包含污泥的废弃物的处理设备的制作方法

文档序号:1979127阅读:189来源:国知局
专利名称:包含污泥的废弃物的处理设备的制作方法
技术领域
本实用新型涉及利用水泥制造设备卫生地处理废弃物用的设备,特别是涉及包含有高含水率污泥的废弃物的处理。
背景技术
近年来,随着例如发展中国家生活水平的提高,也越来越需要对垃圾进行卫生处理,其焚烧处理量在增大也在预测之中。但是也存在建设一般的垃圾焚烧炉需要很大的费用,需要很长的工期的问题。而且在日本还存在掩埋分解炉产生的炉灰的掩埋处理场不足的问题,在设立新垃圾处理场的情况下,灰熔融炉的设置和灰的再利用方法的确立等是必要条件。对此,本申请的发明人开发出有效利用已有的水泥制造设备的垃圾处理系统,首先提出了专利申请(专利文献1)。这是邻近已有的水泥制造设备设置流动床式气化炉,在该气化炉使垃圾等废弃物气化,将产生的热分解气体在保持含有的炭和灰分不变的情况下提供给水泥分解炉或烧成炉(烧成窑)的技术。如果能够这样使垃圾的热分解气体在水泥分解炉或烧成炉中燃烧,则能够用比建设新的垃圾焚烧炉低得多的费用而且能够在较短的时间建设垃圾处理设备。而且提供给水泥分解炉和烧成炉的热分解气体和炭成为燃料的一部分,灰分成为水泥原料的一部分。也就是说,不是停留在只利用已有的水泥制造设备,而是在水泥的制造过程中能够利用垃圾产生的热分解气体、炭以及灰分,互惠关系成立。但是,与上述垃圾处理的需求增大相同,随着下水处理场的整备的进展,产生的下水污泥的处理量也增大。通常是将下水污泥脱水后掩埋,但是下水污泥可能污染地下水而且有恶臭,对此有人提出如下所述将污泥与垃圾一起焚烧,或将其投入气化炉使其热分解的方案。还有,用已有的垃圾焚烧炉混烧少量的脱水污泥是一直在使用的技术。作为一个例子,专利文献2记载有在使用于废弃物的焚烧或热分解的流动炉中, 通过改变与固体废弃物混烧的污泥的供给量,控制砂层的温度的技术。而在专利文献3记载的废弃物气化装置的情况下,用流动床式气化炉将污泥和污泥以外的废弃物混烧时,向炉子内提供例如木屑那样的高热量废弃物,保持所需要的发热量使其燃烧、热分解的技术。专利文献1 中国专利申请公开第101434461号说明书;专利文献2 日本特开平11 - 337036号公报;专利文献3 日本特开2006 - 220365号公报。

实用新型内容但是通常脱水污泥的含水率高达约80%,其水分的蒸发潜热大,而且脱水污泥的固体成分的粒径比破碎的垃圾小,在流动层气化、发热之前飞散的比例高。因此废弃物中污泥的比例如果高,则流动层的温度下降,可能难以维持热分解反应。因此在已有的焚烧炉与垃圾混烧的污泥的比例通常为5%左右,实际上最多也只能够处理10%左右。还有,像上述专利文献3那样,木屑作为助燃材料使用是有效的,但是不见得像木屑那样的高热量废弃物能够确保与平常污泥的处理量平衡,因此不能不说这种技术缺乏实用性。例如在同时处理生活废弃物(0.8千克/人·日)与生活下水(300升/ 人 日)的脱水污泥的情况下,30万人口的都市同时处理240吨/日的废弃物与60吨/日的脱水污泥,即必须同时处理20%的污泥。鉴于这样的情况,本实用新型的目的在于,提供即使是处理比以往包含更多高含水率脱水污泥的废弃物,也能够使气化炉的流动层温度维持于合适的温度范围的废弃物处理设备。如上所述,本申请的发明人开发研究已有的水泥制造设备与相邻设置的废弃物处理设备之间的互惠关系而成立的系统,为了进一步改善该系统,继续锐意进行研究中,想到利用水泥制造设备的废热作为气化炉流动层维持温度用的热源,完成了本实用新型。亦即本实用新型以与水泥制造设备相邻设置的废弃物处理设备为对象,具备使废弃物气化产生热分解气体的流动床式气化炉、将在所述气化炉产生的热分解气体在保持含有炭和灰分的情况下输送到从所述水泥制造设备的水泥预热器到分解炉之间的气体输送通道、向所述气化炉提供流动化空气的空气供给通道,以及配设于所述空气供给通道的利用所述水泥制造设备的废热使提供给所述气化炉的流动化空气升温的废气空气加热器。借助于这样的结构,对处理废弃物用的流动床式气化炉升温过的流动化空气,因此即使是废弃物中包含比较多的脱水污泥,也能够将气化炉的流动层的温度保持于合适的范围。流动化空气的升温由于利用水泥制造设备的废热,可以不消耗助燃材料或大大减少其消耗量,很适合环境保护。而且在气化炉产生的热分解气体在保持含有炭和灰分的情况下利用气体输送通道输送到水泥预热器、分解炉,其燃烧产生的热被利用于水泥原料的预热和分解。脱水污泥产生的水蒸汽也与该热分解气体一起输送,与其一起,如上所述使用于流动化空气的升温的热量也被输送到水泥预热器和分解炉。也就是说,水泥制造设备的废热被使用于气化炉的流动层的温度的维持后,再度与在该处产生的热分解气体等一起返回水泥制造设备。换句话说,通过将废弃物处理设备与水泥制造设备组合,能够有效利用水泥制造设备产生的热量,维持气化炉的流动层的温度,其结果是,能够将比以往多的污泥与垃圾等同时处理。在上述废弃物处理设备中,最好是所述废弃物中包含脱水污泥,且所述废弃物处理设备具备能够将该脱水污泥和脱水污泥以外的废弃物分别投入所述气化炉的投入装置。 这样一来,不仅调整包含脱水污泥的废弃物的总投入量,而且调整发热量互不相同的脱水污泥和脱水污泥以外的其他废弃物中的某一种的投入量,改变两者的投入量的比例,也能够调整流动层的温度。特别是调整高含水率的脱水污泥的投入量是有效的。还有,在这里所谓“投入量”是单位时间的投入量,所谓对其“进行调整”也意味着根据例如流动层的温度改变投入量的反馈控制外,预先调查脱水污泥和脱水污泥以外的废弃物的发热量,设定脱水污泥和脱水污泥以外的废弃物的投入量乃至于其比例这些运行条件,将流动层的温度维持于规定的范围内。