包含莫来石或莫来石多形体的容器元件及其组件以及其制造和使用方法
【专利摘要】本发明公开了一种用于压力容器组件的容器元件,该容器元件包括莫来石或莫来石多形体。
【专利说明】包含莫来石或莫来石多形体的容器元件及其组件以及其制造和使用方法
【技术领域】
[0001]本发明涉及用于压力容器组件的容器元件,特别但不排除地涉及超高压条件下容纳物质的容器元件,包含该容器元件的压力容器组件,及其制造和使用方法。
【背景技术】
[0002]美国专利号6, 338,754公开了一种由滑石粉和石榴石粉的组合物制造的合成垫圈材料。
[0003]美国专利号5,858,525公开的合成垫片材料包括大量粘土矿物粉末和少量至少一种硬质材料粉末。粘土矿物粉末润滑性良好,可在高压压力机内流动,硬质材料粉末硬度较粘土矿物粉末大,可延缓粘土矿物流速,并在高压压力机中的压制过程中形成垫片密封。
[0004]一种名为叶腊石的开采的矿物质包括铝硅酸盐氢氧化物(Al2Si4Oltl(OH)),目前用于制作耐受超高压高温的密封容器。然而,合适的矿产资源有限,且叶腊石在超高压和/或高温下会发生相变。
[0005]因此,需要容器元件及容器组件(特别但不排除地用于在超高压下容纳物质),该容器元件及容器组件包括在高压下以及在高压高温条件下相变相对小的材料。
【发明内容】
[0006]从第一方面来看,本发明提供了一种包括莫来石和/或莫来石多形体的用于压力容器组件的容器元件。这种压力容器组件用于高压贮存固体或液体物质。
[0007]本发明设想了不同的组合和排列,以下列举的例子是非限制性的且非穷举的。
[0008]容器元件可以包含重量比最少约10%的莫来石。容器元件可以包括重量比最多约90%或最多约60%的莫来石。
[0009]容器元件可以包含滑石、和/或高岭石、和/或蓝晶石、和/或高岭石或蓝晶石多形体和粘结材料。容器元件可以包含重量比至少约5%或至少约10%的硅胶或玻璃相。容器元件可以包含重量比最多约15%或10%的二氧化硅、硅酸盐化合物或其他玻璃相,或者也可以基本上不含硅酸盐化合物。
[0010]容器元件可以包含包括重量比最少约20%的滑石、至少约%10的莫来石和/或至少约5%的蓝晶石的复合材料。
[0011]容器元件可基本上不含碳酸镁或碳酸镁的前体材料。
[0012]压力容器组件可以适用于在环境温度或高温时在超高压条件下容纳固体或液体物质。根据本发明,容器元件将先于超高压应用之前。
[0013]容器元件可以包括压力容器器皿(压力容器组件的一些示例布置可包括多个压力容器器皿),和/或容器元件可包括压力密封元件。容器元件可包括(或是)密封元件(或垫片)、绝热元件和/或电绝缘元件。
[0014]容器元件可用于产生超高压或在超高压容纳物质的容器组件。容器组件可用于在至少约IGPaj^ 5GPa、约7GPa、约8Gpa或约IOGPa压力下容纳物质。容器组件可在压力最低为约lGPa、温度最低为约1000或最低约2000°C下容纳物质。容器组件可以包括(或是)用于容纳超硬材料的合成或烧结反应的、并配置为用于超高压炉的器皿。示例容器元件可以适于与用于在超高压条件下容纳液体或固体物质的带式、立方体式、四面体式、沃克式(Walker type)或其它形式的超高压设备一起使用。
[0015]容器元件含有具有第一内摩擦的第一硬质材料晶粒和具有第二内摩擦的第二硬质材料晶粒。第二硬质材料可以与第一硬质材料不同相。第二材料可促进容器元件的可塑性、操作性和/或可加工性。第二材料还可促进在超高压和/或最低约900°C的高温时的塑性、流动性和/或压力传递。容器元件可以包含包括氧化镁、氧化铝和硅酸盐化合物的堇青石。第一材料包括莫来石。
