专利名称:陶瓷产品的制作方法
陶瓷产品本发明涉及一种陶瓷产品,其由天然和/或合成的无机-非金属原材料、至少一种粘结剂和任选地其他添加物的混合物制造。陶瓷产品具有1000°C以上的软化点并因此被广泛使用,例如作为所谓的耐火材料,用在冶金容器的内衬中,或作为连续铸造领域中的关键部件,例如浸入式水口、闸板、塞棒或流槽等。耐火产品(软化点在1500°c以上)此外在高炉领域、冶金运输容器、垃圾发电业、水泥工业以及化学工业中作为砌衬材料使用。耐火产品根据工艺分为成型材料(成型体)和未成型材料,也就是成型在使用期间进行。未成型耐火材料的领域在最近30年来获得明显的重视。它们构成耐火建筑材料总产量的几乎45%的份额,是重要的耐火陶瓷组。未成型耐火材料最重要的材料组是耐火混凝土。未成型耐火材料目前很大程度上是高品质的特定的材料,它们在质量上完全不差于成型的耐火产品。耐火材料由具有通常确定的适合于相应加工方法的颗粒分布的颗粒状耐火矿物质氧化和/或非氧化原材料(氧化物例如A1203、MgO、MgAl2O4, CaO, ZrO2, Cr2O3> CeO2, Y2O3> TiO2或含有这些成分的原材料如矾土、红柱石、白云石、耐火粘土以及非氧化物例如SiC、 Si3N4,BN,B4C)的混合物组成。因为在这种情况下这是松散的颗粒混合物,所以它们必须混以适当的粘结剂或粘结剂组合物,以保证材料在如制造、加热和使用等所有工艺过程步骤中足够的强度。所使用的粘结剂是反应性物质,它们在水、空气和/或热的共同作用下自动硬化。此外未成型耐火材料含有添加物例如流体化试剂或添加剂等。最常用的粘结剂是基于铝酸钙、矾土水泥的水泥,它们可以使耐火产品由于水合过程(水力粘结)而硬化。但如果耐火材料含有氧化钙,通常是这种情况,则由于形成不希望的相而对材料特性产生不利影响,其最终使耐火材料的特性以及使用温度变差或降低。 由于这种消极影响,出现了大量旨在减少或完全取消矾土水泥的研究。早期传统的耐火混凝土以15-20%比例的矾土水泥制造。在这种情况下,应用极限温度限定在1500°C的范围,因为由于粘结剂成分与颗粒之间的反应导致低熔融性化合物的形成。出于这种现象开发了贫水泥的耐火混凝土。在这种技术中,通过使用精细填料例如微硅粉,与流体化试剂结合可以减少水泥含量。这些贫水泥耐火混凝土由于优化了颗粒填充而特征在于更高的强度、强度最小值显著降低、高密度,结合更低并更细的孔隙度。但所开发的贫水泥耐火混凝土由于其较低的孔隙度而对干燥和加热更为敏感。作为对水力矾土水泥粘结的选择方案,近年来部分地实现使用可水合化的过渡矾土。这种粘结剂消除了氧化钙的不利影响。另一组粘结剂包括化学-无机物质。这种结合在塑性材料以及捣固料、浇注料和喷补料中使用。对于100-1000°C的使用范围经常使用基于碱金属-硅酸盐溶液的水玻璃, 以及对于直至1600°c的更高温度范围使用磷酸盐化合物,常用磷酸铝。化学结合的特征在于非常好的粘合效果和不存在强度最小值。但在这里所使用的粘结剂体系的化学机理也导致对极限应用温度不希望的不利影响。此外,在这些化学结合体系中不能消除与处于周围环境的材料通过例如磷酸盐蒸发产生的相互影响。硫化物黑液、甲基纤维素、藻酸盐、硅酸乙酯、四乙氧基硅烷以及其他大分子物质形式的耐火材料的有机结合在许多情况下也提供可接受的强度值。但在这些体系中,许多情况下也不排除由于引入的化合物而产生不希望的反应而使应用情况受到限制。在这里所引入的化合物部分地限制了应用可能性或限制了可能的粘结剂量。在许多情况下,例如在硫化物黑液和纤维素的情况下,有机结合涉及临时粘结剂,因为这种粘结剂在加热时自一定的温度范围起几乎无残留地燃尽并因此其粘结剂作用仅暂时产生效果。