可拉伸多组分非织造布及其制备方法

文档序号:1723404阅读:184来源:国知局
专利名称:可拉伸多组分非织造布及其制备方法
发明
背景技术
领域本发明涉及制备含有多组分纤维的粘合可拉伸非织造布的方法。按照本发明方法制备的非织造布具有弹性伸长、纺织手感和垂感的综合改进。
相关技术描述由多组分长丝制造的非织造纤网在技术上是公知的。例如,美国专利3,595,731,授予Davies等人(Davies)描述一种双组分纤维材料,它包含的纤维依靠卷曲纤维中的螺旋互锁作用机械地粘合,并通过低熔点粘合剂聚合物组分的熔融实现粘合剂粘合。其卷曲的发生和潜在粘合剂组分的活化可在一个并且同一个处理步骤中完成,或者可先产生卷曲,随后再活化粘合剂组分,从而使处于邻接关系的纤网纤维粘合在一起。卷曲是在本来将防止纤维发生卷曲的处理过程中,在没有显著外加压力的条件下显现的。
美国专利5,102,724,授予Okawahara等人(Okawahara)描述一种非织造布的整理,该非织造布包含双组分聚酯长丝,该长丝通过共聚上具有金属磺酸盐基团的结构单元的聚对苯二甲酸乙二醇酯与聚对苯二甲酸乙二醇酯或聚对苯二甲酸丁二醇酯组成的并列长丝的共轭纺丝而制成。长丝在成形为非织造布之前进行机械卷曲。非织造布通过在松弛状态下暴露于红外射线而转变为可拉伸的。在该红外加热步骤期间,共轭长丝显现三维卷曲。该方法的限制之一是,除了在热处理步骤中产生卷曲之外它还要求单独的机械卷曲步骤。另外,Okawahara的方法要求,在产品收缩或准备收缩时,纤网或布料与传送机,如棒传送机或沿对应于棒传送机中的各个棒的纤网预-集束缝接触的各个间隔排列的线,保持连续接触。穿过预-集束缝的加工要求使用内聚性布料,该布料需要预先制成一体并且不能与本发明方法中使用的基本未粘合的非织造纤网配合使用。收缩步骤期间与棒传送机之间的多线接触干扰布料的收缩和卷曲的发生,甚至当将布料超喂到传送机上时。
美国专利5,382,400,授予Pike等人(Pike),描述一种制造非织造布的方法,它包括连续多组分聚合物长丝的熔融纺丝,长丝的牵伸,多组分长丝的至少部分地骤冷以便使长丝具有潜在螺旋卷曲,潜在螺旋卷曲的活化,以及随后将卷曲的连续多组分长丝成形为非织造布。所获得的非织造布据说基本稳定和均一并可具有高膨松。
PCT公开的申请号WO 00/66821描述一种可拉伸非织造纤网,包含大量加热以便在长丝中产生卷曲之前经过了点粘合的双组分长丝。该双组分长丝包含聚酯组分和另一种优选是聚烯烃或聚酰胺的聚合物组分。加热步骤导致粘合纤网收缩,从而生产出一种当拉伸至最高30%时表现出沿纵向和横向两个方向弹性回复的非织造布。鉴于粘合点之间的纤维段长度不一,因此收缩前布料的预粘合不能在所有双组分长丝之间提供无阻碍的卷曲显现,原因是收缩应力在长丝之间分布得不均一。结果,总收缩、收缩均一性、卷曲显现和卷曲均一性都降低。
美国专利3,671,379,授予Evans等人(Evans)描述一种自卷曲性复合长丝,包含由至少两种合成聚酯组成的侧向偏心装配体。该复合长丝能反抗高纱线支数机织结构所施加的约束而显现出高度螺旋卷曲,此种卷曲潜力保存得异乎寻常地好,尽管有外加拉伸应力和高温作用。当作为纤维生产方法的一部分经受退火时,复合长丝的卷曲潜力增加而不是降低。此种长丝被描述为可用于针织、机织和非织造布。展示了连续长丝和纺制短纤维纱的制备及其在针织和机织织物中的应用。
虽然由多组分长丝制备的可拉伸非织造布在技术上是公知的,但目前需要一种由多组分长丝制备均一可拉伸非织造布的方法,制成的非织造布具有均一性、垂感和伸长性的综合改善并且还具有高回缩力,而不要求单独机械卷曲步骤。
发明概述本发明涉及一种制备可拉伸非织造布的方法,包括下列步骤成形一种包含多组分纤维的基本未粘合非织造纤网,该多组分纤维在加热后能显现三维螺旋卷曲。
在自由收缩条件下加热该基本未粘合非织造纤网至足以导致多组分纤维产生三维螺旋卷曲和导致基本未粘合非织造纤网收缩的温度,加热温度选择为,使热处理的非织造纤网在加热步骤期间基本维持未粘合;以及沿不连续粘合点阵列粘合该热处理的非织造纤网从而制成可拉伸粘合非织造布。
本发明还涉及一种非织造粘合布,包含加热后具有三维螺旋卷曲的多组分纤维并且当最高伸长达至少12%,优选20%时具有不大于约5%的永久形变。
附图简述

图1是适合实施本发明方法第一实施方案中的热收缩步骤的设备侧视示意图,其中让纤网从第一传送带自由下落到第二传送带上,其中加热步骤是在纤网处于自由下落状态中进行的。
图2是适合实施本发明方法第二实施方案中的热收缩步骤的设备侧视示意图,其中纤网在两个传送带之间的转移区内漂浮在气体层上。
图3是适合实施本发明方法第三实施方案中的热收缩步骤的设备侧视示意图,其中纤网在加热期间被支承在一系列传动的旋转辊上。
图4是适合实施本发明方法第四实施方案中的热收缩步骤的设备侧视示意图。
发明详述本发明涉及制造包含多组分纤维的可拉伸非织造布的方法。该方法涉及成形包含至少30wt%,优选至少40wt%具有潜在螺旋卷曲的侧向偏心多组分纤维的基本未粘合纤网,随后通过在“自由收缩”条件下加热激活该螺旋卷曲,从而使纤维基本同等和均一地卷曲,而不受纤维间粘合、纤网与其他表面之间的机械摩擦或其他可能妨碍卷曲形成的效应的阻碍。侧向偏心纤维可通过在纤网成形前预掺混或通过含侧向偏心和非侧向偏心断面短纤维轻微互相缠结,而与其他短纤维形式的纤维结合。以长丝形式,该侧向偏心纤维可与其他长丝互混,或者它们互相缠结到其他纤维的短纤维纤网或长丝纤网中去。卷曲的纤网优选沿选择点、线或间隔的粘合点组成的不连续图案粘合,从而生产出弹性、可共形(Conformable)和可悬垂的粘合非织造布。
