTCCCCGCGCGCTGTTTTTCTCGCTGACTTTCAGCGGGCGGAAAAGCCTCGGCCTGCCGCCTTCCACCGTTCATTCTAGAGCAAACAAAAAATGTCAGCTGCTGGCCCGTTCGCCCCTCCCGGGACCTGCGGCGGGTCGCTGCCCAGCCCCCGAACCCCGCCTGGAGGCCGCGGTCGGCCGGGGCTTCTCCGGAGGCACCCACTGCCACCGCGAAGAGTTGGGCTCTGTCAGCCGCGGGTCTCTCGGGGGCGAGGGCGAGGTTCACCGTTTCAGGCCGCAGGAAGAGGAACGGAGCGAGTCCCGCGCGCGGCGCGATTCCCTGAGCTATGGGACGTGCACCCAGGACTCGGCTCACACATGCAGTTCGCTTTCCTGTTGGTGGGGGGAACGCCGATCGTGCGCATCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAACCCCCAAACCTGACTGACTGGGCCAGTGTGCTGCAAATTGGCAGGAGACGTGAAGGCACCTCCAAAGTCGGCCAAAATGAATGGGCAGTGAGCCGGGGTTGCCTGGAGCCGTTCCTGCGTGGGTTCTCCCGTCTTCCGCTTTTTGTTGCCTTTTATGGTTGTATTACAACTTAGTTCCTGCTCTGCAGATTTTGTTGAGGTTTTTGCTTCTCCCAAGGTAGATCTCGACCAGTCCCTCAACGGGGTGTGGGGAGAACAGTCATTTTTTTTTGAGAGATCATTTAACATTTAATGAATATTTAATTAGAAGATCTAAATGAACATTGGAAATTGTGTTCCTTTAATGGTCATCGGTTTATGCCAGAGGTTAGAAGTTTCTTTTTTGAAAAATTAGACCTTGGCGATGACCTTGAGCAGTAGGATATAACCCCCACAAGCTT-3’
15.一种用权利要求10的重组表达质粒转化的真核宿主细胞,所说质粒编码可与哺乳动物端粒酶蛋白质组分相结合的RNA分子,产生能够将核苷酸重复单位序列添加到端粒上的端粒酶活性。
16.权利要求14的宿主细胞,其中所说的重复单位是5’-TTAGGG-3’。
17.权利要求14的宿主细胞,其中所说的重复单位不是5’TTAGGG-3。
18.权利要求15的宿主细胞,其中所说的RNA分子是GGGUUGCGGAGGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGGCGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUCGCCCCUCCCGGGACCUGCGGCGGGUCGCUGCCCAGCCCCCGAACCCCGCCUGGAGGCCGCGGUCGGCCGGGGCUUCUCCGGAGGCACCCACUGCCACCGCGAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGUUCACCGUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCGCGCGCGGCGCGAUUCCCUGAGCUAUGGGACGUGCACCCAGGACUCGGCUCACACAUGCAGUUCGCUUUCCUGUUGGUGGGGGGAACGCCGAUCGUGCGCAUCCGUCACCCCUCGCCGGCAGUGGGGGCUUGUGAACCCCCAAACCUGACUGACUGGGCCAGUGUGCU.