作为一个例子,例如,如果调整脱水污泥和脱水污泥以外的废弃物的投入量的比例,以使得包含脱水污泥的全部废弃物的低位发热量为规定值(例如800 1200千卡/千克左右)以上,则能够由它们自己的燃烧确保热分解用的热量,可以不要提供助燃材料。为此,在投入气化炉之前预先进行脱水污泥的成分分析等,求出其低位发热量加以存储。而且首先在气化炉中投入脱水污泥以外的废弃物,测定流动层的温度,根据该测定结果推定脱水污泥以外的废弃物的低位发热量。而且根据该推定值与上述存储的脱水污泥的低位发热量,调整脱水污泥和脱水污泥以外的废弃物的投入量的比例,以使全部废弃物的低位发热量在所述规定值以上即可。也可以那样调整投入量的比例,并且一边把脱水污泥和脱水污泥以外的废弃物投入气化炉一边测定流动层的温度,根据该测定结果改变脱水污泥的投入量,以此使流动层的温度接近目标值。通过改变高含水率的脱水污泥的投入量,能够迅速调整流动层的温度。作为另一例子,首先一边把脱水污泥以外的废弃物投入气化炉一边测定流动层的温度,根据该测定结果调整上述废弃物(不包含脱水污泥)的投入量,以此使流动层的温度高于目标值。其后也可以一边把脱水污泥也投入气化炉一边测定流动层的温度,根据该测定结果调整脱水污泥的投入量,以此使流动层的温度为上述目标值。那时候,脱水污泥以外的废弃物的投入量可以维持一定,也可以改变其投入量。又可以不调整脱水污泥的投入量,而代之以调整脱水污泥以外的废弃物的投入量。通常气化炉在空气比小于1的无氧状态下运行,因此如果使废弃物的投入量增大,则与其热容量相应,层温度降低。另一方面,如果增大流动化空气的供给量,作为燃烧更旺,层温度上升。而且如上所述,在本实用新型中,由于利用水泥制造设备的废热使进入气化炉的流动化空气升温,通过调整该升温的程度、即调整提供给流动化空气的热量,也能够调整流动层的温度。也就是说,除了包含脱水污泥的废弃物的投入量外,通过调整流动化空气的供给量乃至于其温度等,也能够控制流动层的温度,因此在控制得到提高的同时,其自由度也高了。例如能够使气化炉内维持为负压、或合适地维持流动介质的流动化状态等,各种条件能够得到满足同时能够维持流动层于合适的温度。但是如上所述将脱水污泥投入气化炉的流动层的情况下,如果大量将其投入一处,则在其附近会发生局部温度大幅度下降的情况,有可能热分解反应不能够发生。因此在使脱水污泥的投入比例增加的情况下,最好是所述投入装置形成使脱水污泥从所述气化炉的流动层的上方的多个地方分散投入所述流动层的结构。如果这样做,能够方便对流动层的温度的控制,有利于将该温度维持于规定的范围。而且即使是如上所述使流动化空气升温,仅此也不能够维持层温度的情况下,也可以所述气化炉具备向流动层提供助燃材料的燃料供给装置。如果这样做,则能够处理更多的脱水污泥,同时即使脱水污泥以外的废弃物是发热量比设想的发热量低的所谓低品位废弃物,也能够利用助燃材料的燃烧维持层温度。可以是所述燃料供给装置配置为向流动层提供平均粒径为0. 1 3mm的固体助燃材料。具体地说,这样的助燃材料可以采用炭微粉那样的固体助燃材料,将其投入流动层上方的空塔部。在这种情况下,炭微粉颗粒如果过细,则会随着热分解气体的气流从气化炉排出,另一方面,如果颗粒过大则在流动层内立即下沉,也许不能够对燃烧作出充分的贡献。 因此炭微粉的平均粒径最好是0. 1 3mm左右。还有,助燃材料不限于炭微粉,除此以外也可以是例如废轮胎、塑料、木片、炭、泥炭化合物等,只要是能够在流动层内燃烧的材料即可,不管其种类。[0030]在上述废弃物处理设备中,也可以具备在将所述脱水污泥提供给气化炉之前,利用水泥制造设备的废热使所述脱水污泥干燥的干燥装置。如果这样做,则能够提高包含脱水污泥的废弃物的发热量,有利于维持流动层的温度。由于脱水污泥的含水率低,将其投入时流动层的局部温度下降也得到抑制。如上所述,如果采用本实用新型的废弃物处理设备,即使是在气化炉中处理的废弃物中大量包含高含水率的脱水污泥的情况下,也能够利用水泥制造设备的废热使流动化空气升温,借助于此,能够将流动层的温度维持于规定的范围。也就是说,在水泥制造设备中产生的热能够得到有效利用,在废弃物处理设备中能够在处理垃圾等的同时处理比以往多的脱水污泥。

图1是本实用新型第1实施形态的废弃物处理设备以及水泥制造设备的系统图。图2是表示上述废弃物处理设备的气化炉以及其控制系统的结构的示意图。图3A是表示脱水污泥投入处的流动层的局部温度下降且所表示的是扩散系数大的情况的示意图。图;3B是相当于图3A的扩散系数小的情况的示意图。图4是表示气化炉的炉床面积与流动层温度的标准偏差之间的关系的实验结果曲线图。图5A是表示气化炉的运行方法的一个例子的流程图。图5B是表示气化炉的通常运行程序中的脱水污泥的供给量的调整步骤的流程图。图6是表示通常运行时的垃圾等和脱水污泥的投入量的变化与由此引起的流动层温度变化之间的关系的时序图。图7是由于流动化空气的升温,可投入的脱水污泥在多大程度上增大的调查结果积累的曲线图。图8是冷却废气流入分解炉的第2实施形态的与图1相当的图。图9是具有具备旋转分解室和混合室的分解炉的变形例的与图1相当的图。图10是周壁的中途具有环状收束部,向其近旁引入再燃烧用的空气的变形例的与图1相当的图。图11是没有分解炉的变形例的与图1相当的图。符号说明[0046]100废弃物处理设备;[0047]1气化炉;[0048]4垃圾投入装置;[0049]6气体输送管线(气体输送通道);[0050]7助燃材料供给装置(燃料供给装置)[0051]8污泥供给系统;[0052]80污泥层;[0053]81污泥投入装置;
6[0054]2001020404具体实施方式