术语“聚酯”在这里被用来涵盖这样的聚合物,其至少85%重复单元是二羧酸与二羟基醇的缩合产物,其中的键由酯单元的生成而产生。这包括芳族、脂族、饱和和不饱和的二酸和二醇。术语“聚酯”在这里也用来包括共聚物(例如,嵌段、接枝、无规和交替共聚物)、其共混物及其改性物。聚酯的常见例子是聚(对苯二甲酸乙二醇酯),即,乙二醇与对苯二甲酸的缩合产物。
术语“非织造布”、“非织造纤网”和“非织造布层”在这里使用时指的是,单根纤维、长丝或线按一定方向或无规地取向并任选地依靠摩擦和/或内聚力和/或粘附彼此结合所构成的纺织结构,而不是一种机械咬合的纤维构成的规则样式,就是说,它不是机织或针织织物。非织造布和纤网的例子包括纺粘连续长丝纤网、梳理纤网、气流铺网纤网和湿法铺网纤网。合适的粘合方法包括热粘合、化学或溶剂粘合、树脂粘合、机械针刺、水刺、缝编粘合等。
术语“多组分长丝”和“多组分纤维”在这里被用来指任何长丝或纤维,由至少两种在一起纺丝形成单根长丝或纤维的截然不同聚合物构成。本发明方法既可采用非织造纤网形式的短纤维也可采用非织造纤网形式的连续长丝实施。这里所使用的术语“纤维”既包括连续长丝也包括不连续(短)纤维。术语“截然不同聚合物”指的是,至少两种聚合物组分的每一种沿多组分纤维的横断面排列在界限鲜明、位置基本恒定的区内并沿纤维全长基本连续地延伸。多组分纤维区别于由聚合物材料的均质熔体共混物挤出的纤维,在后者中不形成截然不同聚合物的区。这里可使用的至少两种截然不同聚合物组分可以在化学上不同,或者它们虽在化学上可以是同样的聚合物,但具有不同物理性质,例如,立构规整度、特性粘度、熔体粘度、挤出胀大、密度、结晶度和熔点或软化点。多组分纤维的聚合物组分中一种或多种可以是不同聚合物的共混物。可用于本发明的多组分纤维具有侧向偏心的断面,就是说,聚合物组分在纤维横断面中呈偏心关系排列。优选的是,多组分纤维是由两种截然不同聚合物构成并具有偏心皮-芯或并列聚合物排列的双组分纤维。最优选的是,多组分纤维是并列双组分纤维。如果双组分纤维具有偏心皮-芯构型,则较低熔点或软化点的聚合物优选位于皮层中以促使非织造布被加热处理以产生三维螺旋卷曲后发生热点粘合。术语“多组分纤网”在这里用来指包含多组分纤维的非织造纤网。术语“双组分纤网”在这里用来指包含双组分纤维的非织造纤网。多组分和双组分纤网可包含多组分纤维与单组分纤维的共混物。
术语“纺粘”纤维在这里用来指这样成形的纤维熔融热塑性聚合物材料以纤维形式从大量细小、通常圆形的纺丝板毛细孔挤出,挤出丝的直径随后借助拉伸而迅速缩小。其他纤维断面形状如椭圆、多叶等,也可采用。纺粘纤维一般是连续长丝并具有大于约5μm的平均直径。纺粘非织造布或纤网通过采用技术上已知的方法将纺粘纤维无规地铺在收集表面如多孔筛或带上而制成。纺粘纤网一般采用技术上已知的方法粘合,例如,沿整个纺粘布表面的大量不连续热粘合点、线等将纤网热点粘合起来。
术语“基本未粘合非织造纤网”在这里用来描述一种非织造纤网,其中很少或没有纤维间粘合。在本发明方法的某些实施方案中重要的是,多组分非织造纤网中的纤维在三维螺旋卷曲的活化之前或期间多组分非织造纤网中的纤维之间不存在任何有意义程度的粘合,以致热处理期间卷曲的显现不受粘合所施限制的阻碍。在某些情况下可心的是,在热处理前对纤网略加预-压实以改善纤网的内聚力或可操作性。但是,预-压实的程度应低到足以使热处理步骤期间预-压实后的多组分非织造纤网的面积收缩百分率,与卷曲显现之前未曾预压实并在相同条件下经受热处理的同样多组分非织造纤网相比,是后者面积收缩的至少90%,优选至少95%。纤网的预压实可采用非常轻微的机械针刺或者通过将未加热布料送过辊隙,优选两个相互啮合辊筒的辊隙。
这里使用的术语“弹性”,当用于非织造布或多层复合片材时,指的是,当布料或复合片材被拉长其原长的至少12%以后松开时,非织造布或复合片材将回复,结果拉伸力释放后残余伸长(或永久形变)不大于5%,以非织造布或复合片材拉伸前原长为基准计。例如,长10英寸的片材可通过施加拉伸力拉长到11.2英寸。当拉伸力释放时,片材将回缩到不超过10.5英寸的新的永久长度。表示和测定弹性的其他方法将在下面的实施例前面一节更详细地描述。
含有二或更多种在其收缩能力上不同的合成组分的侧向偏心多组分纤维在技术上是公知的。此种纤维当其卷曲通过令纤维在基本无张力状态收缩条件接受处理而活化时,便形成螺旋卷曲。卷曲程度与纤维中聚合物组分之间的收缩差异直接相关。当多组分纤维以并列构型纺出时,卷曲活化后形成的卷曲纤维的高收缩组分在螺旋线的内侧,而低收缩组分在螺旋线的外侧。此种卷曲在这里被称之为螺旋卷曲。此种卷曲不同于机械卷曲的纤维如填塞箱卷曲的纤维,后者一般具有二维卷曲。
各种不同的热塑性聚合物可用作能形成三维螺旋卷曲的多组分纤维的组分。适合成形螺旋卷曲性多组分纤维的热塑性树脂组合的例子是结晶聚丙烯/高密度聚乙烯、结晶聚丙烯/乙烯-醋酸乙烯共聚物、聚对苯二甲酸乙二醇酯/高密度聚乙烯、聚对苯二甲酸乙二醇酯/聚对苯二甲酸1,3-丙二醇酯、聚对苯二甲酸乙二醇酯/聚对苯二甲酸1,4-丁二醇酯以及尼龙66/尼龙6。