但在某些情况下,例如硅酸乙酯的情况下,一部分粘结剂体系可以保留,在所提及的实例中二氧化硅可以保留,并因此还具有粘结作用。在未成型的产品的情况下,特别是在水力结合材料中,干燥以及加热是问题频繁的方法步骤,因为必须从相对致密的组织中去除相对高的残湿。这视形成整体的砌衬或所制造的部件大小而定导致非常长的干燥时间并暗含干裂的风险并因此衬壁或预制件提前损坏。在整体产品第一次加热时,此外需要注意的是,这些产品通常具有300-900°C范围的强度最小值。该最小值处于水合相的脱水与形成材料的陶瓷结合之间的温度范围内。在此, 粘结剂相的脱水引起结合强度的损失。由于烧结过程自约1000°C起,因此在陶瓷结合开始形成的情况下,强度才开始上升。未成型耐火材料的加工或成型和热处理大多在使用地或使用温度下进行。通常直接在供货状态下或在添加必要的液体量后进行加工。这些材料通过拨、捣打或喷补等利用振动、无振动的浇注(自流性材料)装填。材料的结合和硬化大多无加热地进行。在用耐火材料砌衬后产生内衬,其与砌砖相比具有整体的,也就是无接缝的外观。成型耐火材料的制造以这种方式进行,即将原材料填充到例如用于制造耐火管或砖的成型用形成物内、将其脱模并在约200-700°C数天的干燥过程中除水。该过程非常漫长,原因是要求大量的水具有足够的流动能力,这进而导致相应长的干燥过程。但如果加热过程加速,则导致成品内的干裂和剥落。由EP 0 577 733B1已知由氧化镁、氧化钙、氧化铝、氧化铝硅酸盐、氧化镁_、氧化铝尖晶石和它们的混合物制造的耐火材料,作为硬化剂含有5-10重量%的特殊液态甲阶酚醛树脂酯可硬化的树脂和酯。但在这些材料中,在制造期间由于高粘度而出现不勻性。 此外,视应用而定,材料内保留很高的残余碳。这种残余碳(正如也在含石墨的混合物中那样)在耐火材料的使用期间会从材料中烧出,从而导致耐火产品更高的孔隙度。然后在与例如铁水的接触下,铁水会进入孔内,最终导致降低耐火产品的使用寿命。此外,烧尽的碳被铁水吸收,导致所要制造的钢,特别是不锈钢质量下降。此外由EP 0 530 943B1已知一种用于制造耐火材料的方法,其中含有烧硬或死烧氧化镁的材料的情况下,硬化的减缓通过使用至少3重量%可硬化的酚醛树脂和提供含有天冬氨酸根阴离子、氟化物阴离子、双氟化物阴离子、苹果酸根阴离子、酒石酸根阴离子、 柠檬酸根阴离子、磷酸根阴离子的化合物以及特殊的四烷氧基硅烷而实现。但结果表明,所列出的组成导致制造期间出现高粘度。这种高粘度在加工技术上不利,因为成型用周围环境没有完全填满。JP 07330451-A,JP 05070246-A 和 JP 2008-0249 中也提到了耐火材料,其含有矿物成分、作为粘结剂的合成树脂和其他有机添加物。由此使特性受到各种不同的影响。
本发明现在的目的在于,提供陶瓷产品,其可以至少在腐蚀和冲蚀方面消除现有技术中已知的缺点。该目的根据本发明由此得以实现,即陶瓷产品由天然和/或合成的无机-非金属原材料、至少一种粘结剂和任选地其他添加物的混合物制造,其中该混合物含有a)至少10重量% (基于混合物的所有固体)的氧化成分,b)0. 05-2. 7重量% (基于混合物的所有固体)的在混合物中起流体化作用的至少一种有机类粘结剂,以及c) 3-10重量% (基于混合物的所有固体)的含水分散介质,以及该陶瓷产品在其于高于600°C的温度下使用后具有(基于陶瓷产品的总重量)少于0. 1重量%的碳。令人意外地同样表明,在制造根据本发明的陶瓷产品时,所述混合物具有加工技术上有利的低粘度,从而可以消除其提供带来附加成本并还会对其他特性产生影响的附加流体化试剂。