用于吸收制品等的匹配的渗透性衬层/吸收结构系统的制作方法

文档序号:1059193阅读:161来源:国知局
专利名称:用于吸收制品等的匹配的渗透性衬层/吸收结构系统的制作方法
技术领域
本发明涉及调整无纺织物和其它材料的功能,使其适于用作吸收制品的体侧衬层,以提高该吸收制品的液体下渗性能。更具体地讲,本发明涉及使所述衬层的渗透性在一定范围内与吸收制品的吸收结构的缓冲层或其它下层的渗透性匹配,以提高该吸收制品的液体下渗性能。
背景技术
吸收制品,尤其是个人护理吸收制品,包括尿布、训练裤、诸如卫生巾的女性卫生用品、和失禁装置等。一次性吸收制品是被设计用于吸收并容纳身体渗出液的。这种一次性制品为一次性使用的产品,在使用一段较短时间-通常为数小时间-之后即被丢弃,而且不能被洗涤和再利用。这种制品通常被贴近和接近使用者身体放置,以吸收并容纳从体内排出的各种渗出液。所有此类制品通常都包括一个液体可渗透的体侧衬层或表层,一个液体不可渗透的外层或背层,以及一个放在体侧内层和外层之间的吸收结构。该吸收结构可以包括一个位于体侧衬层下面并与其呈液体连通的接触状态的缓冲层,以及一个由纤维素浆粕短纤维和吸收性胶凝颗粒的掺和物或混合物制成的吸收芯,该吸收芯位于缓冲层下面并与其呈液体连通的接触状态。
理想的是,个人护理吸收制品从产品角度讲具有低渗露性,并给使用者以干爽感。诸如尿布的吸收制品可能从裆部或正面或背面腰部发生渗露。渗露的发生可能是由于产品设计上的各种性能缺陷或产品中某种材料的缺陷所致。吸收制品发生所述渗露的原因之一是液体下渗到吸收芯中的速度不够快,所述吸收芯的作用是吸收并保留体内渗出液。
业已发现排尿速率可以高达15-20ml/秒,而且速度高达280cm/秒。因此,特定吸收制品的液体下渗速度,特别是构成该吸收制品的衬层和缓冲材料的液体下渗速度必须能达到或超过预计的向吸收制品中输入液体的速度。吸收制品迅速吸收液体的能力的不足,会导致在液体被吸收结构吸收之前有过多的液体汇集在体侧衬层的体侧表面上。所述汇集的液体会润湿使用者的皮肤,并会从吸收制品的裆部或腰部开口区渗出,造成不舒服和潜在的健康问题,并会污染使用者的外衣或床褥。
已采取了各种方法以期减少或消除个人护理吸收制品的泄露。例如,已在这种制品上采用了诸如弹性裆部开口和弹性吸纳翼的机械阻隔装置。而且,还改进了通常为放置液体缓冲材料的区域(有时被称为目标区)的吸收材料的用量和结构。
提高吸收制品的总体液体吸收速度和其它方法一直着眼于体侧衬层及其迅速将液体输送给吸收制品的吸收结构的能力。包括粘合梳理织物和粘织物在内的无纺材料已被广泛用作体侧衬层。一般希望这种无纺材料足够疏松和/或多孔,以使液体能快速通过,同时起到保持使用者皮肤与该衬层下面的湿润的吸收体隔离的作用。例如,提高衬层材料的液体下渗速度的途径包括提高衬层材料的多孔性,用表面活性剂处理构成衬层材料的纤维,以提高该衬层的可湿性,以及改变所述表面活性剂的持久性。
再一种方法是引入一层或几层额外的材料,通常是放置在体侧衬层和吸收芯之间,以提高该吸收制品的液体吸收性能,并产生吸收芯与接近使用者皮肤的体侧衬层之间的隔离。上述额外的层通常被称为缓冲层,它适于由稠密、有弹性的无纺材料制成。缓冲层,尤其是高弹性、高能量、抗压缩的吸收结构,可以起到暂时保留并吸收尚未被吸收到吸收芯中的液体的作用,由此可减少液体从吸收芯中向衬层回流或回潮。
尽管已有上文所做的改进工作,但仍然存在对用于吸收制品上的衬层材料的液体下渗性能进行改进的必要性。具体地讲,需要一种可提供改进的液体缓冲处理能力的衬层材料。本发明提供了一种体侧衬层/吸收结构系统,在将其用于吸收制品中时能产生所述改进的液体下渗性能。
发明概述本发明涉及一种适用于吸收制品的匹配的渗透性衬层/吸收结构系统,其中,体侧衬层的渗透性与该吸收结构下层,如缓冲层的渗透性相关。通过正确匹配衬层材料的渗透性和其下层的渗透性,该衬层和下层材料的液体下渗性能可超过下层材料本身的液体下渗性能。因此,根据本发明的一种实施方案,将体侧衬层的渗透性设定在其下层的特定范围内,以产生增强了的衬层/下层液体下渗性能。根据本发明的另一种实施方案,让体侧衬层的渗透性与下层的渗透性匹配或相关,以使该衬层/下层的液体下渗性能至少比下层本身的液体下渗性能提高大约50%。根据本发明的再一种实施方案,让衬层材料的渗透性与其下层的渗透性匹配或相关,以使该衬层/下层组合的液体下渗性能至少比下层本身的液体下渗性能提高大约65%。按照本文所披露的内容,通过适当选择与下层材料渗透性匹配的衬层材料的渗透性,该衬层材料的液体下渗速度不仅不会限制或抑制液体向其下层和吸收结构的底层部分下渗,而且还能出人预料地使其液体下渗性能高于所述下层本身的液体下渗性能。本发明的体侧衬层和其下层适于由纤维无纺织物制成。
附图的简要说明

图1是采用了本发明的衬层/吸收结构系统的一次性尿布的局部剖开的上平面视图。
图2是图1所示一次性尿布的横剖视图。
图3是用于生产熔融纺长丝的无纺织物的工艺和装置的侧视示意图。
图4是可用于实施本文所述的“径流”和“流通”测试方法的测试装置的侧视示意图。
发明的详细说明本发明总体上涉及对吸收制品体侧衬层材料的性能进行改进,以提高液体向该制品中下渗的能力。更具体地讲,本发明涉及使体侧衬层材料的渗透性与诸如缓冲层的吸收结构底层或下层的渗透性相匹配,以提高其液体下渗性能。
仅仅是出于说明的目的,将结合其在个人护理吸收制品上的用途对本发明进行分别说明。因此,本发明不应当仅局限于这些具体用途,相反,其用意是可将本发明应用于可以使用这种液体吸收材料的一切场合,其中包括,但不限于手术绷带和纱布,以及拭子等。