在优选的实施方案中,形成非织造纤网的多组分纤维的至少一部分表面由可热粘合聚合物构成。所谓可热粘合指的是,当形成非织造纤网的多组分纤维接受足够程度热和/或超声波能量的处理时,由于可热粘合聚合物的熔融或部分软化,纤维将在受热的粘合点彼此粘连。优选地这样选择诸聚合物组分,使可热粘合组分的熔融温度比其他聚合物组分的熔点低至少约10℃。适合成形此种可热粘合纤维的聚合物能永久地熔结,通常被称之为热塑性的。合适的热塑性聚合物的例子包括但不限于,聚烯烃、聚酯、聚酰胺,且可以是均聚物或共聚物,及其共混物。
为获得高度三维螺旋卷曲,多组分纤维的聚合物组分优选地按照Evans的公开来选择,在此将其收入本文作为参考。Evans专利描述一种双组分纤维,其聚合物组分为部分结晶聚酯,其中第一聚酯在其结晶区的化学重复单元处于非伸直的稳定构象,其长度不超过其完全伸展化学重复单元构象长度的90%,其第二聚酯在其结晶区的化学重复单元,与第一聚酯相比,处于更接近其完全伸展构象长度的构象。在规定Evans的长丝中所使用的术语“部分结晶”,用于从本发明范围中排除完全结晶这种收缩潜力将消失的极限情况。用术语“部分结晶”规定的结晶程度大小具有仅仅是存在一定结晶度的最低水平(即,它首先是可由X-射线衍射装置检测出来)和不包括完全结晶的任意结晶度的最高水平。合适的完全伸直聚酯的例子是聚(对苯二甲酸乙二醇酯)、聚(对苯二甲酸环己烷-1,4-二甲醇酯)、其共聚物,以及对苯二甲酸乙二醇酯与间苯二甲酸磺酸钠-乙二醇酯的共聚物。合适的非伸直聚酯的例子是聚(对苯二甲酸1,3-丙二醇酯)、聚(对苯二甲酸1,4-丁二醇酯)、聚(联萘二甲酸(dinaphthalate)1,3-丙二醇酯)、聚(联苯甲酸1,3-丙二醇酯)和上述化合物与间苯二甲酸磺酸钠乙二醇酯的共聚物,以及选择的聚酯醚。当使用间苯二甲酸磺酸钠乙二醇酯共聚物时,它优选是次要组分,即,以小于5mol%存在,优选以约2mol%存在。在尤其优选的实施方案中,这两种聚酯是聚(对苯二甲酸乙二醇酯)和聚(对苯二甲酸1,3-丙二醇酯)。Evans的双组分长丝具有高度螺旋卷曲,一般具有像弹簧的作用,每当施加并松开拉伸力时具有回缩作用。其他适合用于本发明的部分结晶聚合物包括结晶成伸直构象的间同立构聚丙烯和结晶成非伸直、螺旋构象的全同立构聚丙烯。
多组分短纤维的基本未粘合纤网可采用技术上公知的方法例如梳理或扯松来制备,所制成的非织造纤网中多组分短纤维主要沿一个方向取向。该纤维含有至少30wt%,优选至少40wt%多组分纤维。优选的是,短纤维的单丝旦数(dpf)介于约0.5~6.0,纤维长度介于约0.5英寸(1.27cm)~4英寸(10.1cm)。为了在梳理机设备上加工,多组分短纤维优选具有以不大于约45%,优选介于约8%~15%以卷曲指数(CI)表征的初始螺旋卷曲度。确定这些卷曲数值的方法将在下面的实施例前面的一节中给出。
替代地,多组分纤维可以是机械卷曲的。然而,现已发现,当多组分纤维在提供具有零初始卷曲的条件下纺丝,随后再机械卷曲并成形为梳理纤网时,所获得的非织造布在热处理后的伸长数值低于由具有如上所述初始螺旋卷曲度的纤维制成的那些。
用于成形多组分纤维的聚合物组分优选地这样选择,即,使诸组分在梳理过程中不显著分离。由单台梳理机或扯松机获得的纤网优选重叠在多层此种纤网上从而积累成具有足以满足预定最终用途需要厚度和均一性的纤网。多层也可铺成某种梳理纤网的交替层形式,其中各层的纤维取向方向彼此摆放成一定角度从而形成交叉铺网纤网。例如,各层可铺置成与中间插入层成90°。此种交叉铺网纤网的优点是沿至少两个方向的强度水平之差可减少,从而达到伸长性的均衡。
无规或各向同性多组分短纤维纤网可采用传统气流铺网法获得,在气流铺网方法中,多组分短纤维被排入到一股气流中并由气流导引到多孔表面,从而使纤网沉积在其上。该非织造纤网包含至少约30wt%,优选至少40wt%能显现螺旋卷曲的多组分纤维。非织造纤网可含有100%多组分纤维。适合与螺旋卷曲性多组分纤维掺混使用的短纤维包括天然纤维,例如,棉、毛、丝和合成纤维,包括聚酰胺、聚酯、聚丙烯腈、聚乙烯、聚丙烯、聚乙烯醇、聚氯乙烯、聚偏二氯乙烯和聚氨酯纤维。偏心多组分短纤维的纤网也可在“自由收缩”前通过压实、轻微轧光或非常轻微的针刺而与其他纤维的短纤维纤网互相缠结。纤网可轻微压实以改善纤网内聚性和可操作性,例如,通过机械针刺或通过将布料送过两个光辊或两个啮合辊筒之间的辊隙。预压实的程度应低到足以使非织造纤网保持基本未粘合,就是说,预压实纤网的面积收缩应为未预压实的相同非织造纤网面积收缩的至少90%。热处理步骤可在线地进行,或者短纤维纤网可卷绕成卷,并在纤网的后续加工中进行热处理。
多组分连续长丝纤网可采用技术上公知的纺粘法制备。例如,含有多组分连续长丝的纤网可这样制备从分开的挤出机喂入二或多股熔体流形式的聚合物组分到一种含有一或多排多组分挤出孔的纺丝板中。选择纺丝孔和纺丝组件的式样,以便提供具有要求断面和单丝旦数(dpf)的长丝。连续长丝多组分纤网优选包含至少30wt%,更优选至少40wt%能显现三维螺旋卷曲的多组分长丝。优选的是,长丝的单丝旦数介于约0.5~10.0。纺粘多组分连续长丝的初始螺旋卷曲水平,以卷曲指数(CI)表征,优选不大于约60%。螺旋卷曲纤维(不论短纤维抑或连续长丝)以卷曲显现(CD)值表征,其中数值(%CD-%CI)大于或等于15%,更优选大于或等于25%。
当长丝是双组分长丝时,两种聚合物组分在每根丝中的比例介于约10∶90~90∶10,按体积计(例如,按照计量泵速度之比来测定),更优选介于约30∶70~70∶30,最优选介于约40∶60~60∶40。
一个个分开的纺丝组件可用来在纤网中提供不同多组分长丝的混合物,其中不同长丝由不同纺丝组件纺出。替代地,单组分长丝可由一个或多个纺丝组件纺丝形成既包含单组分也包含多组分长丝的纺粘非织造纤网。