19.权利要求15的宿主细胞,其中所说的重组表达载体包括由以下序列限定的核苷酸序列5′-GATCAGTTAGAAAGTTACTAGTCCACATATAAAGTGCCAAGTCTTGTACTCAAGATTATAAGCAATAGGAATTTAAAAAAAGAAATTATGAAAACTGACAAGATTTAGTGCCTACTTAGATATGAAGGGGAAAGAAGGGTTTGAGATAATGTGGGATGCTAAGAGAATGGTGGTAGTGTTGACATATAACTCAAAGCATTTAGCATCTACTCTATGTAAGGTACTGTGCTAAGTGCAATAGTGCTAAAAACAGGAGTCAGATTCTGTCCGTAAAAAACTTTACAACCTGGCAGATGCTATGAAAGAAAAAGGGGATGGGAGAGAGAGAAGGAGGGAGAGAGATGGAGAGGGAGATATTTTACTTTTCTTTCAGATCGAGGACCGACAGCGACAACTCCACGGAGTTTATCTAACTGAATACGAGTAAAACTTTTAAGATCATCCTGTCATTTATATGTAAAACTGCACTATACTGGCCATTATAAAAATTCGCGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCGAAGCGGGTGGATCACTTGAGCCCTGGCGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCCCGTCTCTACTAAAAACACAAAAACTAGCTGGGCGTGGTGGCAGGCGCCTGTAATCCCAGCTACTCAGGAGGCTGAGACACGAGAATCGCTTGAACCCGGGAGCAGAGGTTGCAGTGAGCCGAGATCACGCCACTAGACTCCATCCAGCCTGGGCGAAAGAGCAAGACTCCGTCTCAAAAAAAAAAATCGTTACAATTTATGGTGGATTACTCCCCTCTTTTTACCTCATCAAGACACAGCACTACTTTAAAGCAAAGTCAATGATTGAAACGCCTTTCTTTCCTAATAAAAGGGAGATTCAGTCCTTAAGATTAATAATGTAGTAGTTACACTTGATTAAAGCCATCCTCTGCTCAAGGAGAGGCTGGAGAAGGCATTCTAAGGAGAAGGGGGCAGGGTAGGAACTCGGACGCATCCCACTGAGCCGAGACAAGATTCTGCTGTAGTCAGTGCTGCCTGGGAATCTATTTTCACAAAGTTCTCCAAAAAATGTGATGATCAAAACTAGGAATTAGTGTTCTGTGTCTTAGGCCCTAAAATCTTCCTGTGAATTCCATTTTTAAGGTAGTCGAGGTGAACCGCGTCTGGTCTGCAGAGGATAGAAAAAAGGCCCTCTGATACCTCAAGTTAGTTTCACCTTTAAAGAAGGTCGGAAGTAAAGACGCAAAGCCTTTCCCGGACGTGCGGAAGGGCAACGTCCTTCCTCATGGCCGGAAATGGAACTTTAATTTCCCGTTCCCCCCAACCAGCCCGCCCGAGAGAGTGACTCTCACGAGAGCCGCGAGAGTCAGCTTGGCCAATCCGTGCGGTCGGCGGCCGCTCCCTTTATAAGCCGACTCGCCCGGCAGCGCACCGGGTTGCGGAGGGAGGGTGGGCCTGGGAGGGGTGGTGGCCATTTTTTGTCTAACCCTAACTGAGAAGGGCGTAGGCGCCGTGCTTTTGCTCCCCGCGCGCTGTTTTTCTCGCTGACTTTCAGCGGGCGGAAAAGCCTCGGCCTGCCGCCTTCCACCGTTCATTCTAGAGCAAACAAAAAATGTCAGCTGCTGGCCCGTTCGCCCCTCCCGGGACCTGCGGCGGGTCGCTGCCCAGCCCCCGAACCCCGCCTGGAGGCCGCGGTCGGCCGGGGCTTCTCCGGAGGCACCCACTGCCACCGCGAAGAGTTGGGCTCTGTCAGCCGCGGGTCTCTCGGGGGCGAGGGCGAGGTTCACCGTTTCAGGCCGCAGGAAGAGGAACGGAGCGAGTCCCGCGCGCGGCGCGATTCCCTGAGCTATGGGACGTGCACCCAGGACTCGGCTCACACATGCAGTTCGCTTTCCTGTTGGTGGGGGGAACGCCGATCGTGCGCATCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAACCCCCAAACCTGACTGACTGGGCCAGTGTGCTGCAAATTGGCAGGAGACGTGAAGGCACCTCCAAAGTCGGCCAAAATGAATGGGCAGTGAGCCGGGGTTGCCTGGAGCCGTTCCTGCGTGGGTTCTCCCGTCTTCCGCTTTTTGTTGCCTTTTATGGTTGTATTACAACTTAGTTCCTGCTCTGCAGATTTTGTTGAGGTTTTTGCTTCTCCCAAGGTAGATCTCGACCAGTCCCTCAACGGGGTGTGGGGAGAACAGTCATTTTTTTTTGAGAGATCATTTAACATTTAATGAATATTTAATTAGAAGATCTAAATGAACATTGGAAATTGTGTTCCTTTAATGGTCATCGGTTTATGCCAGAGGTTAGAAGTTTCTTTTTTGAAAAATTAGACCTTGGCGATGACCTTGAGCAGTAGGATATAACCCCCACAAGCTT.