在本文中,以单数形式使用的“层(layer)”或“织物(Web)”具有双重含义指一个元件或若干元件。在本文中,术语“无纺层”和“无纺织物”是指具有交织的单纤维或长丝结构的织物,但其结构形式与针织织物的不同。市售热塑性聚合材料适于生产用于制造无纺织物的纤维。在本文中,“聚合物”一词包括,但不限于均聚物、共聚物,如嵌段、接枝、无规和交替共聚物,三元共聚物等,及其混合物和改性物。而且,除非特别加以限定,“聚合物”一词应当包括该材料的一切可能的几何构型,包括,但不限于全同、间同和随机对称。在本文中,“热塑性聚合物”或“热塑性聚合材料”是指在遇热时会变软,而冷却至环境温度后又可恢复其原有状态的长链聚合物。代表性的热塑性材料包括,但不限于聚氯乙烯、聚酯、聚酰胺、多氟烃、聚烯烃、聚亚胺酯、聚苯乙烯、聚乙烯醇、己内酰胺以及它们的共聚物。用于制做所述无纺织物的纤维可以具有任何合适的形态,可以包括空心或实心纤维,直的或卷曲的纤维,双组分、多组分、双成分或多成分纤维,以及上述纤维的掺和物或混合物,这在本领域中是众所周知的。
参见图1,示出了代表大部分个人护理吸收制品的尿布10,它包括一个液体可渗透的表层或体侧衬层12,一个大致为液体不可渗透的背层或外层14,以及一个位于衬层12和外层14之间的吸收结构20。由衬层12形成一个贴合性的、感觉柔软的、并且不刺激使用者皮肤的体侧表面。衬层12还能起到隔离使用者皮肤和保留在吸收结构20中的液体的作用。可将各种材料用于制做本发明的体侧衬层12,包括有孔的塑料薄膜、纺织物、无纺织物、多孔性泡沫和网状泡沫等,只要该衬层材料的渗透性能与吸收结构下层的渗透性匹配或配合以实现所需要的。本文所述的液体下渗性能的改进即可。业已发现无纺材料特别适用于生产本发明的体侧衬层,其中包括聚烯烃长丝的纺粘或熔喷织物,或天然纤维(如木纤维或棉纤维)和/或合成纤维(如聚丙烯或聚酯纤维)的粘合梳理织物。例如,在所示出的实施方案中,体侧衬层12可以是一种合成聚丙烯长丝的无纺纺粘织物,该长丝的纤维尺寸大约为12-48μm,尤其是大约为18-43μm。该无纺织物的基重大约为10.0-68.0g/m2(gsm),尤其是大约为14.0-42.0gsm,其松厚度或厚度大约为0.13~1.0毫米(mm),尤其是大约为0.18~0.55mm,密度大约为0.025~0.12g/cm3(g/cc),尤其是大约为0.068~0.083g/cc。另外,在用下文所述的测试方法测定时,这种无纺织物的渗透性大约为150~500达西,尤其是大约为850~1800达西。可以用特定量的表面活性剂,如大约0.28%的Triton X-102表面活性剂处理上述无纺织物,或以其它方式处理,以赋予其所需水平的可湿性和亲水性。对于本发明来说,用作衬层12的无纺材料或其它材料若具有至少等于或大于下层16的可湿性和亲水性水平或程度的话,则被认为是理想的。如果使用表面活性剂的话,可以用诸如喷雾、即染和刷涂之类的一切传统方法将其涂在织物上。
在本文中,“亲水的”或“亲水性”是指被与其接触的合水液体润湿的纤维或纤维表面。反过来,所述材料的湿润程度又可以用有关液体和材料的接触角和表面张力形式描述。适用于测定用于制做诸如体侧衬层或缓冲层的特定纤维材料或纤维材料的混合物的可温性的设备和技术,可以由Cahn SFA-222 Surface Force Analyzer System提供。在用该系统进行测定时,其接触角低于90°的纤维被视为“可湿性的”或亲水的,而其接触角大于90°的纤维被视为“不可湿性的”或疏水的。
外层14通常由诸如聚乙烯薄膜的热塑性薄膜制成,它基本上是不能渗透液体的。外层14的作用是防止吸收结构20中所容纳的体内渗出液润湿或污染使用者的衣服、床褥或其它接触尿布10的材料。例如,在所示出的实施方案中,外层14可以是一种起始厚度大约为0.5密耳(0.012mm)-5.0密耳(0.12mm)的聚乙烯薄膜。可以对聚合物薄膜外层进行压纹和/或无光精整,以产生更加别致、宜人的外观。外层14的其它可取结构包括被做成或处理成具有希望水平的液体不可渗透性的纺织或无纺纤维织物,或由纺织或无纺织物和热塑性薄膜构成的叠层。外层14可选择性地由蒸气或气体可渗透的微孔“透气性”材料组成,它可以渗透蒸汽或气体,但基本上是液体不可渗透性的。例如,可以下述方法使聚合物薄膜产生透气性在薄膜聚合物配方中使用填料,将该填料/聚合物组合物挤压成薄膜,然后充分拉伸该薄膜,以便在填料颗粒周围形成孔隙,从而使该薄膜具有透气性。一般,所用的填料越多,拉伸度越高,则其透气性程度也越大。
参见图1,在衬层12和外层14之间放有一个吸收结构20,该结构包括一个缓冲层16和一个吸收芯18。吸收芯18适于由亲水性纤维素木浆短纤维和高吸收性胶凝颗粒(如超强吸收剂)的混合物构成。吸收芯18通常是可压缩的、可整形的、不刺激使用者的皮肤,而且能吸收并保持液体体内渗出液。就本发明而言,吸收芯18可以包括一个整块的材料或若干分立的材料块。吸收芯18的大小和吸收力应当与计划中的使用者的体形和由计划使用的尿布10所产生的液体载荷相当。