下面参照附图对本实用新型的理想的实施形态进行说明。图1是第1实施形态的废弃物处理设备100以及与其相邻设置的水泥制造设备200的总体系统图。图1中左侧表示的废弃物处理设备100在气化炉1中使废弃物热分解,将产生的气体(热分解气体)用在水泥的烧成工序中混合燃烧。该热分解气体的量为例如2 3万Nm3/h左右,与图示的水泥制造设备200的废气量(例如30万Nm3/h)相比要少得多,因此废弃物处理设备100可以在已有的水泥厂近旁建设,而几乎无须对已有的水泥厂进行任何修改。废弃物处理设备在废弃物处理设备100中收集例如家庭来的废弃的垃圾、废塑料等包含可燃性物体的废弃物(下面,特别是与脱水污泥区别的情况下称为“垃圾等”或“垃圾等废弃物”)。这些废弃物通过陆上输送等运来,被投入坑2内的料斗加,利用未图示的破碎机进行破碎。这样破碎过的垃圾等废弃物利用吊车3输送,投入料斗和传送带等构成的垃圾投入装置4,借助于该垃圾投入装置4的动作将其投入气化炉1。又,在本实施形态中,也设置与上述垃圾等分开地将脱水污泥提供给气化炉1进行处理用的污泥供给系统8。脱水污泥是在附图外的下水处理场从下水污泥分离出的固体成分,利用陆上运输等方式运送过来贮留于污泥槽80。将脱水污泥运送来的车辆(未图示), 与其替换,从坑2装入污水反复向下水处理场运送。从坑2来的污水以往要进行蒸发处理, 但是如果如上所述,向下水处理场运输,则可以将使其蒸发用的热量用在别的用途上。另一方面,贮存于污泥槽80的脱水污泥借助于具备传送带等的污泥投入装置81 (参照图2)的动作与上述垃圾等废弃物一样被投入气化炉1。该污泥投入装置81和上述垃圾投入装置4具备例如螺旋式输送器,通过改变其动作速度,能够调整每单位时间投入垃圾等脱水污泥的投入量。这样调整包括脱水污泥的废弃物的投入量,并且调整如下所述的流动化空气的温度和流量,能够控制气化炉1的流动层Ia的温度。也就是说,气化炉1是流动床式气化炉,也如图2所示,在气化炉1的炉内下部充填流动砂(流动介质),形成流动层la。在这里,利用所提供的流动化空气使流动砂浮游,空气通过其间隙向上方流动。包括脱水污泥的废弃物一旦被投入流动层la,这些废弃物就被流动砂分散并热分解、气化。这时废弃物的一部分燃烧,维持流动层的温度促进热分解反应。被提供给流动层Ia的流动化空气,在本实施形态中,利用电动送风机5从废弃物的坑2被吸出以此将坑2内保持于负压,异常臭味不容易泄露到外部。而且从送风机5来的空气如下所述,利用水泥制造设备200的废热升温后,被提供给气化炉1。通过这样以流动空气为媒介提供热量,即使是大量混烧脱水污泥也能够维持流动层Ia的温度。详细地说,通常垃圾等废弃物的低位发热量为1000 3000千卡/千克左右,因此
水泥制造设备; 悬挂式预热器(预热器); 分解炉;
空气淬火冷却器(熟料冷却器); 废气空气加热器(gas air heater)(升温装置)。
7通过其一部分的燃烧能够确保热分解用的反应热,将流动层Ia的温度维持于合适的温度。 另一方面,虽然由于在脱水污泥中含有下水中的有机物质,因此潜在发热量高,但是由于含水率高达80%左右,因此低位发热量变低,将其与垃圾等废弃物混烧时,层温度难以维持。因此,在本实施形态中,不仅调整垃圾和脱水污泥等的投入量,而且将流动化空气的温度和流量设定为适当值,即使是在气化炉1中混烧较多的脱水污泥,也能够将流动层温度维持于500 600°C左右的适当范围。也就是说,如图2的示意图所示,在流动层Ia中配设温度传感器91,接收从该处来的信号的控制器90对垃圾投入装置4和污泥投入装置 81的动作进行控制。又,为使来自送风机5的空气升温,在废气空气加热器41 (GAH:升温装置冲设置用来调节使其旁路的空气流量的旁通阀42,利用控制器90对其开度进行控制,以此调整流动化空气的温度。而且在从送风机5经过废气空气加热器41到达气化炉1的空气供给通道fe的中途设置开度可调整的调节风门55(仅表示于图2),由控制器90对该调节风门55 的开度和送风机5的转速进行控制,这样也可以调整流动化空气的流量。如果这样使流动化空气升温到例如150 200°C左右,则能够将相当多的热量提供给流动层la,因此能够不降低层温度地对包含许多脱水污泥的废弃物进行处理。而且因垃圾等的种类的不同,其发热量有时候比想象的要低(例如低于1000千卡/千克的所谓低品位废弃物),在这种情况下即使是如上所述使流动化空气升温,也可能无法维持流动层Ia 的温度。对于这个问题,在本实施形态中,设置炭微粉供给装置7以便能够从废弃物投入口向气化炉1内的空塔部投入例如炭微粉作为助燃材料。又,利用供给装置7从上方投入流动层Ia的炭微粉的平均粒径为0. 1 3mm左右。假定炭微粉为粒径0. 1mm,根据计算其最终速度为约0. 9m/s,由于稍微低于通过气化炉1内上升的热分解气体和空气流速(气体基准的空塔流速),其大多数都飞散了,对于流动层Ia产生的燃烧没有贡献。另一方面,如果炭微粉的粒径过大,则立即通过流动层Ia内沉降并离开流动层 la,可能对燃烧不大有贡献。粒径为3. Omm的炭微粉在500°C左右的流动层Ia内燃烧所需要的时间为粒径0. Imm的颗粒的数十倍,为了对层内的燃烧有贡献,必须确保颗粒在层内滞留的时间。在这里,粒径3. Omm的炭微粉的最小流动化速度的计算值约为1. 8m/s,与流动层Ia的气体基准的空塔流速相同,因此如果平均粒径在3mm以下就没有问题。因此根据需要提供炭微粉,即使是将包含许多脱水污泥的废弃物投入也能够将流动层Ia的温度保持在合适的范围内,废弃物能够高效率地热分解并气化。该热分解气体从气化炉1的上部排出,利用气体输送管线6 (气体输送通道)输送到水泥制造设备200。在热分解气体中作为未燃烧部分的炭和灰分作为小颗粒浮游,与热分解气体一起被输送。