20.一种哺乳动物端粒酶RNA组分,该组分包含基本上同源于权利要求3的RNA组分序列中的至少20个连续核苷酸序列相同的序列。
21.一种生产重组端粒酶的方法,所说方法包括用编码权利要求19的RNA组分的重组表达载体转化表达端粒酶蛋白质组分的真核宿主细胞,并且在能够表达和装配蛋白质组分和RNA组分以形成能够将序列添加到染色体DNA端粒上的活性端粒酶分子的条件下培养用所说载体转化的所说宿主细胞。
22.一种组合物,该组合物包含权利要求1或权利要求2的基本上纯化的人类端粒酶RNA组分和基本上纯化的人类端粒酶蛋白质。
23.权利要求22的组合物,其中所说的人类端粒酶RNA组分是从表达具有互补于人类端粒酶RNA组分序列的序列的重组多核苷酸的宿主细胞纯化的。
24.权利要求22的组合物,该组合物还包含候选端粒酶调节剂。
25.一种用于鉴别突变哺乳动物端粒酶RNA组分多核苷酸的方法,该方法包括合成基本上与端粒酶RNA组分多核苷酸序列相同并且至少有一个核苷酸不同的突变端粒酶RNA组分多核苷酸;检测定突变端粒酶RNA组分多核苷酸结合到基本上纯化的哺乳动物端粒酶蛋白质的结合。
26.一种鉴别候选端粒酶调节剂的方法,该方法包括进行异源二聚化或端粒酶活性测定,包括(1)包含一种与人类端粒酶RNA组分基本上相同并能结合人类端粒酶蛋白质的多核苷酸的多核苷酸,(2)一种基本上纯化的人类端粒酶蛋白质,和(3)一种药剂;测定药剂是否抑制人类端粒酶RNA和人类端粒酶蛋白质的异源二聚化或端粒酶活性;鉴定抑制所述的异源二聚化或端粒酶活性的药剂作为抑制端粒酶活性的候选端粒酶调节剂。
27.一种用于在人类细胞中抑制端粒酶活性的方法,该方法包括将一种外源多核苷酸转移进细胞,该外源多核苷酸包含具有至少25个连续核苷酸的基本上相同于或基本上互补于人类端粒酶RNA序列的多核苷酸序列的转录单位,所说多核苷酸序列可操作连接到促进可操作连接的多核苷酸在所说细胞中转录的异源转录调节序列上。
28.权利要求27的方法,其中所说的细胞是致瘤性细胞。
29.权利要求27的方法,其中所说的外源多核苷酸包含以下序列或其补体5′-GGGUUGCGGAGGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGGCGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUCGCCCCUCCCGGGACCUGCGGCGGGUCGCUGCCCAGCCCCCGAACCCCGCCUGGAGGCCGCGGUCGGCCGGGGCUUCUCCGGAGGCACCCACUGCCACCGCGAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGUUCACCGUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCGCGCGCGGCGCGAUUCCCUGAGCUAUGGGACGUGCACCCAGGACUCGGCUCACACAUGCAGUUCGCUUUCCUGUUGGUGGGGGGAACGCCGAUCGUGCGCAUCCGUCACCCCUCGCCGGCAGUGGGGGCUUGUGAACCCCCAAACCUGACUGACUGGGCCAGUGUGCU-3′
30.权利要求27的方法,其中所说的异源转录调节序列包含在人类细胞中为组成型活性的启动子。
31.权利要求27的方法,其中所说的外源多核苷酸是具有人类端粒酶RNA组分转录单位的腺病基因组。
32.权利要求27的方法,其中所说的转录单位产生基本上互补于人类端粒酶RNA组分的反义RNA。