[0016]从第二方面来看,本发明提供了一种在超高压条件下容纳固体或液体物质的容器组件(组装或未组装),其包括根据本发明的容器元件。容器组件可为带式超高压压力机、立方体式超高压压力机、四面体式超高压压力机、沃克式(Walker type)压力机系统或其他类型的超高压压力机系统。
[0017]容器组件可以包括垫片。容器组件可以包括用于容纳超硬材料合成或烧结反应坯块的器皿。容器组件可包括包含腔室的压力设备,该腔室用于容纳包含根据本发明容器元件的密封舱。
[0018]从第三方面来看,本发明提供了一种让物体耐受超高压高温的方法,该方法包括将物体组装到构造成用于容纳物体并插入超高压炉设备的腔室内的密封舱,其中密封舱包括根据本发明的容器元件。
[0019]从第四方面来看,本发明提供了一种制造根据本发明的容器元件的方法。该方法包括混合莫来石晶粒和至少一种第二材料以形成粒状混合物,以及压制颗粒混合物从而提供坯体。该方法可以包括处理坯体,如诱导第二材料内的相变,或者坯体除湿。该方法还可以包括坯体的热处理。在一示例中,第二材料可作为粘合剂材料用于粘合莫来石晶粒。第二材料可为滑石,该方法可包括通过坯体热处理诱导滑石内发生相变。
【专利附图】
【附图说明】
[0020]下面将参照附图描述非限制性的示例,在附图中:
[0021]图1为用于在反应体积内产生超高压和高温来合成金刚石和立方氮化硼的带式组件的部分的示意性示例的横截面视图。
[0022]图2为用于在反应体积内产生超高压和高温来合成金刚石和立方氮化硼的立方体式设备的垫片的示意性示例的透视图。
【具体实施方式】
[0023]莫来石又称白陶石,是一种稀有的硅酸盐矿物,可以有两个化学计量形式:3Al203 (2Si02)、2Α1203.SiO2,呈小板状和针状。
[0024]高岭石(Al2Si2O5(OH)4)是一种见于含高岭土的岩层中的矿物。
[0025]蓝晶石属于硅铝酸盐类矿物,该类矿物还包含多晶红柱石和多晶硅线石。蓝晶石表现出极其显著的各向异性,其硬度取决于其结晶方向。在蓝晶石中,该各向异性是一大识别特征。蓝晶石在摄氏1100度以上的高温下煅烧后分解为莫来石和石英玻璃,其转变反应式为:3 (Al2O3.SiO2) — 3A1203.2Si02+Si02。该转变产生不同程度的体积膨胀。
[0026]滑石、莫来石、高岭石和蓝晶石均为天然矿物,也可由其它天然矿物衍生而成,因此它们很可能含有一定比例的杂质和其它矿石成分。本发明不限于这些材料的特定来源,因此一个或多个这类矿物的质量规格应被视为材料本身和与其共生的杂质和共存的物质。本发明设想了合成滑石、莫来石、高岭石和/或蓝晶石。
[0027]已经发现莫来石(至少是化学计量式为3Al203 (2Si02)的莫来石)适合于用作超高压超高温下使用的压力容器组件的部件的材料。
[0028]如图1所示,使用带式超高压高温压力机,当反应坯块16在一对相对的砧座12之间被压缩,同时通过圆周容纳模具14径向支持时,垫片10和/或管18形式的示例容器元件用于容纳反应坯块16。某些示例中,反应坯块16可以包括当经受最低约5.5Gpa的压力和最低约1250°C的温度时适合将碳源转变成金刚石的材料。某些示例中,反应坯块16可以包含预烧结坯块,该预烧结坯块包括超硬材料晶粒(如金刚石或立方氮化硼)和适于促进超硬晶粒的粘合、烧结和/或共生进而产生PCD或PCBN材料的材料。反应坯块16放置在包含管18的密封舱内。反应坯块16可以包括例如铁、钴和/或镍等,其是催化剂和/或粘合剂材料(或者用于催化剂或粘合剂材料的前驱体材料)的示例的用于促进金刚石合成或烧结的金属,或者包括用于促进cBN合成或烧结的包含锂、铝和/或钛(或者任何这些元素形式)的化合物。催化剂材料可在超高压高温下熔融。一些示例布置中,在耐受高压前(如超高压处理组装准备前),管18和/或垫片10可含莫来石、高岭石(Kaonite)和/或高岭石(kaolinite)。一些示例布置中,管18和/或垫片10可含叶蜡石和/或滑石。一些示例布置中,密封舱可以包含除管18以外的容器元件,其它容器元件可以包括经受超高压前的莫来石、高岭石(kaonite)和/或高岭石(kaolinite)。