缓冲层16的作用是迅速收集并暂时保持所排出的液体,将所述液体从原始接触点送走,并将该液体分散到缓冲层的其他部分,并最终将该液体排放到吸收芯18中。缓冲层16最常见的是被置于体侧衬层与吸收芯之间,并与它们呈密切的液体连通接触状态,不过,如果必要的话,还可以在总体产品设计中采用额外的层。这样一层材料位于体侧衬层12内表面(未露出的),尽管在本文中它被称作缓冲层,但还可将其称作分配层、转移层和输送层等。在图1所示实施方案中,缓冲层16与衬层12和吸收芯18呈密切的液体连通接触状态,以便能够将液体从衬层12有效地转移到缓冲层16,然后再转移到吸收芯18。为了进一步加强液体转移能力,将缓冲层16的上表面和/或下表面分别与衬层12和吸收芯18连接是有利的。可以使用合适的常规连接技术,其中包括,但不限于粘合剂结合(使用水基、溶剂基和热激活的粘合剂)、热粘合、超声波粘合、针刺和穿孔,以及上述方法或其他合适连接方法的组合。例如,如果缓冲层16是通过粘合剂粘结在体侧衬层12上的话,所使用的粘合剂量应当足以产生所需的粘结力,但又不会过分限制液体由衬层流入缓冲层。
可将各种纺织物和无纺织物用于制做缓冲层16。例如,缓冲层16可以是由聚烯烃长丝的熔喷或纺粘织物组成的无纺层。缓冲层16还可以是由天然纤维和/或合成纤维组成的粘合梳理织物或空气成网织物。例如,所述粘合梳理织物可以是粉状粘合的梳理织物、红外线粘合的梳理织物或通气粘合的梳理织物。所述红外粘合和通气粘合的梳理织物可选择性地包括不同纤维的混合物或掺和物,而在特定织物中的纤维长度可能大约为6~60mm。该缓冲层可以由大致为疏水性的材料组成,而该疏水性材料可选择性地用表面活性剂进行处理或作其他处理,以使其具有适当水平的可湿性和亲水性。缓冲层16可以具有大体上均匀的厚度和横截面。
弹性件25可选择性地置于接近尿布10的每一个纵向边缘22处。所述弹性件是被用于将尿布10的横向侧边22拉紧并固定在使用者的腿上。另外,还可将弹性件27设置在接近尿布10的末端边缘24中的一个或两个处,以形成一个弹性腰部带32。
尿布10还可以包括适当的吸纳翼或护翼(未示出),所述护翼由体侧衬层12构成或连接于该衬层上。例如,所述吸纳翼的合适结构和配置披露于授予K.Enloe的美国专利申请US4,704,116中,该专利所披露的内容以与本文一致的形式收作本文的参考。
为了将尿布10固定在使用者身体上,该尿布上应当连接有某种形式的固定装置,如图1所示,该固定装置可以是位于尿布10的背面腰带部分的与外层14的内表面和/或外表面接合的粘性带接片28。可以在尿布10的正面腰带部分的外层14的外表面上连接一个或几个塑料薄膜条或块(未示出),有时被称为胶带附着区,以便于将尿布10固定在使用者腰部周围。另外,还可以采用各种其他固定装置,如机械固定装置和钩环固定装置等。
可将尿布10的上述各个部分以多种已知的尿布结构形式,并使用各种已知的常规技术组装在一起。例如,可以使用热粘合或超声粘合、诸如热熔压敏型粘合剂之类的粘合剂、以及上述各种粘合方法或其他适当连接方式的组合。在使用粘合剂粘结时,可以用常规方法使用该粘合剂,如涂布滴状或丝状粘合剂。
就体侧衬层12而言,可以用多种已知生产工艺生产可用作本发明的衬层12的无纺织物,其中包括纺粘、空气成网、或粘合梳理织物成型工艺。纺粘无纺织物是由熔纺长丝制成。在本文中,“熔纺长丝”一词是指小直径纤维和/或长丝,它是通过从纺丝板上的若干小的、通常为圆形的毛细管中挤出长丝状的熔化的热塑性材料而制成的,然后通过诸如非引出或引出的流体拉伸的方法使所挤出的长丝的直径迅速变小,或通过其他已知纺粘机制制成。纺粘无纺织物的生产披露于以下美国专利中授予Apple等的US4,340,563,授予Dorschner等的US3,692,618,授予Matsuki等的US3,802,817,授予Kinney的US3,338,992和US3,341,394,授予Hartman的US3,502,763,授予Levy的US3,276,944,授予Peterson的US3,502,538,和授予Dobo等US3,542,615,以上所有专利均被收作本文参考。
在实施图1和图2所示的本发明的具体实施方案时,用常规纺粘工艺生产熔纺长丝的无纺织物,该长丝是由可挤压的热塑性树脂制成。例如,业已发现由大约98%的聚丙烯同聚物和大约2%TiO2组成的可挤压热塑性树脂很适用于本发明中。
在图3中示意性地描述了适用于生产熔纺聚合物长丝无纺织物的纺粘工艺和装置。在生产所述熔纺聚合物长丝(例如,纺粘长丝)的无纺织物时,可将一种聚合物材料的颗粒或碎片等引入挤压机82的颗粒料斗80中。挤压机82有一个由常规传动马达(未示出)驱动的挤出螺杆(未示出)。当该聚合物通过挤压机82时,由于由传动马达驱动的挤压螺杆的转动,将该聚合物逐渐加热到熔化状态。可以用若干独立步骤实现将聚合物加热至熔化状态,使聚合物通过挤压机82的分立加热区向挤压模84运动时,其温度被逐渐升高。挤压模84可以是另一个加热区,在这里聚合物的温度被保持在一个较高水平,以便挤压。将聚合物加热至熔化状态所需的温度可根据所用聚合物的类型而有所变化。例如,聚丙烯可以在大约为200~270℃的温度下挤出。可以用多种常规加热装置(未示出)中的任一种对挤压机82的各个区和挤出模84进行加热。
所述熔融聚合物长丝最初是以丝帘或丝流86状从分离的长丝生产装置中生产并排出的。所述生产装置88可以是任何一种合适的长丝生产装置,如纺丝板、模孔、或与熔融纺丝工艺类似的装置,例如纺粘工艺。从所述生产装置88中排出的纺成长丝被拉伸通过纤维拉伸装置的通道85,该装置与诸如喷射气流的高速流体源89可操纵地连接。所述高速流体对向下通过通道85的熔纺长丝86的作用是拉伸该熔纺长丝86,并提高将该熔纺长丝输送到成型表面90的速度。所述熔纺长丝在离开通道85之后以随机方式沉积在一个有孔的成型表面90上,这一过程通过借助于放置在成型表面下面的真空装置(未示出)而实现。该真空装置的用途是消除不希望有的长丝分散,并引导长丝至所述成型表面90上,以形成熔纺聚合物长丝的无纺织物92。成型表面90被支承在由常规传动装置(未示出)驱动的辊94上。