长丝以朝下运动的丝幕的形式出纺丝板并穿过骤冷区,在此长丝受到冷却,例如,被从丝幕一侧或两侧的鼓风机供应的侧吹风骤冷。在纺丝板的交替排中的挤出孔可能彼此错开以避免在骤冷区出现“阴影”,也就是一行中的丝挡住相邻行中的丝使之吹不到骤冷风。骤冷区的长度应选择得使长丝在出骤冷区以后冷却到彼此不粘连程度的温度。通常不要求长丝在出骤冷区时完全固化。骤冷的长丝一般穿过位于纺丝板下面的纤维牵伸装置或吸丝器。此种纤维牵伸装置或吸丝器是技术上熟知的,一般包括狭长竖直通道,长丝穿过通道时被从通道侧面进入并顺着通道朝下流过的吸丝风牵伸。吸丝风施加的牵伸张力导致长丝在靠近纺丝板板面的地方被拉伸,同时也起到传送骤冷后的长丝并将它们沉积在位于纤维牵伸装置下面的多孔成形表面上的作用。
替代地,纤维可借助介于骤冷区与吸丝喷嘴之间的传动牵伸辊接受机械拉伸。在此种情况下,导致长丝在纺丝板面附近受到拉伸的牵伸张力将由牵伸辊提供,它们还对介于牵伸辊之间的长丝实施牵伸,吸丝喷嘴起到传送喷嘴的作用,将长丝沉积在下面的纤网成形表面上。在成形表面底下可设置真空,以吸走吸丝风和将长丝吸抵在成形表面上。
在传统纺粘法中,纺粘纤网通常在成形以后和纤网卷绕成卷之前进行在线粘合,例如,通过将未粘合纤网送过加热压延机的辊隙。然而,在本发明中,纺粘纤网此时处于基本未粘合状态并在热处理期间和之后保持基本未粘合以便于激活多组分纤维的三维螺旋卷曲。预压实一般在本发明中并非必须,因为非粘合纺粘纤网一般具有足够内聚力来承受后续加工中的操作。然而,纤网可以在热处理前借助热处理前的冷轧光来预压实。正如短纤维纤网的情况一样,任何预压实都应当是足够轻微的,以便使连续长丝纤网保持基本未粘合。热处理可在线地进行或者,基本未粘合纤网可成卷,并在以后的加工中热处理。
偏心多组分纺粘长丝还可在纺粘加工期间与其他共纺丝的长丝混合,或者纺粘纤网可与另一短纤维或长丝纤网通过压实、轻微轧光或轻微针刺在自由收缩加工之前互相缠结起来。
基本未粘合非织造纤网(无论由连续长丝抑或短纤维制成)在纤网能“自由收缩”的条件下进行热处理。所谓“自由收缩”条件,指的是在纤网和制约纤网收缩的表面之间基本不存在接触。就是说,基本上没有机械力作用在纤网上以干扰或阻滞收缩过程。在本发明方法中,在热处理步骤期间布料收缩的同时它优选不接触任何表面。替代地,任何在热处理步骤期间接触非织造纤网的表面都正在以与接触该表面的连续收缩的非织造纤网基本相同的表面速度运动着,从而使摩擦力达到最小,否则摩擦力将干扰非织造纤网的收缩。“自由收缩”也具体地将那些让非织造布通过在液体介质中加热来收缩的方法排除在外,因为液体将浸渍到布料中并干扰纤网的运动和收缩。本发明方法的收缩(加热)处理步骤可在常压水蒸气中或其他加热气体介质中进行。
图1显示适合实施本发明方法第一实施方案中的热收缩步骤的设备侧视示意图。基本未粘合非织造纤网10,包含具有潜在螺旋卷曲的多组分纤维,在以第一表面速度移动的第一传送带11上传送到转移区A。在转移区A中,让纤网自由下落直至它接触到以第二表面速度运动着的第二传送带12的表面。第二带的表面速度小于第一带的表面速度。随着基本未粘合纤网离开带11的表面,它便一边自由下落穿过转移区一边暴露于来自加热器13的热量。加热器13可以是用于提供热风的鼓风机、红外热源或其他技术上公知的热源,例如,微波加热。基本未粘合纤网在转移区A被加热到高到足以活化多组分纤维的潜在螺旋卷曲和导致纤网在不受任何外部干扰力的情况下收缩的温度。在转移区中纤网的温度以及纤网在转移区中自由下落直至接触带12以前的距离应选择为,使要求的纤网收缩在热处理的纤网接触带12时已基本完成。转移区中的温度应选择得使纤网在热处理期间保持基本未粘合。当纤网最初离开带11时,它以与该带表面速度相同的速度运动。由于多组分纤维在转移区中受到加热,故其潜在螺旋卷曲被激活,进而导致纤网收缩,结果,纤网的表面速度将随着它通过转移区A而不断减慢。带12的表面速度应选择得尽可能紧密地匹配纤网离开转移区A和开始接触带12时的纤网表面速度。热处理后的纤网16可通过将其送过包含两个辊筒(未画出)的加热压延机,二辊筒之一带有要求的点粘合图案的花纹,而被热点粘合。粘合辊优选以略微低于带12速度的表面速度传动,以避免对纤网造成牵伸。自由收缩后,纤网还可通过加热到使纤维表面部分熔融,通过与主要纤维掺混的低熔点纤维的熔融,通过利用化学措施活化纤维表面,或通过以适当柔性液体粘结剂浸渍纤网来实现粘合。替代地,热处理的基本未粘合多组分非织造纤网可不经粘合就卷绕,并在纤网的后续加工期间再进行粘合。
图2显示用于本发明第二实施方案的热收缩步骤中的设备。基本未粘合非织造纤网20,包含具有潜在螺旋卷曲的多组分纤维,被以第一表面速度移动的第一传送带21传送到转移区A,在转移区A中,它漂浮在气体如空气上,随后转移到具有第二表面速度的第二带22上。第二表面速度低于第一表面速度。空气经过空气供给箱25顶部表面的孔提供,以便使纤网穿过转移区的过程中处于漂浮。为漂浮纤网而提供的空气可以是室温的(约25℃)或经过预热以帮助纤网收缩的。优选的是,空气从空气供给箱顶部表面的小而间隔紧密的孔流出以避免扰动纤网。纤网也可漂浮在由安装在位于纤网底下辊筒上的小叶片所产生的气流漂浮。浮动纤网在转移区A被辐射加热器23加热到足以活化多组分纤维潜在螺旋卷曲的温度,从而导致纤网在保持基本未粘合的条件下收缩。纤网在转移区中的温度和纤网在转移区中走过的距离应选择得使要求的纤网收缩在接触第二带22之前基本完成。第二带的表面速度应选择得尽可能与热处理后纤网26离开转移区A时的表面速度匹配。