混合物的低粘度促使由于其良好的可流动性而良好填充成型周围环境并因此产生高品质的陶瓷产品。此外,制造陶瓷产品制造期间需要更少用量的水,由此缩短干燥时间并避免陶瓷产品内或上面的干裂以及剥落。此外,含有少于0. 1重量% (基于陶瓷产品总重量),优选0%的碳的根据本发明的陶瓷产品,与传统耐火材料(通常包括耐火混凝土)相比的特征在于,根据本发明的陶瓷产品在干燥以后至少具有更高的冷弯强度和密度,以及燃烧(Ausbrermen)以后更低的孔隙度。此外,根据本发明的陶瓷产品可以利用传统的制造工艺制造,从而为此无需额外的耗费。例如制成部件的脱模或整体砌衬的脱壳可以同时进行。随后的干燥步骤很少出现问题, 因为根据本发明不形成在特殊温度范围内可能导致水分解增多的水合相。作为干燥辅助手段,正如在采用水力结合的传统材料中那样,可以添加纤维(例如天然纤维、合成纤维),用于形成排出物理结合水的通道。此外为使干燥、加热以及使用期间组织强化,可以添加金属和/或非金属的纤维。此外,根据本发明的混合物由于其碳含量非常低(或优选无碳),现在不再对钢质量产生影响。作为天然和/或合成无机-非金属原材料优选使用A1203、MgO、SiO2, CaO、ZrO2, Cr2O3>CeO2,Y2O3^TiO2和/或例如还有MgAl2O4、尖晶石、镁橄榄石、铁矾土、红柱石、白云石和 /或耐火粘土作为含有氧化成分原材料。此外,作为天然和/或合成无机-非金属原材料也可以使用非氧化成分,如优选BN、SiC、Si3N4, B4C或还有TiN和/或TiC。但也可以考虑现有技术中已知的天然和/或合成无机-非金属原材料。根据本发明,陶瓷产品含有至少10 重量% (基于混合物中所有固体的重量)的氧化成分(如上所述)。如果使用少于10重量%的氧化成分,那么在该材料中表现出固体颗粒和分散介质的局部离析。优选的是,制造陶瓷产品使用至少10重量%的氧化成分,因为高于10重量%不再出现耐火颗粒的离析和沉积倾向。特别优选的是,氧化成分与非氧化成分的比例为80 20-50 50,这特别是在可加工性以及高温特性例如抗蠕变性方面带来优点。视所需的加工方法而定,由上述的原材料构成的混合料,例如借助振动、无振动的浇注(自流动材料)而压实,通过拨、捣打或喷补调节到一定的颗粒带。颗粒带的调节在借助常用的理论例如按照Andreassen颗粒堆积理论的分布情况下进行。在这种情况下,将材料关于理想分布利用对不同类型的加工工艺有利的粒度系数进行优化。粒度系数描述了在对数图中颗粒总体分布的上升梯度。因此通常自流动的材料(无需外力作用而压实)设计为具有0. 25到0. 30之间的对这些材料有利的粒度系数。对于振动材料,通常采用粒度系数高于自流动的材料的值,处于0. 30-0. 35范围。这些材料在细颗粒、中颗粒和粗颗粒的范围内由相应的耐火氧化物、耐火氧化物的天然或合成原材料和/或所提及材料的混合物组成。所述粒度范围包括纳米范围的颗粒直至15mm粒径的粗颗粒范围的颗粒。最终可以说, 可以代替直至目前的所有现有技术中所使用的耐火氧化材料或含有氧化物作为主成分的材料。有机类粘结剂优选合成制备的粘结剂如酚醛树脂、环氧树脂、呋喃树脂、氨基树脂、醇酸树脂、间苯二酚树脂,和/或酚醛清漆、可熔可溶酚醛树脂和/或环氧树脂的水性分散体、丙烯酸酯分散体和/或聚氨酯分散体和/或由天然原材料制备的粘结剂如糖、葡萄糖、多糖、单宁和/或木质素。天然原材料由于其再生性而具有优点。酚醛树脂、呋喃树脂、 环氧树脂以及氨基树脂在室温下是可硬化的,这在这种应用中具有很大优点。因此可以取消附加的硬化剂。