将无纺织物92与成型表面90分离,并引导其通过花型辊装置100的辊隙96。花型辊98被用于所述织物92的热粘合。由光滑的支承辊99与花型辊98一起构成热型粘合辊隙96。另外,在支承辊99的外表面还可以有一种粘合花型。通过加热装置(未示出)将花型辊98加热到适当的粘合温度,并由常规传动装置(未示出)将其转动,以便当织物92通过辊隙96时产生一系列热型粘合。热型粘合的结果是,长丝织物92变成一种稳定性提高了的花型粘合织物102。在图3中所示的纺粘装置中,花型辊98有一个点粘合花型,其表面粘合面积大约为10~25%或更高,所使用的粘合点密度大约为15.5-46.5个粘合点/cm2。也可以采用高于和低于上述范围的粘合密度,具体采用的粘合密度取决于每个粘合点的大小。然后对花型粘合织物102进行其他处理和/或处理步骤。
还可将纺粘工艺用于生产双组份纺粘无纺织物,例如由并列的或皮/芯型聚乙烯/聚丙烯纺粘双组分长丝制成。用于生产这种双组份纺粘无纺织物的合适方法披露于授予Pike等的美国专利US5,418,045,该专利被全文收作本文参考。所述用于生产上述长丝及所得织物的工艺,包括使用一对挤压机,用于分别向一个双组份纺丝板供应聚合物组份。用于生产双组份长丝的纺丝机在本领域中广为人知,因此本文中不再详述。一般,所述纺丝板包括一个装有纺丝组件的外壳,该组件包括若干垂直叠放的板,板上具有由孔组成的花型,由这些孔形成流体通道,以便将高熔点聚合物和低熔点聚合物分别引至该纺丝板上的纤维成形孔。该纺丝板具有排列成一排或几排的孔,当聚合物经纺丝板挤出时,由这些孔形成向下延伸的长丝帘。当长丝帘离开纺丝板时,与来自长丝帘一侧或两侧的骤冷气体接触,由该气体至少部分骤冷所述长丝,并在从纺丝板中伸出的长丝上形成潜在的螺旋卷曲。通常,以大约30~120米/分钟的速度和大约7~32℃的温度将骤冷空气沿大至垂直于长丝的长度方向引入。
将一个纤维拉伸装置或吸丝器放置在骤冷气体下面,以接收骤冷的长丝。如上所述,用于熔纺聚合物的纤维拉伸装置或吸丝器在本领域中是众所周知的。适用于这一方法的代表性纤维拉伸装置包括授予Matsuki等的US3,802,817中所示类型的线性纤维吸丝器,和授予Dorschner等的US3,692,618和授予Dayies等的US3,423,266中所示类型的喷射枪,以上专利被全文收作本文参考。纤维拉伸装置一般具有一个长形通道,由流过该通道的抽吸气体经该通道拉伸所述长丝。所述抽吸气体可以是诸如空气的、不会与该长丝的聚合物发生不利地相互作用的任何气体。由一个加热器向该纤维拉伸装置输送热抽吸气体。当该抽吸气体吸引该骤冷长丝和环境空气通过所述纤维拉伸装置时,该长丝被加热至激活其上面的潜在卷曲所需的温度。激活该长丝上的潜在卷曲所需温度大约为43℃至最高不超过所述低熔点聚合物组分的熔点的温度。通常,空气的温度越高,在单位长度的长丝上所产生的卷曲数也越多。
所述拉伸和卷曲的长丝从纤维拉伸装置中排出,并以随机方式沉积在一个连续的成形表面上,这一过程通常借助于一个放置在该成形表面下面的真空装置完成。该真空装置的用途是消除所述长丝的不理想的分布,并引导该长丝到成形表面上以形成一种双组分长丝的均匀的非粘合的无纺织物。如果必要,可以用一个挤压管或其他适当装置轻压所得到的织物,以便在对该织物进行粘结处理之前提高其结构完整性。
粘结该双组份纺粘织物的一种方法是使用一种通气性粘合剂。这种通气性粘合剂在本领域中广为人知,因此,下面仅对通气性粘结略作说明。粘结双组分纺粘无纺织物的另一种方法是热点粘结,该方法为本领域技术人员所熟知,在本文中无需详述。一种合适的热粘结方法披露于授予Hansen等的US3,855,046中,该专利的内容被全文收作本文参考。还可以使用用于双组份纺粘无纺织物的其他方法,如粘合剂粘结,炉烘粘结,超声波粘结,或水力缠结或其组合。这些粘结技术同样为本领域普通技术人员所熟知,因此在本文中不作详细讨论。
体侧衬层12还可以由粘合梳理织物制成。粘合梳理织物是由短纤维制成,这种纤维通常是成包购买的。将该纤维包放入一个弹棉机中,由它分离所述纤维。将该纤维送入一个梳毛或刷毛装置,由该装置进一步分离所述短纤维并使其呈机器方向的取向,形成一种大至为机器方向取向的纤维无纺织物。一旦形成所述织物,即可用12种已知粘结方法中的一种或几种将其粘结。所述粘结方法之一是粉状粘结,其中,将一种粉状粘合剂分布在织物中,然后将其激活,通常是通过用热空气加热该织物和粘合剂的方法进行激活。另一种合适的粘结方法是花型粘结,其中通常是以局部粘结的方法用加热的压延辊或超声波粘结装置将纤维粘合在一起,不过如果必要的话,也可将该织物的整个表面粘结在一起。另一种合适的并且是众所周知的粉结方法是通气性粘结,正如下文将要讨论的,该方法特别适用于粘结双组分短纤维。
空气成网是另一种众所周知的方法,通过该方法可以制成纤维无纺织物层12。在该空气成网方法中,将由长度通常大约为6-19mm的短纤维组成的纤维束分开,并混入一个空气源,然后沉积在一个成形网上,通常借助于一个真空源完成这一过程。然后用诸如热空气或喷洒粘合剂的方法将随机沉积的纤维彼此粘结在一起。