[0029]反方向驱动砧座12从而挤压反应坯块16可以产生压力,通过使电流经过砧座12、反应坯块16和/或设置在密 封舱内的加热元件(未示出)会导致温度升高。当压力和温度从环境水平增加经过一段时间到超高压高温,然后当反应体积冷却时,垫片10可容纳反应体积的反应物。垫片10纵向和横向上的动态加载在整个周期中变化极大。
[0030]图2显不了在插入到塾片10的空腔20内的反应体积(未显不)中生成超闻压和闻温的立方体式设备(未显示)的示例垫片10。垫片10外部呈立方体形,在使用中可封装反应体积。
[0031]超高压压力机的密封舱可包括多个协作配置的容器元件,在压力以及在高温情况下共同容纳物体或流质。比如,超高压时,用于生长或烧结金钢石或cBN晶体的反应坯块在其中的催化剂的熔点以下呈固态,熔点以上呈液态,包括容器元件的密封舱需要容纳两种状态的反应坯块。一些示例中,应根据不同的容器元件(如垫片和/或管)来选择材料,以使材料在高温高压下发生尽可能小的相变,并且维持其在这些条件时的主要热机械性能。
[0032]一些示例布置中,超高压炉和适合的密封舱可被配置用于在由密封舱容纳的物质中产生最少约8GPa或最少约IOGpa的压力。该物质可呈固态、液态,或在密封舱内两种状态兼而有之。物质温度可为环境温度或提高例如至少约1000°C或至少约2000°C。这样的设置会从包括至少一个根据本发明的容器元件受益,并且这样的设置可以包括根据本发明的容器器皿和/或垫片。本发明不受限于某一特定理论,这或许是减少了容器元件材料组成的相变的结果,尤其是减少了莫来石的相变。这种相变可能是内切体积或外切体积,相变也会影响内含物质中所产生的压力。 [0033]容器元件的例子包括滑石、蓝晶石和莫来石的混合物。蓝晶石和莫来石是硬质材料,具有较大的内摩擦且对高温高压条件的反应不同。容器元件可包含粘合剂材料。容器元件的示例可包括不同分量和比例的莫来石和蓝晶石,其会产生不同的属性。容器元件的属性可通过改变滑石、蓝晶石和莫来石的比例来确定。此外,可改变莫来石和蓝晶石粉末的粒度分布从而改变容器元件的属性。
[0034]在一些示例中,含莫来石材料的塑性可由在材料中添加高岭石来增加。莫来石与化学脱水的高岭石(又称为偏高岭土)发生反应形成蓝晶石。该反应会导致1.85%的摩尔体积降低,但变化相对较小,很难导致压力大幅下降。
[0035]示例容器元件可包含不同量和比例的莫来石和高岭石混合物,不同的搭配也让混合物具有不同的属性。此外,改变莫来石和高岭石粉末的粒度分布会改变容器元件的属性。
[0036]也可以改变制造根据本发明的容器元件方法的方面,例如容器元件材料被固化和煅烧的温度以及粘合剂含量,从而引起其电、热和机械属性的改变,进一步改变容器元件对高温高压的反应。
[0037]制造超硬材料的密封舱或容器组件可以包括各种成分,其可以用于压力容器、电绝缘或导电性、热容器或导热性等。
[0038]超高压高温下用于容纳物质的密封舱或容器组件包含至少一个根据本发明的容器元件和至少一个包括下述材料的其它容器元件:诸如氯化钠(NaCl)、氧化镁(MgO)、钾盐、叶蜡石、氟化石(CaF2)、氧化铝(Al2O3)、氧化锆(ZrO2)、氧化铬(Cr2O3)和/或滑石。这种密封舱被构造成用于容纳生长或烧结cBN或金刚石晶粒的反应坯块,从而制造包括PCBN或PCD材料的物体。反应坯块可包括溶剂和/或催化剂材料,例如钴、铁、镍、锰,以促进金刚石晶体的生长或内生长,反应坯块可包括含锂化合物以促进cBN晶体的生长,或包括含钛化合物,如碳化钛或者碳氮化钛,或包括含铝化合物或铝元素,用于烧结cBN晶粒从而制造 PCBN。