在本实施形态中,从气化炉1来的热分解气体利用下述水泥的分解炉20的负压进行输送,因此气化炉1内也保持负压,热分解气体不会泄露到外部。又,热分解气体由于能够利用分解炉20的负压进行输送,气体输送管线6中不设置送风机。因此不用担心送风机的叶轮等上附着、堆积热分解气体中的炭和灰分等而造成故障。但是在气体输送管线6的管道内壁面上,随着时间迁移也有炭和灰分附着堆积的情况发生,因此而增大压力损失,所以在本实施形态中,在气体输送管线6的中途以规定以上的间隔配设多个喷射装置6a。借助于各喷射装置6a,间歇性地吹入从未图示的空压机提供的压缩空气,可以将堆积的炭和灰分吹走。还有,在气体输送管线6上也在中途设置开闭式的调节风门,可以在使废弃物处理设备100停止运行时将其关闭。这样做,可以将废弃物的热分解气体从气化炉1的上部向气体输送管线6排出,而包含气化炉1中的热分解后的残渣,即金属片的不燃烧物体沉入流动砂中,与该流动砂一起从气化炉1的下端落下。也就是说,废弃物的残渣借助于流动层Ia进行所谓比重分离。 这样从气化炉1排出的砂和不燃烧物体利用未图示的传送带等输送,由附图外的分级装置分离的砂返回气化炉1。另一方面,利用分选装置从不燃烧物体中分选出金属成分,残留的不燃烧物体作为水泥原料使用。水泥制造设备水泥制造设备200在图1的例子中是具备一般的NSP窑的设备。水泥原料在作为预热器的悬挂式预热器10中预热后,用分解炉20加热到900°C左右(分解),在作为烧成炉的转窑30中,以1500°C左右的高温进行烧成。通过转窑30的烧成物在空气淬火冷却器40 (AQC)中急冷,成为颗粒状的水泥熟料(七^ >卜夕U >力),然后送到图外的精制工序中。上述悬挂式预热器10具有在上下方向并排设置的多级旋流器11。旋流器11分别一边利用涡旋状气流输送水泥原料一边与从下级吹入的高温废气进行热交换。该废气流如下所述,从转窑30来的高温废气(以下称为“窑废气”)通过分解炉20内上升,被提供给最下一级的旋流器11。窑废气如图中虚线所示,通过旋流器11逐级上升,到达最上一级的旋流器11,从该处向废气管线50流出。如图所示,在废气管线50设置诱导窑废气将其往烟囱51送出用的大容量的诱导通风机52,在该诱导通风机52的跟前一侧、即废气流的上游侧,介入设置气体冷却器53(例如锅炉)以及集尘器M。诱导通风机52具备通过悬挂式预热器10和分解炉20从转窑30 引导出大量废气,同时在分解炉20内形成负压,以此从气化炉1诱导出热分解气体的功能。另一方面,在悬挂式预热器10的各旋流器11中,如上所述水泥原料与高温窑废气进行热交换后,如图中实线所示,向下方降落,向下一级旋流器11移动。这样从最上级的旋流器11依序逐级通过多个旋流器11时,水泥原料得到充分预热,从最下一级的上面一级旋流器11向分解炉20提供。分解炉20在上下方向延伸地设置于转窑30的窑后部,在分解炉20的下端连接将其与转窑30加以连接的下部管道21,另一方面,在分解炉20的上端连接将其与悬挂式预热器10的最下一级旋流器11加以连接的上部管道22。如上所述由诱导通风机52引导的窑废气从下部管道21向分解炉20下端流入,作为喷流向上方吹。又在分解炉20的下部分别设置作为助燃材料的炭微粉的供给口和上述气化炉1 来的热分解气体的气体导入口、以及它们的燃烧用的空气的导入口(图示省略)。作为燃烧用的空气,采用空气淬火冷却器40来的高温冷却废气,与热分解气体一样,利用分解炉20 内的负压将其吸引。被吸引到分解炉20内的热分解气体和燃烧用的空气一边与高温窑废气混合一边经过充分的时间的燃烧。而且被投入该分解炉20内的水泥原料在随着上面所述的窑废气的喷流上升时被加热到900°C左右,石灰成分的80 90%发生脱二氧化碳反应。其后从分解炉20的最上部通过上部管道22传输到悬挂式预热器10的最下级的旋流器11,在这里,窑废气与水泥原料分离,流向上面一级的旋流器11,另一方面,水泥原料从旋流器11的下端落下,到达转窑
930的入口。转窑30是将一个例如长达70 IOOm的横向长圆筒状的旋转窑从入口向出口稍微向下倾斜配置形成的。旋转窑围绕其轴心缓慢旋转,以此将水泥原料向出口侧输送。在该出口侧配设燃烧装置31,煤、天然气、重油等燃烧产生的高温燃烧气体向入口侧喷出。被燃烧气体包围的水泥原料发生化学反应(水泥烧成反应),其一部分烧成到半熔融状态。该水泥烧成物在空气淬火冷却器40中受到冷风急冷,形成颗粒状的水泥熟料。然后,水泥熟料储藏于熟料筒仓后,添加石膏等进行成分调整,然后经过研磨粉碎为细粉(精加工工序)(图示和详细说明省略)。另一方面,从烧成物中取得热量升高到800°C左右的冷却废气,如上所述,作为燃烧用的空气提供给分解炉20。也就是说,回收废热使分解炉20中的燃烧用空气升温,以此谋求提高热效率。又将该冷却废气的一部分引导到废气空气加热器41,如上所述,与从废气处理设备100的送风机5送来的流动化空气进行热交换。通过与高温的冷却废气进行热交换,流动化空气可升温到300°C左右,借助于流过未图示的旁通通路的空气流量的调整,大致可以在100°C 300°C左右的范围进行调整。旁通流过废气空气加热器41的空气的流量,如上所述根据利用控制器90进行控制的旁通阀42的开度进行调整。还有,与流动化空气进行热交换而温度下降的冷却废气流过锅炉43和集尘器41后,流向烟囱。除了如上所述的结构外,在本实施形态的水泥制造设备200中,为了防止在通过悬挂式预热器10和分解炉20进行循环时,气体中的氯成分和碱分浓缩,设置旁通管线60。 也就是说,如果像本实施形态这样,在水泥制造设备中混烧废弃物的热分解气体,则由于原来包含于废弃物中的氯成分和碱分的影响,水泥熟料中的氯成分和碱分浓度有变高的倾向,也有可能发生附着的麻烦。