平板玻璃的切割方法及装置的制作方法

文档序号:2325759阅读:265来源:国知局
专利名称:平板玻璃的切割方法及装置的制作方法
技术领域
本发明涉及平板玻璃的切割方法,特别是涉及通过将平板玻璃沿着假想的切割线用加热燃烧器的燃烧火焰加热后、对该被加热了的假想切割线部分进行局部冷却、使切割所需的裂缝在平板玻璃上连续地伸展并形成、从而折断平板玻璃的方法及装置。
背景技术
作为平板玻璃主要的切割方法,已知使用金刚石砂轮或超硬砂轮等切割器的方法和利用热变形的方法。前者是用切割器在平板玻璃上形成切割线并沿该切割线折断的方法(以下称为采用切割器的切割),使用最为普遍。然而,这样使用切割器在平板玻璃形成用于折断的切割线并进行切割的情况下,如图7所示,对于平板玻璃,在用切割器砂轮17形成的切割线13部分的玻璃处产生垂直裂缝14和水平裂缝15。垂直裂缝14是折断平板玻璃所需要的,但水平裂缝15随时间向玻璃表面伸展,以斜线表示的部分碎落,形成碎玻璃(玻璃屑)16。在平板玻璃的制造流水线上产生的碎玻璃具有一旦附着在玻璃表面就难以去除的性质。此外,切割后层叠了的平板玻璃所产生的碎玻璃进入平板玻璃之间,平板玻璃的保存和运输时平板玻璃之间夹着碎玻璃互相摩擦,会在玻璃表面造成划伤。此外,用切割器砂轮17形成切割线13时,由于垂直裂缝14的玻璃表面部分被呈沟状划开,在切割面的表面部形成刷毛状的切割线痕,由此也产生细小的碎玻璃。
另外,用浮法制造平板玻璃的情况下,带状的平板玻璃的两端部形成有平板玻璃成形时的辊痕。由于该辊痕附近对玻璃残留有较强的平面应力,因此用切割器形成切割线进行折断时,裂缝受到该残留应力的影响而难以形成,造成不规则形或产生大量碎玻璃,无法正常地进行切割。如果作为其改善方法,加强切割器的按压力,则碎玻璃的发生率更高。因此,通常在制造平板玻璃时,通过将该变形较强的辊痕附近的部分进行一次粗切割除去,将其内侧以较低的切割压力再次进行切割,从而实现制品切割面的改善。由于平板玻璃的板厚越厚,变形量越大,因此采用该方法的情况就越多。
另一方面,利用热变形切割平板玻璃的方法对解决采用切割器的切割中所存在的这些问题是有效的。例如,在日本专利特开2000-63137号公报中记载了,通过以切割器在平板玻璃上形成较浅深度的切割线并用冷却介质对该切割线部分进行冷却,来使垂直裂缝沿切割线伸展而切断平板玻璃,而且较好是这时对要形成切割线的玻璃部分预先进行加热。
此外,在日本专利特开平9-12327号公报中揭示了,在要切割的平板玻璃的一端引入用于形成裂缝的起始点的小的刻痕,接着通过激光自该刻痕部沿着平板玻璃要进行切割的方向进行局部加热,通过由该加热产生的热变形(应力)的作用使裂缝起始点的裂缝沿着激光的行进路线伸展而形成切割所需的裂缝,从而完成切割,这时为了促进裂缝的推进,较好是通过喷水对加热部进行冷却。但是,关于该冷却只记载了通过喷水来进行,对于喷水的具体内容没有任何记载。
专利文献1日本专利特开2000-63137号公报专利文献2日本专利特开平9-12327号公报发明的揭示发明要解决的课题以往的利用热变形的平板玻璃的切割方法一般具有解决前述采用切割器的切割中的碎玻璃的问题的效果,但切割面的品质和厚平板玻璃的切割等方面不是十分令人满意。即,如果采用专利文献1所记载的方法,则由于使用与通常的采用切割器的切割中的切割线相比较浅的切割线,因此与采用切割器的切割相比碎玻璃减少。但是,由于与采用切割器的切割同样地在整个切割部分上用切割器形成切割线,不可避免地会产生细小的碎玻璃,或者在平板玻璃的切割面的表面部留下刷毛状的切割线痕。