[0039]带状超高压设备的密封舱可包括用于插入可包括硬质合金材料的模具中并容纳通常为圆柱形的反应坯块的管。在这种设备中,通过将一对反向运动的砧座撞击密封舱的相对端部可以在反应坯块内产生压力。
[0040]立方型超高压压机的密封舱可包括用于插入由立方体压力设备限定的腔室内的通常为立方体的结构。该设备可包括6个液压盒,每个液压盒包括碳化物砧座,该砧座用于从6侧撞击密封舱。
[0041]同样,本发明也设想了其它超高压系统和相应的密封舱配置,包括具有四个液压盒和相应砧座的四面体系统。
[0042]下面将更详细地描述非限制性的示例容器元件。
[0043]示例 I
[0044]带状超高压炉容器的密封舱的气缸可通过在搅拌机内混合滑石粉、莫来石粉和作为粘合剂的溶解在水中的硅酸钠制成。混合物可包括重量百分比为75%的滑石、15%的莫来石和10%的硅酸钠溶液,后者的固体含量为重量比约45%。
[0045]当得到均匀的颗粒混合物后,将混合物包装成带有中心杆的可变形的圆筒形模具,且以150MPa的等压(isopress)压实。粗制压实的管在800°C高温下烧制六小时后冷却并加工到最终尺寸。[0046]由此生产的高密度、高强度圆柱体可在单轴超高压力产生设备中用作外绝缘和压力传递介质,该单轴超高压力产生设备用于在5.7GPa、1300°C下生产合成金刚石。
[0047]示例2
[0048]带状超高压炉的密封舱的气缸可通过在搅拌机内混合滑石粉、蓝晶石粉和作为粘合剂的溶解在水中的硅酸钠制成。混合物可包括重量百分比为70%的滑石、20%蓝晶石和10%的硅酸钠溶液,后者的固体含量重量百分比约为45%。
[0049]得到均匀的颗粒混合物后,将混合物包装成一带有中心杆的可变形的圆筒形模具,且以ISOMPa的等压压实。粗糙压实管在800°C高温下烧制六小时后冷却并加工到最终尺寸。
[0050]由此生产的高密度、高强度圆柱体可在单轴超高压力产生设备中用作内绝缘和压力传递介质,该单轴超高压力产生设备可用于在5.7GPa、1300°C下生产合成金刚石。
[0051]示例3
[0052]立方体状超高压压力机的密封舱的立方形元件可通过在搅拌机内混合滑石粉、蓝晶石粉,莫来石粉和作为粘合剂的溶解在水中的硅酸钠制成。混合物可包括重量百分比为65 %的滑石、7 %的蓝晶石、18 %的莫来石和10 %的硅酸钠溶液,后者的固体含量重量百分比约为45%。
[0053]当得到均匀的混合物后,将混合物包装成一带有中心杆的可变形的立方形模具,且以ISOMPa的等压压实。带有圆柱形孔的粗制压实的立方体在200°C下固化六小时后冷却并加工到最终尺寸和形状。
[0054]由此生产的高密度立方体可在立方体超高压力产生压力机系统中用作组合的绝缘、压力传递和垫圈介质,该超高压力产生压力机系统可用于在5.7GPa、1300°C下生产合成金刚石。滑石、蓝晶石、莫来石和粘合剂混合物的性能例如能够产生高强度、热绝缘、电绝缘和流动特性,以在这些状态下成功地操作。
[0055]示例 4
[0056]立方体状超高压压力机的密封舱的立方形元件可通过在搅拌机内混合莫来石粉、高岭石粉和作为粘合剂的溶解在水中的硅酸钠制成。混合物可包括重量百分比为50%高岭石、40%的莫来石和10%的硅酸钠溶液,后者的固体含量重量百分比约为45%。
[0057]当得到均匀的混合物后,将混合物包装成一带有中心杆的可变形立方形模具,以ISOMPa的等压压实。带有圆柱形孔的粗制的压实立方体在200°C下固化六小时后冷却并加工到最终尺寸和形状。