因此,在图中所示的水泥制造设备200中,利用连接于分解炉20下部(或下部管道 21)的旁通管线60抽出气体的一部分,用冷却器61冷却后送到旋流器62 (分级器)对粉尘 (dust)进行分级。对冷却器61利用风扇63送冷风,通过将抽出的气体急冷到氯化物等的熔点以下,将抽出的气体中的氯成分或碱成分作为固态(粉尘)分离。而且在旋流器62中将抽出的气体中的粉尘分级为粗粉和微粉,几乎不含氯成分和碱成分的粗粉从旋流器62的下端落下,借助于对其一部分省略表示的返回管线60a返回分解炉20。另一方面,氯成分和碱成分浓度高的微粉随着从旋流器62吸出的气体向旁通管线60的下游侧管线60b排出,被集尘器M所收集。还有,在图1中,将旁通管线60的下游侧管线60b连接于废气管线50的中途,表示出将用于把窑废气向烟囱51送出的诱导通风机52、废气冷却器53、以及集尘器讨共用,但是在实际设备中,在旁通管线60也可以设置专用的诱导通风机、废气冷却器、以及集尘器。向气化炉分散投入脱水污泥如上所述,在本实施形态的废弃物处理设备100中,将含水率比垃圾等高的脱水污泥投入气化炉1,因此在该投入位置附近流动层温度有局部下降的情况发生。而且如果很多脱水污泥集中在一个地方,则有可能下降到低于维持热分解反应所需要的温度的下限值 (例如450°C)。这种局部温度低下的情况很大程度上受到投入到一个地方的脱水污泥的流量及其在流动层Ia扩散的速度的影响。因此,假定废弃物中的脱水污泥的比例为25 %,对扩散速度设定多个值,进行调查流动层温度变化的模拟。扩散速度通常因流动层Ia的流动砂的大小和性状、流动化的状态、以及脱水污泥的颗粒大小和含水率、黏性等而变化,所以对包括这些重要原因的扩散系数进行定义,利用实验等设定其数值加以使用。图3A、图;3B分别表示在扩散系数为最大的情况和最小的情况的模拟结果。还有, 对于流动层Ia的上下方向,为了方便将脱水污泥的扩散速度看作无限大,考虑由于水平方向的扩散速度的不同而造成的影响和脱水污泥中的水分蒸发速度的影响。将图3A和图;3B 加以比较,可以看出扩散系数越小温度越低的范围(污泥扩散范围)变窄,同时在该范围中的温度下降变得明显。特别是在扩散系数小的图B中,局部层温度低于450°C,热分解反应难以继续。这样投入脱水污泥时,最好是加大其扩散系数,作为其方法,为了将脱水污泥弄细再投入,可以考虑将该投入口的前端缩小,形成喷嘴。但是这样一来,也有可能发生高粘度的脱水污泥在喷嘴的前端堵塞的情况,投入口的前端不能过度缩小。这样,在投入脱水污泥时随意改变其扩散系数在现实中是困难的。因此实际上从一个地方将脱水污泥投入气化炉中,在多个地方测定流动层的温度,从这些测定结果的标准偏差确认脱水污泥投入的影响和范围。图4是表示流动层温度的平均值为一定的条件下炉床面积与流动层温度的标准偏差之间的关系的曲线图。从图4 可知,即使是流动层温度的平均值相同,随着炉床面积的增大,流动层温度的标准偏差也变大。也就是说,可知从一个地方投入的脱水污泥对流动层温度的影响范围。根据该结果,可以说将脱水污泥投入到一个地方的情况下,炉床面积必须在5m2以下,最好是3m2以下。换句话说,可知在炉床面积超过3 5m2的气化炉中,有必要至少每5m2作为一个地方分散投入脱水污泥,每3m2作为一个地方是合适的。因此,在本实施形态中,如图2的示意图所示,在气化炉1的上部将多个投入口 82排列设置为例如环状或格子状,将从污泥投入装置81送出的脱水污泥投入到流动层Ia的上表面,将每3 5m2作为一个地方分散投入。气化炉的运行下面对气化炉1中将流动层Ia的温度维持在合适的范围的运行方法进行说明。如上所述,控制流动层Ia的温度用的参数基本上是包含脱水污泥的废弃物的投入量、流动化空气的温度和流量,但是在本实施形态中,设定能够确保每一天的垃圾等的处理量的流动化空气的温度以及流量,在运行中根据流动层温度调整脱水污泥的供给量。包含脱水污泥的废弃物的低位发热量过低时,根据需要提供炭微粉。这样的气化炉1的运行根据操作人员的操作利用控制器90进行。参照图2,如上所述,控制器90至少输入测定流动层Ia的温度的温度传感器91来的信号和操作者的操作盘92来的信号,根据其对垃圾投入装置4、污泥投入装置81的动作进行控制,调节包含脱水污泥的废弃物的投入量。又,控制器90对废气空气加热器41的旁通阀42的开度进行控制,调整流动化空气的温度,控制送风机5的转速和空气供给通道fe的调节风门55的开度调整流动化空气的流量。下面参照图5、图6对气化炉1的运行进行详细说明。图5A表示也包括操作者的操作的气化炉1的运行方法,图5B表示不使用助燃材料的通常运行时的脱水污泥投入量的调整的控制步骤。又,图6是概念性表示通常运行时垃圾等和脱水污泥的投入量变化与因此造成的流动层温度变化之间的关系的流程图。作为一个例子,在本实施形态的废弃物处理设备100中,调查了每天早上规定的时间垃圾等废弃物的低位发热量。如上所述,垃圾等经过破碎,贮留于坑2内的料斗加,因此由于垃圾的种类的关系造成的发热量的偏差减小,但是即使如此,与脱水污泥相比,偏差还是大的。因此大量混入高含水率的脱水污泥进行燃烧而使流动层Ia的温度降低时,有可能低于热分解反应所需要的下限值(例如450°C)。具体地说,每天早上在规定时刻根据操作者的操作,利用控制器90来的指令使污泥投入装置81停止动作,从这时经过规定时间即停止脱水污泥的投入。在这期间,垃圾投入装置4的动作也继续进行,因此只向气化炉1投入垃圾等废弃物(SAl 垃圾单独运行)。 如图6的时刻t0 tl所示,在该垃圾单独运行期间流动层Ia的温度比通常的目标值(例如530°C)高,接收对此进行测定的温度传感器91来的信号,控制器90推定垃圾等的低位发热量(SA2)。