使用分散体方面的优点是,这种分散体是贫单体、低粘度和水性的。特别优选使用水性的酚醛树脂,因为这种酚醛树脂在添加硬化剂时在室温下是可硬化的,硬化时间易于改变和一般不含有机溶剂。为制造根据本发明的陶瓷产品,添加0.05-2. 7重量% (基于混合物所有固体的重量)浓度的有机类粘结剂。如果添加少于0.05重量%,那么强度和流动性方面没有足够的效果。在浓度高于2. 7重量%的情况下,令人意外地发现,粘结剂对混合物的流体化作用减弱,混合物甚至不可再流动。特别优选的是,添加浓度为0. 5-2. 0重量%的有机类粘结剂。 这样流体化作用最大和燃烧后的孔隙度最低。作为其他成分,用于制造根据本发明的陶瓷产品的混合物包含浓度为3-10重量% (基于混合物所有固体的重量)的水性分散介质(最简单的情况下是水)。含水的分散介质粘度降低,从而在该范围内保证混合物的最佳加工。此外有利的是,混合物作为其他添加物含有硬化剂。这种硬化剂以0. 1-0. 6重量% (基于混合物所有固体的重量)的优选浓度添加,因为特别是在该范围内硬化速度以及产生的强度符合必要性。可以使用现有技术中已知的所有适用于相应树脂的硬化剂。特别优选的是,硬化剂选自酯(低分子内酯,例如丁内酯、己内酯、丙内酯、戊内酯、碳酸丙烯酯、碳酸乙烯酯等)、酸(例如P-苯酚磺酸)或胺(例如聚胺(脂族、脂环族或芳族)、聚酰胺、曼尼西碱、聚氨基咪唑啉、聚醚胺)的范围,但硬化剂可以根据树脂的特定用途确定。特别是在酯方面,硬化时间可以精确地与加工过程相配合。但总体上也可以取消使用硬化剂,其中,这样硬化在温度作用下进行。与此相关的优点还是,可以取消某种成分,这样既可以降低成本,对混合物的其他特性又没有影响。可考虑,但不必要的是例如有助于混合物的流体化和/或粘结功能的其他有机和 /或无机添加剂,从而省去提供以及与此相关的成本。由于组分的数量少,还避免对混合物或陶瓷产品的特性产生可能的不希望的影响。根据本发明的陶瓷产品在其于高于600°C的温度下使用后具有少于0. 1重量% (基于陶瓷产品的总重量)的碳,其中,特别优选的是,根据本发明的陶瓷产品可以证实不含碳。混合物单个成分的选取以及使用参数因此根据本发明这样选择,使硬透的产品内含有少于0. 1重量%的碳。根据本发明的陶瓷产品可以按照包括以下步骤的方法制造a)制备均勻的混合物,b)混合物成型和在15°C以上干燥和/或硬化,以及c)任选地脱模并在50°C以上的温度进一步干燥和/或硬化。为制造成型以及未成型的产品,将具有相应颗粒结构的陶瓷材料在例如Eirich 公司的混合器内与相应量的粘结剂均勻混合。在制造未成型的材料时,将混合物然后包装并运输到使用地。在现场将正确量的硬化剂和水混入混合器并将可浇注的材料然后输送例如泵送到所要砌衬的设备。在制造成型产品时,原材料和粘结剂的混合物在混合器内直接与可能的相应量的硬化剂和水直接混合。混合物在模内这种程度地干燥或硬化,直至其达到脱模的足够强度。然后要么直接使用成型体,要么对其进行其他的退火过程,该过程可以在120-180°C下进行数小时的时间。根据本发明的陶瓷产品例如可以在冶金工业的设备内使用。现借助实施例对本发明进行详细说明。表1中所列举的组成可以用于成型耐火材料(例如吹洗锥)和/或未成型耐火产品(例如钢水运输罐内衬)。在这种情况下,是含有根据本发明的混合物的两种混料(混料2和3),一种基于水合矾土(Almatis公司的Alphabond 300)的传统体系(混料1)和一种对照混料4。所有四种混料均以由氧化铝(Almatis公司的板状粘土 T60/T64)以及由富氧化铝的镁-铝酸盐-尖晶石(Almatis公司的AR78)构成的确定混合物为基础。表1示出四个实例的组成。混料的区别在于,传统混料(混料1)除了所添加的粘结剂Alphabond 300 (水合矾土)外,还含有添加剂ADWl和ADSl (分散矾土)。与此相反,从另外两种混料 (混料2和混料幻可以看出,在这里没有添加Alphabond 300以及添加剂ADW和ADS。混料2和混料3分别含有2%和根据本发明混合物的有机类粘结剂。表1 混料 1-权利要求