如前所述,专利文献2的方法主要是利用通过激光进行的局部加热产生的热应力,使切割起始点的细小裂缝沿激光的行进路线伸展。但是,由于如果用该方法切割较厚的平板玻璃,则需要较强的加热,以激光集中加热的玻璃表面熔解,会难以进行切割,或者切割面的品质下降。此外,由于该方法中冷却是附加的步骤,而且将该冷却通过单纯的喷水来进行,因此很难使裂缝伸展到足够的深度。因此,例如对大于等于10mm的厚平板玻璃进行切割时,会产生切割损伤,或者切割部的线性差的问题。此外,还存在平板玻璃的切割部因喷水的水而被污染的问题。
另外,像用浮法连续成形的带状平板玻璃那样存在翘曲或起伏的情况下,由于激光无法对该玻璃表面的起伏变化进行随动,因此不易进行规定的加热,难以进行稳定的切割。特别是该带状平板玻璃两端部的辊痕附近由于容易因残存于玻璃内的较强的平面应力产生翘曲或起伏,因此更容易产生上述情况。此外,由于通过采用激光的局部加热无法缓解该残留应力,因此难以确保连辊痕附近也达到高品质的制品。此外,还存在不仅激光装置带来的设备费用昂贵而导致成本升高,而且设备规模庞大的问题。
本发明要解决的课题是提供在利用热变形的平板玻璃的切割中,对于较厚的平板玻璃或以浮法等成形的带状平板玻璃那样存在翘曲或起伏的平板玻璃,也可以容易且稳定地进行切割,而且不产生碎玻璃,线性或方向性良好,可获得高品质的切割面的切割方法及其装置。
此外,本发明提供可以将前述带状平板玻璃的端部那样具有较大的残留应力的平板玻璃同样地切割得到高品质的切割面,而且不产生碎玻璃,由此对于该带状平板玻璃的具有残留应力的辊痕附近也能够确保制品生产的切割方法及其装置。
另外,本发明还提供可以通过不使用昂贵的激光装置的较简单的设备低成本地切割平板玻璃的切割方法及其装置。
解决课题的方法为了解决前述课题进行各种研究后发现,通过用燃烧器的燃烧火焰对形成了作为裂缝起始点的刻痕的平板玻璃的假想切割线部分以规定的宽度加热到规定的温度,将该被加热了的假想切割线部分以规定宽度的喷雾沿假想切割线局部冷却,可以实现线性优异的良好的切割,从而完成了本发明。即,本发明提供以下的平板玻璃的切割方法及其装置。
(1)平板玻璃的切割方法,其特征在于,在平板玻璃的假想切割线的切割起始点附近刻入作为裂缝起始点的刻痕后,利用加热燃烧器的燃烧火焰沿假想切割线部分对该平板玻璃的假想切割线部分进行加热,使刚加热后的玻璃表面温度中,假想切割线附近的最高温度达到130℃或130℃以上,以假想切割线为中心起算的10mm宽的左右两个端部的平均温度达到所述最高温度的45%或45%以上,接着通过采用喷雾以1~20mm的宽度沿假想切割线对该加热部进行局部冷却,自前述刻痕沿假想切割线形成平板玻璃的切割所需的裂缝,将平板玻璃沿该裂缝进行折断。
(2)如上述(1)的平板玻璃的切割方法,前述的局部冷却在假想切割线附近的玻璃表面温度大于等于83℃的状态下进行。
(3)如上述(1)或(2)的平板玻璃的切割方法,前述假想切割线附近的最高温度为130~220℃。
(4)如上述(1)、(2)或(3)中任一项的平板玻璃的切割方法,利用喷雾的冷却宽度为1~10mm。
(5)如上述(1)~(4)中任一项的平板玻璃的切割方法,前述局部冷却通过在喷嘴中心部的液体喷出口的外侧具备环状的气体喷射口、且该液体喷出口比气体喷射口更突出的冷却喷嘴进行。
(6)如上述(1)~(5)中任一项的平板玻璃的切割方法,通过改变使用加热燃烧器的加热到使用冷却喷嘴的局部冷却的时间,改变该局部冷却时的玻璃表面温度,调整裂缝的深度。
(7)如上述(1)~(6)中任一项的平板玻璃的切割方法,对通过浮法连续成形的平板玻璃的两端部进行切割。
(8)平板玻璃的切割装置,其特征在于,具备用于在平板玻璃的假想切割线的切割起始点附近刻入作为裂缝起始点的刻痕的切割器、用于自刻痕部沿假想切割线利用燃烧火焰对该平板玻璃进行加热的加热燃烧器、和用于产生喷雾的冷却喷嘴,这些切割器、加热燃烧器和冷却喷嘴实质上以该顺序配置在前述假想切割线上,对利用前述加热燃烧器的燃烧火焰以规定的加热宽度加热至规定的温度的假想切割线部分利用该冷却喷嘴生成的喷雾以规定的冷却宽度进行局部冷却。