[0058]由此生产的高密度立方体可在立方体超高压力产生压力机系统中用作组合的绝缘、压力传递和垫圈介质,该超高压力产生压力机系统可用于在5.7GPa、1300°C下生产合成金刚石。
[0059]以下将简要解释本文所用的某些术语。
[0060]硬质材料的硬度至少为二氧化硅的硬度
[0061]超硬质材料的硬度至少为立方氮化硼(cBN)的硬度,包括天然或合成金刚石晶体、多晶立方氮化硼(PCBN)材料或多晶金刚石(P⑶)材料。[0062]超高压、高温(HPHT)压力机也可指超1?压炉,能耐受超高压、高温。在本文中,超高压至少为lGPa。
【权利要求】
1.一种用于压力容器组件的容器元件,包括莫来石和莫来石多形体。
2.如权利要求1所述的容器元件,包含高岭石。
3.如权利要求1或2所述的容器元件,包含蓝晶石。
4.如前述权利要求中任一项所述的容器元件,包含滑石。
5.如前述权利要求中任一项所述的容器元件,包含粘合剂材料。
6.如前述权利要求中任一项所述的容器元件,包含重量比至少5%的二氧化硅或其它玻璃相。
7.如前述权利要求中任一项所述的容器元件,包含重量比至少10%的莫来石。
8.如前述权利要求中任一项所述的容器元件,包含重量比至少20%的滑石。
9.如前述权利要求中任一项所述的容器元件,包含重量比至少5%的蓝晶石。
10.如前述权利要求中任一项所述的容器元件,包含压力密封元件。
11.如前述权利要求中任一项所述的容器元件,包含压力容器器皿。
12.如前述权利要求中任一项所述的容器元件,包括用于容纳合成或烧结超硬材料的反应坯块并配置成在超高压炉内使用的器皿。
13.如前述权利要求中任一项 所述的容器元件,用于在至少IGPa压力下容纳物质的组件。
14.如前述权利要求中任一项所述的容器元件,用于在至少IGPa压力和至少1,000°C温度下容纳物质的组件。
15.如前述权利要求中任一项所述的容器元件,包括第一硬质材料的晶粒和第二硬质材料的晶粒,其中第一硬质材料晶粒具有第一内摩擦,并且第二硬质材料晶粒具有第二内摩擦。
16.如权利要求15所述的容器元件,其中,第二硬质材料与第一硬质材料不同相。
17.一种用于在超高压容纳物质的容器组件,包括如前述权利要求中任一项所述的容器元件。
18.如权利要求17所述的容器组件,用于带式超高压压力机。
19.如权利要求17所述的容器组件,用于立方体式超高压压力机。
20.如权利要求17所述的容器组件,用于四面体式超高压压力机。
21.如权利要求17-20中任一项所述的容器组件,包括垫片。
22.如权利要求17-21中任一项所述的容器组件,包括用于容纳超硬材料合成或烧结的反应坯块的器皿。
23.如权利要求17-22中任一项所述的容器组件,包括产生超高压的压力设备,该压力设备包括用于容纳密封舱的腔室,该密封舱包括如权利要求1-16中任一项所述的容器元件。
24.一种使物体耐受超高压高温的方法,所述方法包括:将物体组装到密封舱,该密封舱构造成用于容纳该物体并插入超高压炉的腔室内,其中,所述器皿包括如权利要求1-16中任一项所述的容器元件。
25.一种制造如权利要求1至16中任一项所述的容器元件的方法,所述方法包括:将莫来石晶粒与至少第二材料组合,形成颗粒混合物,并压实颗粒混合物从而制作成坯体。
26.如权利要求25所述的方法,包括热处理坯体从而诱导所述第二材料相变或为坯体除湿。
27.如权利要求25或26所述的方法,其中,所述第二材料为滑石,该方法还包括热处理坯体以诱导滑石相变。`
【文档编号】C04B33/20GK103547546SQ201280024704
【公开日】2014年1月29日 申请日期:2012年4月5日 优先权日:2011年4月8日
【发明者】马克·格雷戈里·芒迪, 查尔斯·斯蒂芬·蒙托斯 申请人:第六元素有限公司, 第六元素研磨剂股份有限公司