介电陶瓷组合物的制作方法

文档序号:1828070阅读:158来源:国知局
专利名称:介电陶瓷组合物的制作方法
技术领域
本发明涉及一种高介电陶瓷组合物,特别是涉及一种叠层的陶瓷电容,其已广泛地用于电子电路中,例如用在通信装置、电子计算机、电视机之类的电子装置中。由于这样一种叠层的陶瓷电容器特别是小尺寸的已表明具有大的容量和良好的温度特性。
为了得到一种小尺寸和大容量的叠层陶瓷电容器已知一些包含具有高介电常数的陶瓷组合物和具有小的温度相关电容(TCC)的陶瓷组合物,其包含作为主要成分的BaTiO3以及添加到其中的铋化合物例如Bi2O3-TiO2、Bi2O3-SnO2、Bi2O3-ZrO2等。还已知这样一些组分,其主要包含BaTiO3,一些铋化合物、MgO和SiO2等作为添加剂添加到其中。
然而,这种常规陶瓷组合物介电常数低,通常数值为1000到2000。当介电常数在正常的温度下提高时,温度相关电容(TCC)变大,介电损耗也变大,用于防止作为温度函数的电容(TCC)的变化而添加的铋化合物由于在烧结时Bi2O3的蒸发引起组合物中的不均匀,使得陶瓷组合物的电特性波动。此外,存在某种不适之处,即Bi2O3和用作形成叠层陶瓷电容时的内电极的Pd或者Pd-Ag彼此反应。在原理上,由于Pt不与Bi2O3相反应,将Pt用作内电极的材料可能是有所帮助的。然而,Pt是极昂贵的。
另一方面,序号为57-92575的日本公开的专利申请公开了一种具有高介电常数的陶瓷组合物,其主要包含BaTiO3、Nd2O3、Nb2O5、SiO2、MnO2以及Co的氧化物作为添加剂添加到其中,而没有使用铋化合物作为具有高介电常数和良好温度特性的材料。
在序号为57-92575的日本公开的专利申请中公开的具有高介电常数的陶瓷组合物中,介电常数的温度相关性良好,在温度范围为-55℃到+125℃时,其变化小于±15%。然而,介电常数仍不超过4000。另一方面,叠层的陶瓷电容最好应当满足按EIA标准规定的X7R特性。在由-55℃到+125℃很宽的温度变化范围内当以在+25℃时的静电电容为基准时,符合X7R特性的电容器的电容变化小于±15%。
本发明的目的是提供一种具有高介电常数的陶瓷组合物,其满足X7R特性,介电损耗小于3.5%,介电常数为4000或其以上。
根据本发明的陶瓷组合物包含BaTiO3-Nb2O5-Co3O4组合的化合物,其包含总计为1.1-1.4摩尔%的Nb2O5和Co3O4,其中Nb2O5对Co3O4的摩尔比值在4.4-5.0之间,所述介电陶瓷组合物按所述化合物重量计含0.02-0.06%(重量)的MnCO3、0.02-0.25%(重量)的Nd2O3、0.02-0.10%(重量)的Y2O3和0.05-0.15%(重量)的Al2O3作为添加剂。优选的实施方案,其特征在于,BaO/TiO2的比值在0.997到1.000之间,这些比值都包含在其内。
为了得到高介电常数的陶瓷组合物,其在-55℃到+125℃的温度范围内静电电容的电容变化率小于±15%,介电损耗小于3.5%,介电常数为4000或其以上,为此本发明人进行了试验研究。结果,本发明人发现本发明的上述组合物是适宜的。
在后面解释利用本发明的陶瓷组合物制备叠层陶瓷电容器的方法,以及参照表示按照所述制造方法制成的叠层陶瓷电容的电特性和根据本发明的陶瓷组合物的各种组成的附图和表,详细介绍本发明的一些实例。


图1表示Y2O3添加量与电容变化率的关系以及相对于温度的静电电容的变化率。
图2表示添加一定量Al2O3添加量与电容变化率的关系和由于改变烧结温度时相对于温度的静电电容的变化率。
图3表示BaO/TiO2比值与电容变化率的关系和相对于温度的静电电容的变化率。
作为陶瓷组合物的起始材料,利用溶液合成法制取BaTiO3(纯度99.98%)。由于溶液合成法对本技术领域的技术人员是公知的,这里不再详细介绍。起始材料BaTiO3中的BaO/TiO2的摩尔比值为1.000。接着,作为陶瓷组合物的另一些起始材料,使用Nb2O5和Co3O4以及作为添加剂的起始材料,使用MnCO3,Y2O3,Al2O3和Nd2O3,并称重,以便得到如在表1中所示的组合物。在称重之后,进行湿式混合持续3小时,从而得到一种混合物。将一种有机粘合剂加到该混合物中,进行湿式混合以便形成陶瓷浆料。利用刮片法将这种陶瓷浆料模塑成片,得到厚度为12微米的矩形坯片。顺便指出,在上述湿式混合的过程中,还可添加TiO2和BaCO3,以调节BaO/TiO2的摩尔比值。
表1组合物列表*表示超出本发明范围