(9)如上述(8)的平板玻璃的切割装置,前述冷却喷嘴在喷嘴中心部的液体喷出口的外侧具备环状的气体喷射口,且该液体喷出口比气体喷射口更突出。
(10)如上述(9)的平板玻璃的切割装置,前述冷却喷嘴的液体喷出口的突出量c满足0<c≤20mm。
(11)如上述(8)~(10)中任一项的平板玻璃的切割装置,将前述加热燃烧器和冷却喷嘴的至少一方设置成可沿平板玻璃的假想切割线移动,两者的间隔是可变的。
(12)如上述(8)~(11)中任一项的平板玻璃的切割装置,前述冷却喷嘴的液体喷出口的口径a为0.15~0.6mm,气体喷射口的外径b和内径b′满足b-b′=0.05~1.45mm。
发明的效果如果采用本发明的平板玻璃的切割方法,则通过使用加热燃烧器的燃烧火焰的加热和使用喷雾的局部冷却的并用,可以使在切割起始点附近刻入的刻痕的微小裂缝沿假想切割线伸展并形成切割所需的裂缝。
这时,由于可以用加热燃烧器对玻璃表面较大的范围以规定的加热宽度加热至规定的加热温度,因此厚的平板玻璃和残留应力大的平板玻璃都能够进行加热,而且不会产生熔融或不均衡的热应力引起的碎裂。另外,由于加热燃烧器与加热的玻璃表面的间隔不均时对于加热温度的影响与激光相比是非常小的,因此即使平板玻璃存在翘曲或起伏,也可以大致均一地进行加热。
由此,对于较厚的平板玻璃、或以浮法等成形的带状平板玻璃那样存在翘曲或起伏的平板玻璃,也可以容易且稳定地进行切割,而且不产生碎玻璃,线性或方向性良好,可获得高品质的切割面,能够使边缘强度提高。高品质的切割面是指切割面上产生的微小损伤少。由于该损伤会引起玻璃的破损,微小损伤少的使用了本发明的切割端面不易碎裂,自该切割面的碎裂少,即边缘强度提高。
另外,即使是前述带状平板玻璃的端部那样具有较大的残留应力的平板玻璃,也可以通过用加热燃烧器的燃烧火焰加热,能够以不影响切割的程度的较大幅度缓解该残存应力,可以与不具有残留应力的平板玻璃同样地进行切割。由此,由于可以确保制品直至前述带状平板玻璃的端部附近,因此平板玻璃的生产效率提高。
此外,由于对用加热燃烧器以规定加热宽度加热至规定的加热温度的区域用喷雾进行局部冷却,因此可以使切割所需的裂缝沿假想切割线线性或方向性良好地伸展。另外,通过这样用喷雾进行局部冷却,可在冷却部的玻璃表面几乎不残留水滴地进行切割,可防止平板玻璃的污染。
另外,本发明可以通过不使用昂贵的激光装置的简单设备构成切割装置,因此可以在制造流水线或非制造流水线上低成本地切割平板玻璃,能够适用于建筑用、车辆用、各种基板用等各种平板玻璃的切割。
本发明优选的实施方式中,通过以喷嘴中心部的液体喷出口比呈环状设于其外侧的气体喷射口更突出的冷却喷嘴进行前述局部冷却,由从液体喷出口喷出的液体和从气体喷射口喷射的气体生成规定的窄冷却宽度的喷雾,可以通过该喷雾对用燃烧器燃烧火焰加热了的假想切割线部分高效地进行局部冷却。由此,由于热变形效果增大而促进了裂缝的伸展,对于较厚的平板玻璃也可以沿假想切割线将切割所需的裂缝正确地并以足够的深度伸展,因此可以获得更高的切割精度。
通过使前述冷却喷嘴的液体喷出口的突出量c满足0<c≤20mm,可以将生成的喷雾的宽度控制得较窄,进一步提高局部冷却的效率,可以进一步促进裂缝的伸展。另外,通过使加热燃烧器和冷却喷嘴的间隔可变,可以适当地调整裂缝的深度。
附图的简单说明[

图1]本发明的实施例所述的平板玻璃的切割装置的平面图。
图1的平板玻璃的切割装置的主视图。
冷却喷嘴的主视图。
图3的冷却喷嘴的底视图。
加热燃烧器的燃烧口部分的底视图。
被加热了的平板玻璃的与假想切割线垂直的方向上的温度分布图。
以往的用切割器形成的切割线部分的截面图。