图3显示用于本发明第三实施方案的热收缩步骤中的设备。基本未粘合非织造纤网30,包含具有潜在螺旋卷曲的多组分纤维,被以第一表面速度移动的第一传送带31传送到转移区A,转移区A包含一系列传动辊34A~34F。纤网穿过转移区A来到以第二表面速度运动的带32上,第二表面速度比带31的第一表面速度慢。虽然在图中画出6个辊,但要求至少2个辊。然而,辊数可随操作条件和多组分纤维中使用的具体聚合物而异。基本未粘合非织造纤网在转移区A被加热器33加热到足以活化多组分纤维潜在螺旋卷曲的温度,从而导致纤网在保持基本未粘合的条件下收缩。纤网在转移区中的温度和纤网在转移区中走过的距离应选择得使要求的纤网收缩在接触第二带32之前基本完成。随着纤网的收缩,纤网的表面速度在它被传送通过转移区的过程中不断降低。辊筒34A~34F被沿着从带31到带32的移动方向圆周线速度递减地传动,其中各个辊筒的表面速度应选择得使每个辊筒的圆周线速度在纤网接触辊筒时介于纤网表面速度的±2~3%范围内。鉴于纤网收缩的速度一般为未知,且依赖于纤网的构造、所用聚合物、工艺条件等,各个辊筒34A~34F的速度可通过调节每个辊在加工期间的速度,以便使纤网收缩达到最大并使纤网不均一性最小来确定。第二带32的表面速度应选择得尽可能与热处理的纤网36在离开转移区A和开始接触该传送带时的速度紧密匹配。
图4是用于成形本发明双层复合非织造布的方法的示意图,但它在热收缩步骤中采用较简单实施方案。螺旋卷曲性非织造布层103从纤网源101,如梳理机、供应辊等供给,并被铺到传送带105上。纤网被送过一对热粘合辊106和107之间的辊隙。辊筒106被表示为花纹辊筒,而辊筒107是光辊,两个辊都加热到约200℃。由于纤网在辊隙前收缩,带105以高于辊筒106和107的表面速度的速度移动。在该实施方案中,自由收缩步骤由带105的相对慢速与来自辊筒106和107的辐射热的组合完成。这样,例如如图1所示的单独加热站13便不需要了,且产品具有极低的伸长。随着它离开106和107,随后热处理过并收缩的复合布料108卷绕在卷绕辊109上变为成品。
卷曲-活化步骤用的加热时间优选小于约10s。较长加热时间的加热要求昂贵的设备。纤网优选加热一段足以使多组分纤维显现其全部潜在螺旋卷曲的至少90%的时间。纤网可采用各种各样加热源中的任何一种,包括微波辐射、热空气和辐射加热器。纤网加热到足以活化螺旋卷曲但依然低于最低熔点聚合物组分软化温度的温度,以保证纤网在卷曲显现期间保持基本未粘合。激活螺旋卷曲的温度优选不高于聚合物开始熔融转变温度,按照差示扫描量热法测定,以下20℃的温度。这样做是要避免粘合与加热步骤分离的那些实施方案中不希望的过早纤维间粘合。卷曲活化以后,纤网的面积收缩通常将达到至少约10~75%,优选至少25%,更优选至少40%。
多组分、基本未粘合非织造纤网进行热处理以激活三维螺旋卷曲并使纤网收缩以后,纤网沿分布在整个布料表面的不连续粘合点粘合而形成内聚性非织造布。粘合可在加热步骤以后在线地进行,或者基本未粘合、热处理过的非织造布可收集,例如,卷绕在辊筒上,然后在后续加工中进行粘合。在优选的实施方案中,采用热点粘合或超声波粘合。一般地,热粘合涉及沿布料表面上的不连续点加热和加压,例如,将非织造布层送过由加热、刻花压辊和光辊形成的辊隙。在热粘合期间,纤维沿对应于加热花纹辊筒表面的凸起的不连续区域熔融,从而形成熔结粘合点,将复合材料的非织造布层维系在一起形成内聚性粘合非织造布。粘合辊的花纹可以是技术上公知的那些当中任何一种,优选是不连续点粘合。粘合可按照连续或不连续方式、均匀或无规分布的点或二者的组合进行。优选的是,点粘合或线粘合之间的间距小于0.25cm,为约4~16粘合点每厘米,优选4~8粘合点每厘米,粘合密度介于约16~62粘合点/厘米2。粘合点可以是圆的、方形、矩形、三角形或其他几何形状,且粘合面积百分率在占非织造布表面的约5~50%之间变化。可调节相邻粘合点之间的距离来控制布料的伸长性并优化它以达到特定要求的伸长水平。粘合点间距的上限应接近短纤维的长度。下限应是大于100%粘合面积覆盖率的极限情况的某一距离,在此种情况下,将达到最高强度但伸长性实际上是零。
替代地,热处理的非织造纤网可采用液态粘结剂粘合。例如,胶乳,可通过印刷图案到非织造纤网上的办法施涂。液态粘结剂优选在施涂到非织造纤网上以后形成贯通整个纤网厚度的粘合点。替代地,可在纤网中掺入粗粘结剂纤维或粘结剂颗粒并采用光滑加热轧光辊粘合纤网。优选的是,粘结剂颗粒或纤维的尺寸沿至少一个方向至少是0.2mm~约2mm,且在纤网中的加入量应提供约20-400粘合点/平方英寸。由于粘结剂颗粒或纤维的尺寸较大,粘合点将肉眼可见,在非织造纤网表面呈不连续粘合点。低熔点粘合剂颗粒的典型用量介于产品重量的5~25%。应控制热粘合条件,以便使布料不致在粘合点处过度受热,否则会产生针孔和降低布料的阻隔性能。可采用的其他粘合方法包括化学花纹粘合和机械针刺。采用通过与纤网运动同步运动的能够在同一点刺几针的针板,可获得某种针刺图案。
采用本发明方法制备的粘合、多组分非织造布可弹性拉长并具有,与在纤网收缩之前或同时粘合的多组分非织造布相比,较高弹性伸长。
试验方法在上面的描述和下面的实例中,采用下面的试验确定本文所给出的各种不同特征和性质。ASTM指的是美国材料试验学会。