33.权利要求27的方法,其中所说的外源多核苷酸包含以下序列或其补体5′-GATCAGTTAGAAAGTTACTAGTCCACATATAAAGTGCCAAGTCTTGTACTCAAGATTATAAGCAATAGGAATTTAAAAAAAGAAATTATGAAAACTGACAAGATTTAGTGCCTACTTAGATATGAAGGGGAAAGAAGGGTTTGAGATAATGTGGGATGCTAAGAGAATGGTGGTAGTGTTGACATATAACTCAAAGCATTTAGCATCTACTCTATGTAAGGTACTGTGCTAAGTGCAATAGTGCTAAAAACAGGAGTCAGATTCTGTCCGTAAAAAACTTTACAACCTGGCAGATGCTATGAAAGAAAAAGGGGATGGGAGAGAGAGAAGGAGGGAGAGAGATGGAGAGGGAGATATTTTACTTTTCTTTCAGATCGAGGACCGACAGCGACAACTCCACGGAGTTTATCTAACTGAATACGAGTAAAACTTTTAAGATCATCCTGTCATTTATATGTAAAACTGCACTATACTGGCCATTATAAAAATTCGCGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCGAAGCGGGTGGATCACTTGAGCCCTGGCGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCCCGTCTCTACTAAAAACACAAAAACTAGCTGGGCGTGGTGGCAGGCGCCTGTAATCCCAGCTACTCAGGAGGCTGAGACACGAGAATCGCTTGAACCCGGGAGCAGAGGTTGCAGTGAGCCGAGATCACGCCACTAGACTCCATCCAGCCTGGGCGAAAGAGCAAGACTCCGTCTCAAAAAAAAAAATCGTTACAATTTATGGTGGATTACTCCCCTCTTTTTACCTCATCAAGACACAGCACTACTTTAAAGCAAAGTCAATGATTGAAACGCCTTTCTTTCCTAATAAAAGGGAGATTCAGTCCTTAAGATTAATAATGTAGTAGTTACACTTGATTAAAGCCATCCTCTGCTCAAGGAGAGGCTGGAGAAGGCATTCTAAGGAGAAGGGGGCAGGGTAGGAACTCGGACGCATCCCACTGAGCCGAGACAAGATTCTGCTGTAGTCAGTGCTGCCTGGGAATCTATTTTCACAAAGTTCTCCAAAAAATGTGATGATCAAAACTAGGAATTAGTGTTCTGTGTCTTAGGCCCTAAAATCTTCCTGTGAATTCCATTTTTAAGGTAGTCGAGGTGAACCGCGTCTGGTCTGCAGAGGATAGAAAAAAGGCCCTCTGATACCTCAAGTTAGTTTCACCTTTAAAGAAGGTCGGAAGTAAAGACGCAAAGCCTTTCCCGGACGTGCGGAAGGGCAACGTCCTTCCTCATGGCCGGAAATGGAACTTTAATTTCCCGTTCCCCCCAACCAGCCCGCCCGAGAGAGTGACTCTCACGAGAGCCGCGAGAGTCAGCTTGGCCAATCCGTGCGGTCGGCGGCCGCTCCCTTTATAAGCCGACTCGCCCGGCAGCGCACCGGGTTGCGGAGGGAGGGTGGGCCTGGGAGGGGTGGTGGCCATTTTTTGTCTAACCCTAACTGAGAAGGGCGTAGGCGCCGTGCTTTTGCTCCCCGCGCGCTGTTTTTCTCGCTGACTTTCAGCGGGCGGAAAAGCCTCGGCCTGCCGCCTTCCACCGTTCATTCTAGAGCAAACAAAAAATGTCAGCTGCTGGCCCGTTCGCCCCTCCCGGGACCTGCGGCGGGTCGCTGCCCAGCCCCCGAACCCCGCCTGGAGGCCGCGGTCGGCCGGGGCTTCTCCGGAGGCACCCACTGCCACCGCGAAGAGTTGGGCTCTGTCAGCCGCGGGTCTCTCGGGGGCGAGGGCGAGGTTCACCGTTTCAGGCCGCAGGAAGAGGAACGGAGCGAGTCCCGCGCGCGGCGCGATTCCCTGAGCTATGGGACGTGCACCCAGGACTCGGCTCACACATGCAGTTCGCTTTCCTGTTGGTGGGGGGAACGCCGATCGTGCGCATCCGTCACCCCTCGCCGGCAGTGGGGGCTTGTGAACCCCCAAACCTGACTGACTGGGCCAGTGTGCTGCAAATTGGCAGGAGACGTGAAGGCACCTCCAAAGTCGGCCAAAATGAATGGGCAGTGAGCCGGGGTTGCCTGGAGCCGTTCCTGCGTGGGTTCTCCCGTCTTCCGCTTTTTGTTGCCTTTTATGGTTGTATTACAACTTAGTTCCTGCTCTGCAGATTTTGTTGAGGTTTTTGCTTCTCCCAAGGTAGATCTCGACCAGTCCCTCAACGGGGTGTGGGGAGAACAGTCATTTTTTTTTGAGAGATCATTTAACATTTAATGAATATTTAATTAGAAGATCTAAATGAACATTGGAAATTGTGTTCCTTTAATGGTCATCGGTTTATGCCAGAGGTTAGAAGTTTCTTTTTTGAAAAATTAGACCTTGGCGATGACCTTGAGCAGTAGGATATAACCCCCACAAGCTT-3′
34.一种用于人类疾病基因治疗的多核苷酸,所说多核苷酸包含一种转录单位,该转录单位包含具有至少25个连续核苷酸的基本上相同于或基本上互补于人类端粒酶RNA序列的多核苷酸序列,该多核苷酸序列可操作连接到促进可操作连接的多核苷酸在所说细胞中转录的异源转录调节序列上。
35.一种切割人类端粒酶RNA组分或人类端粒重复序列的核酶。
36.一种用于检测患者中端粒酶相关疾病存在的方法,该方法包括以下步骤从患者分离细胞样品;检测细胞样品中的人类端粒酶RNA组分RNA以确定诊断值;把诊断值与作为细胞样品的相同类型的标准化正常细胞中人类端粒酶RNA组分表达的标准值比较;将比标准值高得足以指示病理状态的存在的诊断值诊断为指示存在与端粒酶相关的疾病状态。
37.一种用于检测患者中致瘤性疾病存在的方法,该方法包括以下步骤从患者分离细胞样品;检测细胞样品中的人类端粒酶RNA组分RNA以确定诊断值;将诊断值与在与细胞样品相同类型的非致瘤细胞中表达的人类端粒酶RNA组分的标准值进行比较;将比标准值高得足以指示致瘤状态的存在的诊断值诊断为指示存在致瘤状态。
38.一种用于测定哺乳动物端粒酶RNA组分在细胞或细胞样品中存在的方法,该方法包括用端粒酶RNA组分多核苷酸,端粒酶RNA组分引物,或者端粒酶RNA组分多核苷酸或端粒酶RNA组分引物的互补序列进行扩增或杂交。
39.一种包含一对哺乳动物端粒酶RNA组分多核苷酸PCR引物的组合物。
40.权利要求39的组合物,其中所说的引物由相应于或互补于人类端粒酶RNA组分基因序列的序列组成。
41.一种包含哺乳动物端粒酶RNA组分多核苷酸杂交探针的组合物。
42.权利要求41的组合物,其中所说的探针包含相应于或互补于人类端粒酶RNA组分基因序列的至少25个连续核苷酸。
全文摘要
本发明公开了作为药物,治疗及诊断试剂有用的包含哺乳动物端粒酶RNA组分的核酸。
文档编号A61P35/00GK1158617SQ95194952
公开日1997年9月3日 申请日期1995年7月6日 优先权日1994年7月7日
发明者布赖恩特·维尔蓬图, 冯均力, 沃尔特·芬克, 威廉·H·安德鲁斯 申请人:杰龙公司