该发热量推定计算中,除了流动层温度外还使用垃圾等的投入量、流动化空气的温度以及流量等。又,控制器90根据推定的垃圾等的发热量计算与此同时可投入的脱水污泥的最大量(SA3 可投入的污泥的数量的计算)。也就是说,脱水污泥由于与垃圾等相比性状比较整齐,因此其低位发热量预先根据燃烧试验等求出并存储于控制器90的存储器中。 然后根据该脱水污泥的低位发热量和上述垃圾等的低位发热量的推定值,计算两者合在一起的全部废弃物的低位发热量在规定值(例如1000千卡/千克)以上的情况下脱水污泥的投入量与垃圾等的投入量之比。也就是说,每天早上调查发热量的波动比较大的垃圾等的低位发热量,在此基础上,求在垃圾中添加脱水污泥的全部废弃物的充分的低位发热量,即使是不投入助燃材料也能够使气化炉1继续运行的脱水污泥每小时可投入的量。将这样求出的脱水污泥可投入量与预定的脱水污泥每小时的处理量相比,判定是否能够处理预定量的脱水污泥(SA4),该判断结果显示于操作者的操作盘的显示器上。看着该显示器的操作者,如果是能够进行预定量的处理(在SA4中判定为是)就不使用助燃材料进行通常运行(SA5),另一方面,如果不能够处理预定的量(SA4中判定为否),就进行使用助燃材料的助燃运行(SA6)。下面对通常运行的情况进行说明,如图5B的子流程显示,控制器90在使垃圾投入装置4的动作继续进行的同时,使污泥投入装置81动作,开始投入脱水污泥(SB1)。然后如图6的时刻tl t2所示,增大投入量,增大到与预定的每小时的处理量相符的分量时(时刻t2),不久后流动层Ia的温度就稳定下来(时刻t3)。控制器90判断经过了至此所需要的规定的时间(SB2),将层温度的计量值(例如使用移动平均)与预先设定的目标值做比较 (SB3)。流动层Ia的温度的合适范围是例如500 600°C左右,如果低于450°C,则虽然能够维持热分解反应,但是如上所述,在脱水污泥投下的位置其温度比此外的其他部分低, 考虑到这种情况,层温度的控制目标值定为例如530°C左右。而且如果层温度比目标值高 (SB3判定为是),就根据其温度偏差增加脱水污泥的投入量(SB4)。另一方面,如果层温度比目标值低(SB3判定为否),就减少脱水污泥的投入量(SB5)。还有,层温度处于包含目标值的规定范围时,维持脱水污泥的投入量。[0109]脱水污泥由于含水率高,如上所述通过使投入量增减,层温度也迅速变化,能够大概维持于目标值附近(图6的时刻t3以后)。当然,不仅调整脱水污泥的投入量,此外还可以同时调整垃圾等的废弃物的投入量,或代之以调整垃圾等的废物投入量。气化炉1通常在空气比小于1的状态下运行,因此如果增加垃圾等的投入量,则相应于其热容量,流动层温度下降。但是如上所述,脱水污泥的投入量变化造成的温度调整效果大,因此最好是使垃圾等的投入量为一定量,确实地处理一天份额的预定处理量。还有,在操作者选择助燃运行的情况下(图5A的流程的SA6),控制器90计算能够使全部废弃物加上炭微粉的低位发热量高于规定值(例如1000千卡/千克)的单位时间的炭微粉供给量,根据该供给量使供给装置7动作。然后与上述通常运行一样,根据流动层Ia 的温度的测定值使脱水污泥的投入量增减。也可以使该脱水污泥的投入量为一定值,根据层温度增减炭微粉的供给量。然后,进行规定期间运行,在处理了大概预定份额的垃圾等废弃物后,控制器90 判断脱水污泥的处理量是否达到预定量(图5A的SA7)。脱水污泥的处理量是以污泥投入装置81的动作为依据的每单位时间的处理量的累计值。而且如果实际处理量多于预定值,则根据该量的偏差计算流动化空气的温度偏低量,打开旁通阀42使旁通通过废气空气加热器41的流动化空气的流量增加。也就是说,改变气化炉1的运行条件,使流动化空气的温度下降(SA8),然后返回。也就是说,为了保持流动层Ia的流动化状态,流动化空气的流量不变,通过对其温度的调整,可以维持流动层温度,确保垃圾等和脱水污泥的处理量。垃圾等和脱水污泥的实际处理量大概如预定的处理量,因此产生的热分解气体量不会过多,在将气化炉1内维持于负压状态上也是理想的。另一方面,如果脱水污泥的实际处理量比预定量少,则相应于该量的偏差,计算出流动化空气温度需要上升的量,关闭旁通阀42以减少废气空气加热器41的旁通空气量。 又,在助燃运行后,根据作为助燃材料的炭微粉的供给量计算由于其燃烧而产生的发热量, 关闭旁通阀42,按照该计算出的发热量使流动化空气升温。也就是说,改变气化炉1的运行条件使流动化空气的温度上升(SA9),然后返回。如上所述,如果采用本实施形态的废弃物处理设备100,邻近已有的水泥制造设备 200设置流动床式气化炉1,将包含脱水污泥的废弃物的热分解气体与炭和灰分一起提供给水泥的分解炉20,另一方面,利用空气淬火冷却器40来的废热使气化炉1的流动化空气升温,因此即使是大量混烧含水率高的脱水污泥的情况下,也能够将气化炉1的流动层Ia 的温度维持于合适的范围。而且那样使流动化空气升温,使用于气化炉1的流动层Ia的温度维持的热量,与该气化炉1产生的热分解气体和水蒸汽一起通过气体输送通道6输送,再度返回水泥制造设备200,效率非常高。换句话说,将水泥制造设备200中产生的热量尽可能地有效利用, 维持气化炉1的流动层Ia的温度这样能够在处理垃圾等的同时处理比以往更多的脱水污泥。图7的曲线表示通过像本实施形态这样使流动化空气升温,投入气化炉1中的脱水污泥可以增加到什么样的程度。作为一个例子,不使用助燃材料的情况下,如果流动化空气的温度为40°C左右,则脱水污泥的投入量可以达到垃圾等的15%多一点。