卷曲程度测定实例中使用的多组分纤维的卷曲性质按照Evans公开的方法确定。该方法包括对包裹的长丝形式多组分纤维丝束(该丝束被称之为丝绞)做3种长度测定。随后,这3种长度测定值被用来计算全面描述多组分纤维卷曲性能的3个参数。
分析程序由下列步骤组成1)由一包多组分纤维制备1500旦丝绞。鉴于丝绞为圆环状丝束故当以环状形式分析时,总旦数应为3000。
2)丝绞一端悬挂,另一端加上300g重量。通过轻柔地上下移动4次来活动丝绞,然后测定丝绞的初始长度(Lo)。
3)用4.5g重量替换300g重量,并将丝绞浸没在沸水中15min。
4)随后,去掉4.5g重量并让丝绞晾干。再次悬挂丝绞并放回4.5g重量。活动4次以后,再次测定丝绞长度,作为数量Lc。
5)用300g重量换下4.5g重量,再次活动4次。测定丝绞长度,作为数量Le。
从数量Lo、Lc和Le计算出以下数量CD=卷曲显现=100*(Le-Lc)/LeSS=丝绞收缩=100*(Lo-Le)/LoCI=卷曲指数,计算方法与CD的相同,只是省略上面程序中的步骤3。
纤网收缩确定该性能沿纵向或横向测定,程序如下取10英寸(25.4cm)长一段纤网,其中样品长度沿纵向或横向分别测定。随后,样品加热到80℃并在松弛状态下(即,以可以发生诸如图1所描述的自由收缩的方式)保持20s。加热后,让纤网冷却至室温,并测定样品的长度。收缩百分率按照100*(10英寸-测定长度)/10英寸算出。
基重测定样品裁切成尺寸6.75英寸×6.75英寸(17.1×17.1cm)并称重。获得的质量的克数即等于以盎司/平方码表示的基重。随后,可用33.91乘以该数值,从而换算为以g/cm2为单位的数值。
特性粘度确定特性粘度(IV)是采用根据ASTM D 5225-92的自动方法,利用在Viscotek Forced Flow Viscometer Y900(Viscotek公司,休斯敦,TX)粘度计中将聚酯溶解在50/50wt%三氟乙酸/二氯甲烷中制成浓度0.4g/dL的溶液,在19℃测定的粘度来确定。
最高弹性伸长水平测定除了上面的弹性的定义和分别按照TTM-07和TTM-077测定的可用伸长和布料增长(Growth)之外,下面还可按照该方法评估弹性伸长。
复合片材的弹性伸长采用一条2英寸(5cm)宽、6英寸(15cm)长的样品测定。沿这15cm长度测量10cm,在距离每一端各2.5cm处做两个记号。样品最初被拉伸5%(例如,10cm长拉伸到10.5cm)并松开。给予样品30s的回复时间。随后该程序在同一样品上重复10%、15%、20%等拉伸值的试验,以确定从该样品可获得的最高弹性伸长水平。
杜邦纺织试验方法(TTM)-074可用伸长每种布料样品裁切3个试样,每个试样的尺寸为60×6.5cm。长度尺寸对应于拉伸方向。每个试验修剪到5cm宽。折叠布料的一端以形成一个环并沿试样的幅宽横向地缝合接缝。在距未成环的布料一端6.5cm处,画一条所谓基准线“A”。在离基准线“A”50cm处,画另一条基准线“B”。随后,试样放在20±2℃和65±2相对湿度下平衡至少16h。随后,样品被夹在基准线“A”点并竖直悬挂,使样品从基准线“A”向下自由悬吊。利用布料未夹紧一端的缝合环,加上30N(N=牛顿)荷重。通过以荷重拉伸样品3s然后去掉荷重来活动样品。如此执行3次,随后再次加上荷重并记录样品长度(基准线之间),精确至mm。按下式根据3个布料样品的测定值确定平均可用伸长。
%平均伸长=(ML-GL)/GL*100ML=在30N荷重下基准线之间的长度GL=基准线之间原长杜邦TTM-077——布料增长必须首先得到来自TTM-074的信息才能进行该试验。制备与TTM-074一样的新样品,随后拉长到在TTM-074中确定的可用拉伸值的80%。试样在该拉长状态维持30min。然后,让试样自由回缩60min,此刻测定并计算布料增长。
%布料增长=(L2*100)/LL2=60min松弛以后试样基准线距离的增加L=基准线之间原长实施例实例1并列双组分长丝纱按传统熔融纺丝制成特性粘度0.52dl/g的聚对苯二甲酸乙二醇酯(2GT)和特性粘度1.00dl/g的聚对苯二甲酸1,3-丙二醇酯(3GT)通过圆形68-孔纺丝板在纺丝组件温度255℃~265℃条件下纺丝。通过调节熔纺期间聚合物通过量将长丝中聚合物体积比控制在40/60的2GT/3GT。长丝以450~550m/min的速度从纺丝板拉出并借助传统侧吹风骤冷。骤冷的长丝随后拉伸至其纺出长度的4.4倍从而成形为单丝旦数(dpf)2.2的连续长丝纱,随后在170℃进行退火,以2100~2400m/min卷绕。为转化为短纤维,将纱线集束为一束并喂入到传统短纤维丝束切断机中从而获得切断长度1.5英寸(3.8cm)的短纤维。此种纤维的CI=13.92%和CD值=45.25%。
短纤维以20码/分(18.3m/min)加工成梳理纤网,从而形成基重0.9盎司/平方码(30.5g/m2)的层。两片纤网通过同样沿纵向彼此重叠而合并成为1.8盎司/平方码(61g/m2)的纤网。所述合并的非粘纤网与纸层辊压在一起,用来防止纤网卷绕时自身粘结。
该纤网随后一边与纸层分离一边退卷,并采用图1所示方法热处理。第一带具有表面速度22英尺/分(6.7m/min);第二带具有表面速度15英尺/分(4.6m/min)。纤网从第一带自由下落到第二带经过的距离是10英寸(25.4cm)。让纤网暴露于离开下落纤网5英寸处放置、功耗约200瓦每英寸宽度的辐射加热器。在辐射面下暴露约2.5s(10英寸,在20英尺/分平均速度下)使双组分纤维的螺旋卷曲活化并导致纤网收缩。梳理纤网沿纵向收缩了约25%,横向,15%(面积收缩为约45%),变成2.75盎司/平方码(93.2g/m2)基重。