缓冲层16也适于由无纺材料制成,生产方法可以是上述生产方法中的任一种。业已发现,用于制作缓冲层16的有效的无纺织物以具有某些特定参数为特征。例如这些参数包括基重、松厚度、丈量恢复性、力度、可渗透性、和每一空隙容积的表面积(SA/VV)。其他参数可参包括粘结点阵,它有助于稳定其孔度结构和亲水性。所述粘结点阵和纤维细度的混合可以有利地形成并大体上保持一种理想的孔度结构。另外,在生产缓冲层16时使用诸如聚乙烯皮/聚酯芯纤维的双组分纤维可产生有益效果。这种双组分纤维可以是扁平卷曲的或螺旋卷曲的,正如为本领域所公知的。
例如在图1所示实施方案中,缓冲层16可以是由双组分纤维和/或合成短纤维的均匀混合物制成的粘合的、梳理的、单层纤维织物。缓冲层16的基重至少约为0.50盎司/码2(大约17克/米2),在68.9Pa的压力下的密度至少应为0.010g/cm3,在68.9Pa的压力下的松厚度为1.0mm,松厚度恢复率至少约为75%,渗透率约为500-5000达西,每个空隙容积的表面积至少约为20cm2/cm3。
通气性粘结被视为是特别适用于粘结这种由双组分纤维或掺有这种双组分纤维的无纺织物的方法。这种通气性粘合器为本领域所熟知,本文中无需详细描述。一般,这种通气性粘合器包括一个有孔的辊,由该辊接收织物,还包括一个环绕该有孔辊的外壳。一股加热的空气由所述外壳导入,施加在所述织物上并进入有孔的辊。由该加热的空气将所述织物加热至高于所述双组分纤维的低熔点组分的熔点,但低于高熔点组分的熔点。在加热时,所述织物纤维的低熔点聚合物部分熔化并粘结位于其交叉点附近的纤维,而所述纤维的高熔点聚合物部分保持该织物的物理和尺寸完整性。例如,当聚乙烯和聚酯被用作所述聚合物组分时,流过所述通气性粘合器的空气的温度约为110~140℃,速度约为10~150m/分钟。所述织物在该通气性粘合器中的停留时间通常不超过大约6秒钟。不过,应当理解的是,该通气性粘合器的参数取决于诸如所用粘合剂的类型、织物厚度、织物线速度等的因素。
本发明人认为,正确匹配或关联所述衬层的渗透性和其下层缓冲层的渗透性,对于取得本文所述的液体下渗性能的改善是至关重要的,因此本发明总体上涉及将一种具有第一渗透性的衬层材料置于与具有第二渗透性的诸如缓冲层的下层呈液体连接接触状态,以便,将衬层/下层组合层的液体径流性能至少提高到高于所述下层本身的液体径流性能50%,这一结果是按照下文所披露的测试方法测得的,(即所述衬层/下层组合层不超过该下层本身的径流液体量的大约1/2)。因此,在本文中,“匹配的渗透性”一词是指衬层材料的渗透性和下层材料的渗透性在按照本文所述方法进行适当设定时,可以实现上述液体下渗性能的改善,此时所述衬层和下层处于液体连通接触状态并与液体隔绝。
另外,本发明还以衬层的渗透性落在其下层的渗透性的特定范围内为特征,以所述下层渗透性百分比的形式表示。因此,根据本发明所公开的内容,所述衬层的渗透性应当大约为其下层渗透性的55-120%。在本发明的另一个合适的实施方案中,衬层的渗透性大约为其下层渗透性的85-110%。
在对本发明的上述实施方案进行说明之后,提供了一系列匹配的渗透性衬层/吸收结构系统的实例,以便进一步说明本发明。用下面提供的测试所述样品,以测定渗透性和液体径流和流通性。
测试方法基重按照Federal Test Method 191A/5041测定每个样品的基重。样品尺寸为9英寸×9英寸(22.9cm×22.9cm),总共对8个样品进行称重,然后算出每种材料的平均值。所给出的值为平均值。衬层松厚度(厚度)以厚度衡量的衬层材料松厚度,是在0.5psi的压力下用Starret型胀量测试仪测定的。缓冲层松厚度(厚度)及松厚度恢复力可以用INSTRON或SINTECH张力测试仪测定缓冲层的松厚度和松厚度恢复力,以测定当用一定的力,以恒定的速度将一种材料压在一个活动台。板与一个固定的底座之间时所遇到的阻力,随后以相同速度解除所施加的力。最好记录压力或力,以及台板压力。如果仅记录力,以用如下公式计算压力
其中P读数=由SINTECH或INSTRON读出的压力读数,以Pa计F=反作用于台板上的力,以Pa计Ap=平板面积,以cm2计(19.02cm2)在实施上述测定时,该装置的基座的尺寸必须大于台板的尺寸。平台和底座之间的零高度距离是通过将台板下调至直到其几乎接触底座而设定的。然后将该台板从零高度升至所需的起始高度。该起始台板位置必须大于材料的起始厚度,测试开始时样品上的压力为零。材料的尺寸可等于或大于台板尺寸。
用一个直径为4.92cm的圆形台板将材料以5.0mm/分钟的速度压在固定的底座上,使最大负荷达到13,790Pa(2.0psi)。以相同的速度使台板返回至其原始位置。所述台板的起始位置距所述底座13mm。将所述材料样品切成10.16cm的方形,并测试该样品的中部。每隔0.01分钟或每隔0.5mm记录力和位置的数据。对每种材料的3个样品进行测试,并取平均值。所给出的值为平均值。松厚度恢复值同样是平均值。
适于所述测试的装置包括压力测试仪带有压力测试软件和1kN负荷室的INSTRON 6021型,该装置由英格兰、Bucks的INSTRON制造。天平Mettler PM4600型,Highstown,New Jersey测定松厚度或厚度时使用以下公式松厚度(厚度)=Xo-X其中Xo=起始台板位置距底座的距离,以mm计X=在特定压力下(此时为68.9Pa)台板位置距其起始位置的距离,以mm计因此,所给出的所有松厚度值均为在68.9Pa的负荷或压力下测得的缓冲材料样品的值。