1.陶瓷产品,由天然和/或合成的无机-非金属原材料、至少一种粘结剂和任选地其他添加物的混合物制造,其中该混合物含有a)至少10重量%(基于混合物的所有固体)的氧化成分,b)0.05-2. 7重量% (基于混合物的所有固体)的在混合物中起流体化作用的至少一种有机类粘结剂,以及c)3-10重量% (基于混合物的所有固体)的含水分散介质,以及该陶瓷产品在其于高于600°C的温度下使用后具有少于0. 1重量% (基于陶瓷产品的总重量)的碳。
2.根据权利要求1所述的陶瓷产品,其特征在于,氧化成分与非氧化成分的比例为 80 20 至 50 50。
3.根据前述权利要求至少之一所述的陶瓷产品,其特征在于,氧化成分选自A1203、 MgO、MgAl2O4, CaO, ZrO2, Cr2O3> CeO2, Y2O3和/或TW2和/或含有这些成分的天然和/或合成原材料。
4.根据前述权利要求至少之一所述的陶瓷产品,其特征在于,非氧化成分选自SiC、 Si3N4、BN 和 / 或 B4C。
5.根据前述权利要求至少之一所述的陶瓷产品,其特征在于,有机类粘结剂选自合成粘结剂如酚醛树脂、环氧树脂、呋喃树脂、氨基树脂、醇酸树脂、间苯二酚树脂,和/或酚醛清漆、可熔可溶酚醛树脂和/或环氧树脂的水性分散体、丙烯酸酯分散体和/或聚氨酯分散体,和/或选自天然粘结剂如糖、葡萄糖、多糖、木质素和/或单宁。
6.根据权利要求5所述的陶瓷产品,其特征在于,所述有机类粘结剂是水性的酚醛树脂。
7.根据前述权利要求至少之一所述的陶瓷产品,其特征在于,所述混合物含有硬化剂作为其他添加物。
8.根据权利要求7所述的陶瓷产品,其特征在于,所述硬化剂选自酯、酸和/或胺。
9.根据前述权利要求至少之一所述的陶瓷产品,其特征在于,所述产品是耐火成型体。
10.根据前述权利要求至少之一所述的陶瓷产品,其特征在于,所述产品的成型在使用期间进行。
11.根据前述权利要求至少之一所述的陶瓷产品在冶金工业的设备中的用途。
12.用于制造根据权利要求9或10所述陶瓷产品的方法,包括以下步骤a)制备均勻的混合物,b)混合物成型并在15°C以上干燥和/或硬化,以及c)任选地脱模并在50°C以上进一步干燥和/或硬化。
全文摘要
本发明涉及一种陶瓷产品,其由天然和/或合成的无机-非金属原材料、至少一种粘结剂和任选地其他添加物的混合物制造。为提供可以至少在腐蚀和冲蚀方面消除现有技术中已知缺点的陶瓷产品,提出该陶瓷产品由如下混合物制造,该混合物含有a)至少10重量%(基于混合物所有固体的重量)的氧化成分,b)0.05-2.7重量%(基于混合物的所有固体)的在混合物中起流体化作用的至少一种有机类粘结剂,以及c)3-10重量%(基于混合物所有固体的重量)含水的分散介质,以及该陶瓷产品在其于高于600℃的温度下使用后具有(基于陶瓷产品的总重量)少于0.1重量%的碳。
文档编号C04B35/443GK102333740SQ201080008699
公开日2012年1月25日 申请日期2010年2月8日 优先权日2009年2月20日
发明者C·阿尼兹利斯, J·苏伦, P·斯特拉克, S·杜德克兹戈 申请人:迈图特种化工有限公司