接着在该陶瓷坯片上印上主要包含Pd的导电糊,以形成内电极。将若干其上已形成内电极的上述陶瓷坯片进行层叠,以得到叠层材料,其方法是作为内电极的一个导电糊层的一端从该叠层材料的一边引出,下一导电糊层的另一端从该叠层材料的相对边引出,并以此类推。
将上述叠层材料在空气中于1300℃下烧结持续2小时。烧结之后,将银糊涂敷在烧结的陶瓷体的两个表面上,并将该烧结体在空气中于750℃下烧结,以便形成电连接到许多内电极上的外电极。
按照上述得到的叠层陶瓷电容器的外尺寸为宽度3.2毫米、长度1.6毫米、以及厚度0.5毫米。此外,置于上述内电极之间各个介电陶瓷层的平均厚度为8微米,有效介电陶瓷层的总数为5。
每个上述叠层陶瓷电容器的静电电容和介电损耗(tanδ)利用自动电桥式测量装置在1千赫兹和1伏(有效值)的条件下分别测量。顺便指出,通过将静电电容和某一系数相乘可以易于得到介电常数。得到介电常数的方法对于本技术领域的技术人员是公知的,在这里不再详细介绍。希望通过评估其介电层厚度接近实际产品的叠层陶瓷电容来评价叠层陶瓷的电特性。这是因为要测量介电损耗随着电场强度的变化。例如,当介电层的厚度分别为500微米和8微米时,当施加1伏(有效值)的测量电压时,测量的电场强度分别为2伏/毫米和125伏/毫米。此外,本发明人已经发现,静电电容的温度特性也随介电层的厚度变化。在本实例中,介电层的厚度为8微米,因此,是以接近叠层陶瓷电容器产品实际厚度的介电层的厚度来评估特性。
表2 电特性列表*表示超出本发明范围
BaO/TiO2比
表2表示具有如在表1中所表示的组合物的试样1-36所测量的各种电特性的结果,例如介电常数、介电损耗以及对于温度的静电电容的电容变化率等。这里,“电容温度变化率ΔC/C25”是指相对于在25℃下的静电电容值,其静电电容最大变化的%,“在-55℃-25℃最大”是指在-55℃-25℃的温度范围内静电电容最大变化的%,以及“在25℃-125℃最大”是指在温度25℃-125℃的范围内,静电电容最大变化的%。在下文,各个试样的电特性是根据表2估量。
试样1-6在Nb2O5和Co3O4的摩尔%数是不同的。即它们除了这一摩尔比值不同以外,具有相同的组分。例如在试样1中摩尔比值小于4.4,发现相对于温度的电容变化率超过15%。另一方面,例如在试样6中当摩尔比值超过5时,相对于温度的电容变化率在15%之内,不过介电常数为3900,低于4000。因此,可以发现,Nb2O5和Co3O4的摩尔最好为4.4-5.5。
试样7-10为Nb2O5和Co3O4的摩尔比值是恒定的,而Nb2O5和Co3O4之和的摩尔%值是不同的实例。由于它们的和的摩尔比值是不同的,当然BaTiO3的摩尔%值也是不同的,不过其它添加剂的数量维持不变。当该摩尔%值低于1.1时,例如在试样7中,已经发现,相对于温度电容变化率超过15%。另一方面,当摩尔百分值超过1.4时,例如在试样10中,相对于温度的电容变化率在15%范围内,但是介电系数低至3860。因此,可以发现,Nb2O5和Co3O4的和的摩尔%值最好为1.1-1.4。
试样11-15具有相同的组分,只是在添加剂中的MnCO3的%(重量)不同。当MnCO3的量低于0.02%(重量)时,例如在试样11中,介电损耗变大。另一方面,当MnCO3的量高于0.06%(重量)时,如在试样15中,发现相对于温度的电容变化率超过15%。因此,作为添加剂的MnCO3的量最好为0.02%-0.06%(重量)。
试样16-20包含相同的成分,除了在添加剂中的Nd2O3的%(重量)不同以外,当Nd2O3的量低于0.02%(重量)时,例如在试样16中,介电损耗变大达3.8。另一方面,当Nd2O3量高于0.25%(重量)时,例如在试样22中,发现介电常数变为3690。因此,作为添加剂的Nd2O3的量最好为0.02%-0.25%(重量)。
试样23-27具有相同的组分,除了在添加剂中的Y2O3的%(重量)不同以外。当Y2O3量低于0.02%(重量)时,例如在试样23中,呈现良好的电特性,其介电常数超过4000,介电损耗小,相对于温度的电容变化率处在15%之内。然而,当Y2O3低于0.02%(重量)时,作为时间函数的静电电容变大。