样品材料在干燥状态下的松厚度恢复百分比,是在68.9Pa(0.01磅/英寸2)的压力下,用压缩和恢复时台板的位置计算出来的,此时对样品所加压力为68.9Pa。所用公式为
密度材料的密度是通过用在68.9Pa的压力下样品的松厚度(以mm计)除以以每平方米克(8sm)计的单位面积样品的重量而计算出来的,并用0.001乘以该结果,将该值转换成每平方厘米克(g/cc)。共对3个样品进行测试,并算出密度的平均值。每空隙容积的表面积(SA/VV)每空隙容积的表面积是这样计算的测定每一克样品的纤维表面积,以cm2计,并用该样品的空隙容积除以该值,此即为在68.9Pa的压力下测得的密度的倒数。每空隙容积的表面积可以表示当测体通过所述织物结构时所会遇到的阻力。可将SA/VV视为类似于筛网的筛目。随着孔变小,液体通过该筛网也就变得越困难。为了实现缓冲层的功能,理想的是使用具有低SA/VV值的织物,以使液体可以较容易的通过该织物。在该方法中得到的数据是基于对每个样品进行3次测定的平均值。
用以下公式计算在1克织物材料样品中的纤维的表面积每克织物的表面积(SA)=3363×{(纤维1细度/纤维1密度)0.5×(1/纤维1细度)×织物的纤维1的重量%}+3363×{(纤维2细度/纤维2密度)0.5×(1/纤维2细度)×织物的纤维2的重量%}。
每空隙容积的表面积(SA/VV)是这样计算的用VV除以SA,或如上所述,乘以织物的密度,公式如下
SA/VV=SA(cm2/g)×织物密度(g/cm3)=SA/VV(cm2/cm3)。MD抗拉强度按照ASTMD5035-90测试方法测定缓冲层样品的机器方向(MD)抗拉强度,所不同的是,样品尺寸为7.6cm×15.2cm,使样品的机器方向平行于样品的较长尺寸方向。共对8个样品材料进行了测试,然后加以平均。所提供的值为平均值。渗透性测试渗透性表示当给流体施加一定的压力梯度时,该流体流过一种结构的难、易程度。所产生的通过所述结构的流体速度是受该结构的渗透性控制的。样品材料沿Z-向,即穿过该材料厚度方向的渗透性,是通过强制流动测试测定的,该测试方法详细披露于Bernard Mi11er和Dayid B.C1ark的题为“通过织物的液体输送;湿润及稳态流动”的文章中,该文发表于Textile Research Journal的第150-155页(1978年3月)。上述文章被以全文形式收作本文参考。
为了进行上述测试,按照上述文章的说明安装一个强制流阻监测器。在所述强制流阻测试中,将所述样品固定在一个气缸中,并由一个活塞迫使流体以恒定速度通过该材料,记录作用于该活塞的反压。用达西定律计算渗透性,该定律按照以下公式描述通过多孔介质的流体V=QA=Kzμ·dpdz]]>其中V=表面流速或活塞速度,以cm/分钟计Q=容积流动速度,以cm3/秒计A=管内径的横截面积(31.7cm2)Kz=材料渗透性常数z=材料厚度,以cm计dp/dz=通过材料的压力梯度,以Pa/cm计。
μ=流体粘度(cp),Penetek油的粘度约为6cp该公式又能求出Z向渗透性(Kz),其单位为达西,方法如下
该测试的压降是通过一个测定压力与时间关系的计算机软件程序获得的,该压降等于暂停点和活塞再次开始启动之间的压力变化。
材料厚度是通过由一个连接于DIGIMATIC INDICATOR Type543-445-1 Model ID 1050ME(购自Mitutoyo Mfg.Co.Ltd.,日本)上的3英寸(76.2mm)的圆形丙烯台板对所述样品施加一个0.5磅/英寸2(psi)的载荷而获得的。
和所述测试装置一起使用的设备,包括一个购自Massachusetts的SETRA Systems of Acton的压力传感器。该压力传感器可以测定高达25英寸的水压。被使用的其它设备包括一个购自奥地利的BBCGoerz Metrawatt的SE120,881221100型图表记录器;一个购自纽约、Holcomb的Velmex Inc.的滑板和电机定位器;一个购自宾夕法尼亚的Centroid Corporation of State College的#14V 8K BASIC型步进电机;以及一台有一列接口的COMPAQ个人电脑。
压力测定的校正是这样实现的将已知重量或体积的流体加入所述气缸中,并用以下公式比较压力换能器反应和理论压力增加DP理论=r·g·h=g·M/A·100cm/m·0.001kg/g其中DP理论=理论压力变化,以Pa计r=流体密度,以g/cm3计g=标准重力加速度,为981cm/秒2h=加入所述缸中的流体高度,以cm计A=气缸的内表面积,以cm2计,为31.7cm2M=流体质量,以g计在测定渗透性数据时,不用筛网来固定样品。其做法是,将内径为6.35cm的气缸的两个对开部分拧在一起,将一个直径为7.62的样品放置在两个气缸件之间。将矿物油用作所述流体。具体地讲,所述矿物油是购自加利福尼亚、洛杉矶的Penreco公司的Penetek技术级矿物油。该矿物油的粘度大约为6厘泊(CP)。活塞速度为20cm/分。该方法的结果以达西形式给出。流体径流和流通测试该测试测定穿过诸如体侧衬层和/或缓冲层的一种或几种液体可渗透材料的液体量。在图4中示意性地描绘了用于实现该测试的装置。
为了进行该测试,将试样40放置在样品架44的大小为3英寸×3英寸(76.2×76.2mm)的开口45上。样品架44包括用于将试样40定位在开口45上的合适装置,如夹具(未示出)。该夹具分布在开口45的3条边上。样品40的尺寸应足于完全覆盖开口45,并延伸至所述夹具的至少一个中。衬层材料样品的尺寸为4英寸×8英寸(101.6mm×203.2mm)。缓冲材料的样品尺寸为2英寸×6英寸(50.8mm×152.4mm)。