热处理的纤网以20码/分(18.3m/min)的粘合速度接受热点粘合,其中纤网被喂入到由208℃的光辊和具有225个凸起菱形(变成45°后的方块)每平方英寸的202℃菱形花纹辊筒组成的花纹粘合压花机的辊隙中。辊隙压力是50磅/线英寸。粘合纤网重2.5盎司/平方码(84.8g/m2)并具有3/32英寸(0.24cm)的厚度和20%粘合面积。粘合的布料具有充分悬垂性,正如将18英寸×18英寸(45.7cm×45.7cm)非织造布样品放在一个直径4英寸(10.16cm)的圆筒形容器上,随后布料在其自重下沿整个布料表面与容器形状保持共形所观察到的。该粘合非织造布具有25%沿纵向的弹性伸长和35%横向弹性伸长,永久形变小于5%。
对比例A如实例1所述制备一种两层梳理纤网并采用如同用于在实例1中粘合热处理的纤网相同的条件通过压花粘合机进行预粘合。尺寸180cm长和50cm宽的预粘合纤网样品从卷材退卷到以约15英尺/分(4.57m/min)移动的传送带上,并传送到100℃的烘箱内。纤网在直接放在该热框的带上的条件下加热30s。该纤网沿纵向仅收缩5%,横向,15%(面积收缩20%)并且垂感很差。该粘合布料沿纵向仅有5%弹性伸长,横向仅20%,且垂感很差。仔细观察揭示,实例1的产品具有成形得均一、良好的粘合点,但实例A却具有不时地中断的粘合周边,且在粘合区域内厚度不一。
实例2实例1的双组分长丝切断成2.75英寸(7cm)长度并按50wt%的比例与市售单丝旦数0.9和长度1.45英寸(3.7cm)的2GT聚酯短纤维掺混。该聚酯是T-90S,由纳幕尔杜邦公司(Wilmington,DE)供应。
掺混的纤维通过标准J.D.Hollingsworth非织造布梳理机(J.D.Hollingsworth,Wheels,Greenville,SC)进行加工从而提供基重0.7盎司/平方码(23.7g/m2)的非织造纤网。该掺混的纤网,80英寸(203cm)宽,经交叉铺网成为80英寸(203cm)宽、重约4.0盎司/平方码(135.6g/m2)的垫,并按130针每平方英寸(20.2针每平方厘米)接受机械针刺,针刺期间它被沿纵向拉伸1.3/1倍。所获得的轻微针刺、交叉铺网纤网的基重为约3.0盎司/平方码(101.7g/m2)。在此阶段,产品柔软且膨松,富内聚力,且有一定弹性伸长,但相当不结实且表面稳定性也非常差。
该轻微预针刺的纤网按照类似于实例1中描述的方式预收缩到4.1盎司/平方码(139g/m2),相对于纤网原来尺寸沿横向收缩约13%,纵向10%。收缩后,纤网以5码/分(4.6m/min)的速度用加热到227℃的花纹压花辊,抵住加热到230℃的钢光辊加压约450磅/线英寸,而粘合。花纹辊筒具有两方向不连续线条构成的花纹,提供约29%的粘合面积,线条间距为约5(条)/英寸(2/cm)。辊隙设定在0.002英寸(0.1mm)。
制成的产品具有柔软手感、良好垂感和手-评估的弹性可回复伸长——沿横向约35%,纵向12%。最终重量4.4盎司/平方码(149.2g/m2)。
可用伸长,沿纵向11.6%,横向35.3%。布料增长是,沿纵向1.6%,横向5.6%。
对比例B按照实例2制备纤网,所不同的是,粘合是在热收缩之前进行的。最终收缩大致等于实例2的收缩,最终重量4.0盎司/平方码(135.6g/m2)。手-评估弹性伸长为约5%XD和0%MD。与实例2的产品相比,最终产品还比较僵硬和缺少垂感。可用伸长,沿纵向是7.2%,横向,10.6%。布料增长是,沿纵向0.6%,横向1.0%。
实例3本实例的布料包含下列纤维共混物50%2GT/3GT双组分纤维(1.5英寸,4.4dpf)、3GT单组分纤维(1.5英寸(3.8cm)和1.6dpf)。该2GT/3GT双组分与实例2中的相同。3GT纤维由与制造双组分纤维使用的相同3GT聚合物制成,并在标准短纤维制造设备上制造。
本实例按照与实例2相同的程序实施。该布料沿两个方向(纵向和横向)的伸长均为30~35%,回复率95%(即,5%永久形变)。就是说,布料可拉长到最高35%,而当松开时,它将返回到比初始未拉伸长度增加5%的最终状态。它还具有优异悬垂性和柔软手感。最终基重是5.1盎司/平方码(172.9g/m2)。
权利要求
1.一种制备可拉伸非织造布的方法,包括下列步骤成形一种包含多组分纤维的基本未粘合非织造纤网,该多组分纤维在加热后能显现三维螺旋卷曲;在自由收缩条件下加热该基本未粘合非织造纤网至足以导致多组分纤维产生三维螺旋卷曲和导致基本未粘合非织造纤网收缩的温度,加热温度选择为,使热处理的非织造纤网在加热步骤期间基本维持未粘合;以及沿不连续粘合点阵列粘合该热处理的非织造纤网从而制成可拉伸粘合非织造布。
2.权利要求1的方法,其中非织造纤网包含至少30wt%多组分纤维。
3.权利要求1的方法,其中基本未粘合非织造纤网在加热步骤期间发生至少25%面积收缩。
4.权利要求1~3中任何一项的方法,其中多组分纤维是短纤维,未经机械卷曲并具有45%的最高CI且其数值(CD-CI)至少是15%。
5.权利要求1~3中任何一项的方法,其中多组分纤维是并列双组分纤维。
6.权利要求5的方法,其中双组分纤维包含聚对苯二甲酸乙二醇酯和聚对苯二甲酸1,3-丙二醇酯。
7.权利要求4的方法,其中基本未粘合非织造纤网是梳理纤网。
8.权利要求1的方法,其中该热处理和粘合的非织造布在非织造布被拉长其原长的至少12%后具有不大于约5%的永久形变。