图1中的曲线表示一种叠层的陶瓷电容器的静电电容的变化,其包含的化合物含BaTiO3为98.8%(摩尔)、Nb2O5为0.986%(摩尔)以及Co3O4为0.214%(摩尔),同时作为添加剂添加入的0.06%(重量)的MnCO3、0.1%(重量)的Nd2O3、0.05%(重量)的Al2O3以及%(重量)数可变的Y2O3。在图1中,叠层陶瓷电容器的静电电容是在其制成之后立即测量和由制成起始的1000小时之后测量的,图1表示由制成到1000小时之后的静电电容变化。由图1可以清楚地看出,当Y2O3量低于0.02%(重量)时,可发现静电电容随时间的变化变大。另一方面,当Y2O3量高于0.10%(重量)时,如在试样27中,介电常数变得低于4000,介电损耗变大。因此,作为添加剂的Y2O3量最好为0.02%-0.10(重量)。
试样28-32具有相同的组分,除了在添加剂中的Al2O3的%(重量)不同以外。当Al2O3量低于0.02%(重量)时,例如在试样28中,表明具有良好的电特性,其介电常数超过4000,耗电损耗小以及相对于温度的电容变化率在15%的范围内。然而,当烧结温度改变时,发现静电电容相对于温度的变化率超过15%。图2(A)-2(E)中的曲线表示该化合物的相对于温度的电容变化率,该化合物含98.8%(摩尔)的BaTiO3、0.986%(摩尔)的Nb2O5以及0.214%(摩尔)的Co3O4,并作为添加剂添加有0.06%(重量)的MnCO3、0.1%(重量)的Nd2O3、0.05%(重量)的Y2O3、以及%(重量)数可变的Al2O3,其量为0%(重量)、0.05%(重量)、0.10%(重量)、0.15%(重量)及0.20%(重量),烧结温度为1270℃、1300℃或1330℃。由图2(A)可以看出,当Al2O3为0%(重量)时,在1330℃的烧结温度下电容变化率超过15%、另一方面,如在图2(B)-2(E)中所示,发现当Al2O3为0.05%(重量)或更多时,即使烧结温度改变,但电容变化率在15%之内。因此,即使改变烧结温度但其相对于温度的电容变化率处于15%之内的事实,表明其小的烧结温度相关性。由此其很大的好处是当制造叠层的陶瓷电容时可以得到稳定的产品。此外,当Al2O3低于0.15%(重量)时,由表2可以清楚地看出,介电常数变得低于4000,介电损耗变大。因此,作为添加剂的Al2O3量最好为0.05%-0.15%(重量)。
如在表1中所示,试样33-36是下述化合物制成的叠层陶瓷,该化合物含98.8%(摩尔)的BaTiO3、0.986%(摩尔)的Nb2O5和0.214%(摩尔)的Co3O4,以及作为添加剂加入的有按重量计为0.06%(重量)的MnCO3、0.1%(重量)的Nd2O3、0.05%(重量)的Y2O3、0.05%(重量)的Al2O3,以及所表示的电容器中BaO与TiO2的比值是变化的。当BaO/TiO2比值低于0.997时,例如在试样33中。发现其相对于温度的电容变化率超过15%。图3表示当BaO/TiO2的比值分别为0.994、0.997、1.000和1.003时相对于温度的电容变化率。由图3可以看出,在BaO/TiO2的比值为0.994时,电容变化率超过15%。另一方面,当BaO/TiO2比值大于1.0时,例如在试样36中,介电损耗变大,如在表2中所示,因此,BaO/TiO2比值最好为0.997-1.000。
正如上面解释的,本发明的叠层陶瓷电容器在由-55℃到+150℃很宽的温度范围内静电电容的电容变化率处于±15%的平直部分,介电损耗小,处于3.5%之内。此外,介电常数高至4000或其以上。因此可得到尺寸小、容量大、并有良好的温度特性的陶瓷电容器。此外,静电电容变化率的烧结温度相关性小,这样可在工业生产中得到稳定的叠层陶瓷电容器。
权利要求
1.一种介电陶瓷组合物,它包含BaTiO3-Nb2O5-Co3O4的化合物,其含总量为1.1-1.4摩尔%的Nb2O5和Co3O4,其中Nb2O5对Co3O4的摩尔比值为4.4-5.0,所述介电陶瓷组合物包含作为添加剂的按所述化合物重量计为0.02-0.06%(重量)的MnCO3、0.02-0.25%(重量)的Nd2O3、0.02-0.10%(重量)的Y2O3和0.05-0.15%(重量)的Al2O3。
2.如在权利要求1中所述的介电陶瓷组合物,其特征在于,BaO对TiO2的摩尔比值为0.997-1.000。
全文摘要
本发明涉及一种包含BaTiO
文档编号C04B35/468GK1246104SQ98802142
公开日2000年3月1日 申请日期1998年11月24日 优先权日1997年12月1日
发明者H·马殊穆拉, K·塞托, A·富吉 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1