如图4所示,当试样40包括两层材料时,下层材料43(在所有两层实施例中,该层均为缓冲层)的上端与一个夹具连接。底层43未被夹具固定的下端被放入样品架44的开口45中,该下层的上表面由诸如双面粘性胶带之类的常规装置连接在开口45的侧壁47上。然后将上层材料42(在所有两层实施例中,该层均为衬层)放在下层43上,并由夹具沿3条边固定,所述夹具包括固定下层43的夹具。不过,未被固定在夹具中的上层42的自由的下端未插入开口45中。相反,所述上层42的自由端的下表面由诸如双面粘性胶带的常规装置连接在样品架44的下端。
当试样40为单层材料时(未示出),样品40的未被夹具固定的一端与样品架44的下端连接。这种设计意在确保只有流过样品40的试验液体进入第一容器46,用于收集和测定。
第一容器46是由任何能够容纳被注入试样40中的试验液体的合适材料制成。类似地,第一容器46的大小必须足于容纳被注入并流经样品40的试验液体是。例如,如图4所示,第一容器是由透明的Plexiglas制成,具有一个152.4mm×152.4mm的底部48和高度为76.2mm的侧壁50。
一旦把试样40正确放置在样品架44上,就把样品架44放在由侧壁50形成的第一容器46的开口上。然后使样品架44和第一容器46的取向与水平方向呈60°夹角。第二容器52位于第一容器46下面,用于收集未渗入试样40并且未被该试样吸收的所有径流试验液体。第二容器52可以与第一容器46的结构相同,不过,未在第二容器52上放置样品架44。
对一台常规泵54,如购自伊利诺州、Barnington的Cole PalmerInstrument Co.的7526-00型Masterflex Pump进行调整,以便以10ml/秒的速度将100ml试验液体55经挠性管56送至喷嘴58,所述挠性管56如购自Cok Palmer mstrument Co.的零件编号为6424-17的Masterflex管。所使用的试验液体55是产品目录号为b3158-1的Baxter Blood Bank Saline或其等同物。排放直径为0.150英寸(3.810mm)的喷嘴58的取向垂直于样品40的裸露的上表面41,距离上表面41大约0.25英寸(6.35mm)。
启动泵54,将一股100ml的热水注入样品40中。测定收集在第一容器46和第二容器52中的盐水量。收集在第一容器46中的液体被称为流通液,而收集在第二容器52中的液体为径流液。保留在样品中的液体被称为保留液体。低径流和保留液体量和高流通量被称为是适用于吸收制品的衬层材料的优点。实施例在下面的表中共列举了6种衬层材料样品和一种缓材料。在这些表中,被用作衬层的无纺织物是由纺粘长丝制成,是用中间规模的装置制造的,主要按披露于授予Matsuki等的美国专利US3,802,817中的方法进行。所述纺粘长丝是由可挤出热塑性树脂制成,该树脂含有重量百分比约为98%的聚丙烯均聚物和大约2%的TiO2。所用的聚丙烯均聚物获自在德克萨斯的Houston设有办事处的Exxon公司,产品代号为3445。所述纺粘长丝在性质上大致为连续的,其平均纤维尺寸如下面的表1所示。所述纺粘无纺织物是热式点粘结的,粘结面积的百分比大约为15%。以0.25%的加入量用Trston X-102手工处理所述纺粘织物,以赋予其可湿性。
在下列表中,被用作缓冲层的无纺织物是由一种由重量百分比为90%的购自北卡罗来那州Enka的BASF公司的3.0旦尼尔的Merge1039聚乙烯/聚酯皮/芯型纤维和重量百分比为10%的购自阿拉巴马州Axis的Courtaulds Fibers Inc.的1.5旦尼尔的Merg 18453人造纤维组成的均匀混合的混合物制成。以15m/分的线速度在透气性干燥器中粘结所述织物,温度为135℃,气流罩压力为423Pa。单位面积的网状材料在所述干燥器中的停留时间为1.6秒。所得到的织物在68.9Pa的压力下的松厚度为3.53mm,松厚度恢复值为86%,在68.9Pa的压力下的密度为0.031g/cc,在69.9Pa的压力下的每间隙容积的表面积为57.1cm2/cm3,渗透性为1545达西,以上结果是按照本文所披露的测试方法测定的。
上述样品材料具有以下特性表
表Ⅱ


当把表Ⅲ的衬层样品与表Ⅱ的缓冲材料组合时,其渗透性为1545达西,而对这种衬层/缓冲层组合进行上述径流和流通测试时可以看出,衬层C-F的渗透性与所述缓冲层的渗透性形成匹配,并因此溶入本发明范围。表Ⅳ表示大约1545达西的缓冲层与每种衬层组合的径流量,以及缓冲层本身的径流量。如表Ⅳ所示,上述匹配的衬层/缓冲层组合具有希望改善的液体径流性能,它至少比缓冲层本身高出约50%,所述衬层/缓冲层组合的液体径流量大约为15.0~17.0ml。还可以看出,最接近缓冲层的1545达西的渗透性的衬层D和E在上文确定的衬层材料中,在液体径流方面表现出最大的改进。根据以上实施例可以方便的认识到,本发明人已提供了一种匹配的渗透性衬层/吸收结构系统,该系统具有明显改善了的液体下渗性能。
应当理解,本领域普通技术人员可以对按照本发明构建的匹配渗透性的衬层/吸收结构系统进行改进和调整,以适应在实际应用中所需要产生的各种水平的性能。因此,尽管已结合上述实施方案和实例对本发明进行了说明,但应当理解,还能对本发明做进一步的改进。因此,本申请意在包括根据本发明的一般原则而对本发明所做的一切改进、应用或调整,并包括那些超出了本文所披露的内容,但属于与本发明相关的本领域公知或常用的技术,这些方案均溶入所附权利要求所限定的范围内。