9.权利要求1~3中任何一项的方法,其中粘合点间距为约4~8粘合点每厘米,粘合密度为约16~62每平方厘米。
10.权利要求1~3中任何一项的方法,其中热处理的基本未粘合非织造纤网是热点粘合的。
11.一种制备可拉伸非织造布的方法,包括下列步骤成形一种包含多组分纤维的基本来粘合非织造纤网,该多组分纤维在加热后能显现三维螺旋卷曲;基本未粘合非织造纤网在具有第一传送表面速度的第一传送表面上传送;基本未粘合非织造纤网从第一传送表面经过转移区转移到第二传送表面,第二传送表面具有第二传送表面速度;基本来粘合非织造纤网不接触转移区传送表面地通过转移区传送;基本未粘合非织造纤网在转移区内加热至足以导致多组分纤维显现三维螺旋卷曲的温度,从而导致基本未粘合非织造纤网面积收缩,并且随着其传送通过转移区纤网的速度降低,加热温度选择为,使非织造纤网在加热步骤期间保持基本未粘合;将热处理的基本未粘合非织造纤网在其出转移区时转移到第二传送表面,第二传送速度小于第一传送速度,且第二传送速度选择为大致等于热处理的基本未粘合非织造纤网出转移区后接触第二传送表面时的速度;以及沿不连续粘合点阵列粘合该热处理的基本未粘合非织造纤网从而制成可拉伸多组分粘合非织造布。
12.权利要求11的方法,其中基本未粘合非织造纤网自由下落穿过转移区。
13.权利要求11的方法,其中基本未粘合非织造纤网在传送通过转移区时漂浮在气体上。
14.权利要求11的方法,其中基本未粘合非织造纤网的面积收缩在纤网出转移区时基本完成。
15.一种制备可拉伸非织造布的方法,包括下列步骤提供一种包含多组分纤维的基本未粘合非织造纤网,该多组分纤维在加热后能显现三维螺旋卷曲;基本未粘合非织造纤网在具有第一传送表面速度的第一传送表面上传送;基本未粘合非织造纤网经过转移区转移到第二传送表面,第二传送表面具有第二传送表面速度;基本未粘合非织造纤网传送通过转移区期间其非织造布表面速度降低;基本未粘合非织造纤网在一系列至少两个传动辊上传送通过转移区,每个传动辊的圆周线速度随着纤网移动通过转移区不断降低,其中每个辊的圆周线速度近似等于非织造纤网接触每个辊时的速度;基本未粘合非织造纤网在转移区内加热至足以导致多组分纤维显现三维螺旋卷曲的温度,从而导致基本未粘合非织造纤网面积收缩,以致随着其传送通过转移区非织造纤网的速度降低,加热温度选择为,使非织造纤网在加热步骤期间保持基本未粘合;将热处理的基本未粘合非织造纤网在其出转移区时转移到第二传送表面,第二传送速度小于第一传送速度,且第二传送速度选择为大致等于热处理的基本未粘合非织造纤网出转移区后接触第二传送表面时的速度;以及沿不连续粘合点阵列粘合该热处理的基本未粘合非织造纤网从而制成可拉伸粘合非织造布。
16.权利要求15的方法,其中相邻辊筒的圆周线速度的变化小于20%。
17.权利要求17的方法,其中相邻辊筒的圆周线速度的变化小于10%。
18.权利要求15的方法,其中基本未粘合纤网的面积收缩在纤网出转移区时基本完成。
19.一种制备可拉伸非织造布的方法,包括下列步骤成形一种包含多组分纤维的基本未粘合非织造纤网,该多组分纤维在加热后能显现三维螺旋卷曲;在自由收缩条件下加热该基本未粘合非织造纤网至足以导致多组分纤维产生三维螺旋卷曲和导致基本未粘合非织造纤网收缩的温度,且其中基本未粘合非织造纤网与显现三维螺旋卷曲基本上同时地沿不连续粘合点阵列粘合,从而制成可拉伸粘合非织造布。
20.权利要求19的方法,其中加热步骤导致基本未粘合非织造纤网沿纵向收缩。
21.权利要求19的方法,其中加热步骤导致基本未粘合非织造纤网沿横向收缩。
22.权利要求19的方法,其中加热步骤导致基本未粘合非织造纤网沿纵向和横向两个方向收缩。
23.一种含有加热后具有三维螺旋卷曲的多组分纤维的非织造布,具有不大于约5%的永久形变,其中当加热后粘合时该布料的最高伸长水平至少是12%,且其中粘合点间距为约4~8粘合点每厘米,并具有约16~62每平方米的密度。
24.权利要求23的非织造布,其中布料的最高伸长水平至少是20%。
25.权利要求23的非织造布,包含至少30wt%多组分纤维。
26.权利要求25的非织造布,包含至少40wt%多组分纤维。
27.权利要求23的非织造布,其中多组分纤维包含聚对苯二甲酸乙二醇酯和聚对苯二甲酸1,3-丙二醇酯的双组分纤维。
28.权利要求23的非织造布,包含多组分纤维与下列非三维螺旋卷曲的纤维的共混物棉花、毛和丝以及合成纤维,包括聚酰胺、聚酯、聚丙烯腈、聚乙烯、聚丙烯、聚乙烯醇、聚氯乙烯、聚偏二氯乙烯和聚氨酯。
29.权利要求23的非织造布,其中沿纵向和横向的可用伸长至少是10%且织物增长不大于可用伸长的20%。
全文摘要
一种制备可拉伸非织造布的方法,包括成形一种包含能显现三维螺旋卷曲的多组分连续长丝或短纤维的基本未粘合非织造纤网,在自由收缩条件下加热该基本未粘合非织造纤网以激活螺旋卷曲,期间非织造布保持基本未粘合,随后采用机械、化学或热粘合点阵列的方式粘合卷曲的非织造纤网。本发明方法制备的非织造布具有,与技术上公知的多组分非织造布相比,伸长-回复性能、纺织手感和垂感的综合改进。
文档编号D04H1/54GK1606640SQ02825700
公开日2005年4月13日 申请日期2002年12月16日 优先权日2001年12月21日
发明者D·P·扎菲罗格卢, G·D·希特帕斯, D·F·马索达, T·M·福特 申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1