将该脱水污泥相对于垃圾等的投入量之比作为基准(1),如图所示,流动化空气的温度越高,则可投入的脱水污泥增加越多,例如在180°C超过1. 6倍,因此可知可以处理垃圾等的约25%的脱水污泥。又,在本实施形态中,根据需要提供炭微粉等助燃材料,即使是低位发热量非常低的垃圾等堆积时,也能够将其与脱水污泥同时处理,不会给气化炉1的运行带来故障。而且每天调查投入的垃圾等的发热量,计算能够与其同时处理的脱水污泥的量,在不必要时就不使用助燃材料,因此能够将其消耗量抑制于需要的最低限度。而且,在气化炉1的运行中,为了维持流动层Ia的温度,根据该温度的测定值调整脱水污泥的投入量,因此而引起的脱水污泥的处理量变化在规定期间的运行结束后确认, 在其期间以后调整流动空气的温度以便能够进行预定量的处理。也就是说,基本上不改变流入气化炉1的流动化空气的供给量,使流动层Ia的状态为合适的状态,同时不大改变包含脱水污泥的废弃物的规定期间处理量,能够实现所需要的垃圾处理量和脱水污泥处理量。还有,不一定要使流动化空气的流量为一定值,也可以与该温度一起也在某种程度上改变流量。在这种情况下,例如流动化空气的流量一旦增加,则燃烧变得剧烈,因此流动层Ia的温度有上升的倾向。这样,作为控制气化炉1的运行状态的参数,除了包括脱水污泥的废弃物的投入量外,还有流动化空气的温度和流量还有助燃材料的供给量,由于控制的自由度高,可以使气化炉1的状态为更理想的状态。第2实施形态下面参照图8对本实用新型第2实施形态的废弃物处理设备和水泥制造设备进行说明。该图相当于上述第1实施形态的图1。还有,在本实施形态中,水泥制造设备200的悬挂式预热器10和分解炉20的结构与第1实施形态不同,但是分解炉20除了没有空气导入口外,与第1实施形态相同,因此标以相同的符号20。除此以外,对相同结构的构件也标以相同的符号并省略其说明。又,在该图中,气体输送管线6的一部分被悬挂式预热器10遮蔽,因此喷射装置6a 的图示省略,同样为了方便省略了旁通管线60的图示,与第1实施形态相同,在气体输送管线6上配设多个喷射装置6a,而且也具备旁通管线60、冷却器61、旋流器62等。而且在该第2实施形态的水泥制造设备200中,悬挂式预热装置10被分为2个系统,每一系统具备例如5级的旋流器11。在图左侧的系统中,从下级吹入窑废气,除了没有设置分解炉20以外,与第1实施形态结构相同。另一方面,在图中右侧的系统中,设置分解炉20,这里不是流入窑废气,而是流入空气淬火冷却器40来的高温冷却废气。冷却废气与第1实施形态中的窑废气一样流入分解炉20的下端,作为喷流向上吹 (图中用一点锁线表示)。该冷却废气与被引入分解炉20内的热分解气体混合,一边使其燃烧一边将水泥原料向上吹,从上部管道22到达最下级的旋流器11。然后通过旋流器11逐级上升从最上级的旋流器11向废气管线50流出。在分解炉20的下部,与第1实施形态一样,从旋流器11提供水泥原料(详细图示省略),又设置引导从气化炉1来的热分解气体的气体导入口,但是没有设置使其燃烧用的空气的导入口。如上所述,通过分解炉20内向上吹的冷却废气不同于窑废气,因为大量包
含氧气。[0126]除了这点外,分解炉20的结构与第1实施形态相同,被引入分解炉20内的热分解气体与吹上来的冷却废气混合充分燃烧。由于该燃烧,冷却废气的温度上升到900°C以上, 借助于此,可以促进被吹上来的水泥原料的分解(脱二氧化碳反应)。而且在这第2实施形态中,也利用空气淬火冷却器40来的废热使向废弃物处理设备100的气化炉1提供的流动化空气升温,因此即使是在垃圾等废弃物中混烧比较多的脱水污泥,也能够将流动层Ia的温度维持于合适的范围。也就是说,即使是像该第2实施形态那样邻近使冷却废气流入分解炉20的水泥制造设备200设置废弃物处理设备100的情况下,也能够得到与第1实施形态相同的效果。变形例图9和图10分别表示与水泥制造设备200的分解炉结构不同的第1实施形态的变形例。又,图11表示没有分解炉的情况。这些变形例中的任意一个变形例都是除了关于分解炉的结构以外与上述第1实施形态相同,因此对相同的构件标以相同的符号并省略其说明。首先,图9所示的变形例的分解炉70,与第1实施形态的分解炉一样,具有设置于转窑30的窑尾的混合室71和与其下部连通的旋转分解室72,在该旋转燃烧室72配设燃烧装置73,喷出煤、天然气、重油等燃烧产生的高温燃烧气体。如图所示,对旋转分解室72,将空气淬火冷却器40来的高温冷却废气(空气)作为旋流引入,同时从最下一级的上一级的旋流器11提供预热的水泥原料。该水泥原料受到燃烧装置73来的燃烧气体的分解,同时向混合室71移动,在这里,从下方来的窑废气的喷流将其吹向上方。也就是说,在混合室71中,包含水泥原料的燃烧气体流与窑废气流合流,两者一边相互混合一边上升。在随着该上升流上升的期间,水泥原料得到充分分解,从混合室71的最上部出口通过管道向最下一级的旋流器11输送。还有,将气化炉1来的热分解气体引入到转窑30的入口到混合室71的出口之间或旋转分解炉72与混合室71之间即可。另一方面,图10所示的变形例的分解炉75与第1实施形态的分解炉具有大概相同的结构,在上下方向上延伸设置于转窑30的窑尾,但是在其上下的大致中央部位形成环状的收束部75a,在该收束部75a也能将空气引入分解炉75内。也就是说,与上述第1实施形态一样,能够将空气淬火冷却器40来的高温的冷却废气作为旋流引入分解炉75的下部,但是借助于从该冷却废气供给通道分叉出的分叉路, 能够将冷却废气的一部分引向上述收束部75a,从在这里形成的导入口引向分解炉75内。 这样引入的冷却废气的一部分作为再燃烧用的空气提供到通过分解炉75内向上吹的窑废气的喷流中。在这一变形例中,也是将气化炉1来的热分解气体引向转窑30的入口到分解炉75的出口之间即可。