权利要求
1.一种匹配的渗透性衬层/吸收结构系统,包括一个具有第一渗透性的衬层;一个具有第二渗透性的下层无纺层;所述衬层与所述下层呈液体连通接触状态;所述下层具有一定的液体径流量;所述衬层和下层具有组合的液体径流量;其中,所述组合的液体径流量至少比所述下层的液体径流量低50%。
2.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述衬层是一种无纺织物。
3.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述衬层是一种纺粘织物。
4.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述衬层是一种粘合梳理织物。
5.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述下层包括双组分纤维。
6.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述衬层和所述下层包括聚烯烃。
7.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述衬层和所述下层是连接在一起的。
8.如权利要求1的匹配的渗透性衬层/吸收结构系统,其中,所述组合的液体径流是至少比所述下层的液体径流量低大约65%。
9.一种匹配的渗透性衬层/吸收结构系统,包括一个具有第一渗透性的衬层;一个具第二渗透性的下层无纺层;所述衬层和所述下层呈液体连通接触;和所述第一渗透性大约为所述第二渗透性的55-120%。
10.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述衬层是一种无纺织物。
11.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述衬层是一种纺粘织物。
12.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述衬层是一种粘合梳理织物。
13.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述下层包括双组分纤维。
14.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述衬层和下层包括聚烯烃。
15.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述衬层和所述下层连接在一起。
16.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中,所述第一渗透性大约为所述第二渗透性的85-110%。
17.如权利要求9的匹配的渗透性衬层/吸收结构系统,其中所述衬层具有一定的液体径流量;所述衬层和下层具有一种组合的液体径流量;其中,所述组合的液体径流量至少比所述下层的液体径流量低50%。
18.如权利要求16的匹配的渗透性衬层/吸收结构系统,其中,所述组合的液体径流量至少比所述下层的径流量低65%。
19.一种一次性吸收制品,包括一个具有第一渗透性的衬层;一个外层;一个位于所述衬层和所述外层之间的吸收结构;所述吸收结构包括一个具有第二渗透性的下层无纺层,和一个吸收芯;所述衬层与所述下层呈液体连通接触状态;所述下层具有一定的液体径流量;所述衬层和下层具有一个组合的液体径流量;其中,所述组合的液体径流量至少比所述下层的液体径流量低50%。
20.如权利要求19的一次性吸收制品,其中,所述组合的液体径流量至少比所述下层的液体径流量低65%。
全文摘要
本发明涉及一种适用于吸收制品的匹配的渗透性衬层/吸收结构系统,其中,体侧衬层的吸收性与诸如缓冲层的吸收结构下层的渗透性相关。本发明人发现,通过正确组配衬层材料的渗透性和其下层的渗透性,可使所述衬层和下层材料的渗透下渗透性能高于下层材料本身的液体下渗性能。因此,根据本发明的一种实施方案,将体侧衬层的渗透性设定在下层渗透性的特定范围内,以改善衬层/下层液体下渗性能。根据本发明的另一个实施方案,使体侧衬层的渗透性与下层的渗透性匹配或相关,以使该衬层/下层的液体下渗性能与下层本身的液体下渗性能相比至少提高50%左右。根据本发明的再一个实施方案,使所述衬层材料的渗透性与下层的渗透性匹配或相关,以使该衬层/下层的液体下渗性能与下层本身的液体下渗性能相比至少提高65%左右。如本文中所披露的,通过正确选择衬层材料的渗透性,与下层材料的渗透性相比,该衬层材料的液体下渗速度不仅不会限制或抑制液体下渗到所述吸收结构的下层和底层部分,而且还能产生高于下层本身的液体下渗性能的出人意料的液体下渗性能。所述体侧衬层和下层适于由纤维无纺织物制成。
文档编号A61F13/15GK1209050SQ96199960
公开日1999年2月24日 申请日期1996年12月11日 优先权日1995年12月22日
发明者S·C·鲍尔, P·A·萨瑟, D·G·克罗特尔, E·M·约翰斯 申请人:金伯利-克拉克环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1