而且,在图11所示的变形例中,不设置分解炉,而在转窑30的入口上连接的下部管道21与悬挂式预热器10的最下一级的旋流器11上连接的上部管道22之间利用竖立管四连接。对该竖立管四分别提供水泥原料和来自气化炉1的热分解气体,借助于窑废气的喷流上升。热分解气体与窑废气中包含的氧气发生反应,在竖立管四和悬挂式预热器10 中燃烧。其他实施形态[0136]还有,上述第1、第2实施形态以及其变形例不过是例示,无意限制本实用新型及其适用物或其用途。例如在上述各实施形态中,每天调查垃圾等的发热量,确定能够同时处理的脱水污泥的比例,在此基础上开始投入脱水污泥,但是堆积的垃圾等的发热量不大有急剧变化,因此其发热量可以不必每天调查。例如2 3天一次或一周以次左右对垃圾等的发热量进行调查即可,也可以根据脱水污泥的处理量和据此变更的流动化空气等的温度等不定期进行调查。而且也不一定要先调查垃圾等的发热量然后投入脱水污泥,例如如下所述的运行方法也是可以的。也就是说,首先一边将垃圾等投入一边测定流动层Ia的温度,根据该测定结果调整废弃物的投入量使层温度比目标值高。其后也一边投入脱水污泥一边测定流动层Ia的温度,根据该测定结果调整脱水污泥的投入量,以使层温度达到目标值。而且也考虑因地域的关系收集的垃圾等的发热量非常高,与预定量的脱水污泥合在一起的总体的低位发热量超过1000千卡/千克的非常好的状况。如果是在这样的地域, 在各实施形态等中也可以省略助燃材料的供给装置7。同样,如果是只处理氯成分和碱成分少的废弃物的地域,则在各实施形态等中也可以省略旁通管线60。又,在上述各实施形态等中,将空气淬火冷却器40来的废气引入废气空气加热器 41,但是并不限于此,例如也可以在废气管线50中途,在气体冷却器53的上游侧设置,只要能够利用水泥制造设备200的废热即可。又可以具备同样利用水泥制造设备200的废热,在投入气化炉1之前使脱水污泥干燥用的干燥装置。如果使脱水污泥干燥,则其低位发热量变高,对于流动层Ia的温度维持是有利的。而且由于脱水污泥的含水率低,也可以抑制将其投入时,流动层Ia的局部温度下降。但是,被用于脱水污泥的干燥的热量与水蒸汽一起排出到系统外,不返回水泥制造设备200。根据这一点,干燥装置的热源最好是采取比使用于流动化空气升温的废气空气加热器41等低温的热源,也可以设置于通过例如废气空气加热器41的冷却废气流通的锅炉43的下游侧。又,在上述各实施形态等中,利用水泥制造设备200 —侧的负压从气化炉1输送热分解气体,在气体输送管线6上没有设置送风机,但是在这里也可以设置送风机。又,气体输送管线6的喷射装置6a也可以省略。而且在废弃物处理设备100的气化炉1和水泥制造设备200的窑(烧成炉)等的结构也不限于上述各实施形态。例如水泥的烧成炉不限于转窑30,也可以是流动层窑。工业应用性如果采用本实用新型,与已有的水泥制造设备相邻设置的废弃物处理设备的气化炉中,可以在垃圾等废弃物中混烧比以往多得多的脱水污泥,能实现卫生处理,因此在工业上的可利用性极大。
1权利要求1.一种废弃物处理设备,与水泥制造设备相邻设置,其特征在于,具备使废弃物气化产生热分解气体的流动床式气化炉、将在所述气化炉产生的热分解气体在保持含有炭和灰分的情况下输送到从所述水泥制造设备的水泥预热器到分解炉之间的气体输送通道、向所述气化炉提供流动化空气的空气供给通道,以及配设于所述空气供给通道的利用所述水泥制造设备的废热使提供给所述气化炉的流动化空气升温的废气空气加热器。
2.根据权利要求1所述的废弃物处理设备,其特征在于,所述废弃物中包含脱水污泥, 且所述废弃物处理设备具备能够将该脱水污泥和脱水污泥以外的废弃物分别投入所述气化炉的投入装置。
3.根据权利要求2所述的废弃物处理设备,其特征在于,所述投入装置形成使脱水污泥从所述气化炉的流动层的上方的多个地方分散投入所述流动层的结构。
4.根据权利要求2所述的废弃物处理设备,其特征在于,所述气化炉具备向流动层提供助燃材料的燃料供给装置。
5.根据权利要求4所述的废弃物处理设备,其特征在于,所述燃料供给装置配置为向流动层提供平均粒径为0. 1 3mm的固体助燃材料。
6.根据权利要求1 5中的任一项所述的废弃物处理设备,其特征在于,具备在将所述脱水污泥提供给气化炉之前,利用水泥制造设备的废热使所述脱水污泥干燥的干燥装置。
专利摘要本实用新型提供一种包含污泥的废弃物的处理设备。本实用新型的课题是,在使废弃物热分解的流动床式气化炉(1)中,即使是对大量包含高含水率的脱水污泥的废弃物进行处理,也能够将流动层(1a)的温度维持于合适的范围。解决的手段是,在水泥制造设备(200)的附近建设包含污泥的废弃物的处理设备(100)。该废弃物处理设备具备使废弃物气化产生热分解气体的流动床式气化炉(1)、以及将产生的热分解气体与炭和灰分一起输送到从水泥预热器(10)到分解炉(20)之间的气体输送管线(6)。利用水泥制造设备(200)的废热使提供给气化炉(1)的流动化空气升温的废气空气加热器(41)等升温装置。
文档编号C04B7/38GK202193735SQ20102057077
公开日2012年4月18日 申请日期2010年10月21日 优先权日2010年10月21日
发明者井上英二, 何承发, 市谷升, 张长乐, 李朝晖, 李顺安, 松内孝夫, 林敏和, 汪克春, 渡边达也, 片畑正, 郭文叁 申请人:安徽海螺川崎工程有限公司, 安徽海螺川崎节能设备制造有限公司, 安徽海螺建材设计研究院, 安徽海螺集团有限责任公司, 川崎重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1