符号的说明1平板玻璃 2切割器 3加热燃烧器4冷却喷嘴 5刻痕 6裂缝7假想切割线8气缸 9基座10切割器座 11保持部件12保持部件13切割线 14垂直裂缝15水平裂缝16碎玻璃 17切割器砂轮 18液体喷出口19气体喷射口 20送水管 21送气管22运送辊 23火焰口 24燃烧火焰25滚动轮 26喷雾实施发明的最佳方式本发明的切割方法及其装置可以用于在制造流水线中将浮法平板玻璃、压花平板玻璃、夹丝平板玻璃等连续制造的带状平板玻璃切割为规定的尺寸的情况,或者进一步将这样在制造流水线中被切割了的平板玻璃切割为所需的大小、形状的情况。特别适合于由于平面残留应力大而难以用通常的切割器进行良好的切割的带状平板玻璃的端部的切割。
作为可切割的平板玻璃只要是平坦的,没有特别限定,可以例举建筑用、车辆用和平板显示器等所使用的基板用等各种平板玻璃和使用它们的夹层玻璃(也包括使用压花平板玻璃和夹丝平板玻璃的制品),其厚度可以或薄或厚,也可以容易地切割使用切割器的切割和前述使用激光加热的切割难以适用的例如大于等于10mm的厚平板玻璃。由于通过热变形使用于切割平板玻璃的裂缝伸展,因此适合于直线切割,也可以用于曲线切割。用激光切割无法切割为了使激光反射而进行涂覆了的玻璃和反射玻璃,但由于燃烧器通过火焰加热玻璃表面,所以可以进行切割。
本发明中,平板玻璃的切割起始点附近刻入作为裂缝起始点的刻痕。一般在切割平板玻璃时,根据平板玻璃的切割尺寸和切割形状确定切割线,沿该确定了的切割线引入裂缝进行切割。本发明中的假想切割线是指这样确定了的切割线。因此,前述切割起始点位于所述假想切割线的切割起始端。切割起始端为平板玻璃的端面的情况下,如果刻痕的位置离平板玻璃的端面过近,则玻璃可能缺失或破损,因此实际上形成刻痕的位置较好是在自平板玻璃的端面向内侧1~3mm左右。
刻痕通过切割器在平板玻璃的表面部以划伤形式浅浅地形成。通过该划伤,可以在刻痕部分的玻璃上于垂直方向形成作为裂缝起始端的微细(微小)的裂缝。该微细的裂缝的深度(自玻璃表面到裂缝的下端)较好是50~150μm左右。该裂缝的深度未满50μm时,由于无法充分起到裂缝起始点的作用,难以可靠地由该微细的裂缝伸展得到切割所需的裂缝。另一方面,引入比150μm更深的裂缝时,必须加大切割器的切割压力,因此可能产生切割粉末,或产生引起碎玻璃的水平裂缝,所以是不理想的。该刻痕的目的是形成裂缝的起始点,所以该刻痕的长度无需很长,通常5~10mm左右即可。
作为前述切割器,可以优选地使用能够在玻璃表面形成划伤的例如金刚石砂轮、超硬合金砂轮等,可以借用公知的玻璃切割用切割器。作为刻痕的形成方法,将该切割器在以规定的压力接触平板玻璃的状态下沿假想切割线的方向相对移动即可,与通常使用切割器的切割中的切割线的形成方法除了长度较短之外实质上是相同的。
本发明中,形成了刻痕的平板玻璃接着通过加热燃烧器(也简称燃烧器)的燃烧火焰自该刻痕部分沿假想切割线进行加热。如后所述,该加热可以通过例如在前述切割器的下游侧的假想切割线上设置燃烧器并使该燃烧器在平板玻璃的切割方向上相对移动来容易地进行。
本发明中,将平板玻璃的切割部用燃烧器的燃烧火焰进行加热具有许多优点。即,将平板玻璃用激光进行加热的情况下,如前所述,若平板玻璃较厚,则加热部的玻璃表面熔融,或者受到玻璃表面的上下方向(与玻璃板面垂直的方向)上的变动的强烈影响,加热温度容易不均。相反,燃烧器燃烧火焰以比激光更大的宽度对平板玻璃的假想切割线部分进行加热,而不是集中加热,因此对于厚的平板玻璃也可以不使表面熔融地进行加热。此外,平板玻璃存在残留应力时,在燃烧器燃烧火焰所及的范围内可以缓解该应力。另外,由于被加热部分的玻璃的热膨胀,可以沿平板玻璃的假想切割线以较大的宽度形成压缩应力区域,所以通过与局部冷却并用,可以促进裂缝的伸展。此外,燃烧器燃烧火焰不像激光那样受到玻璃表面的起伏变化的强烈影响,与激光的加热装置相比,操作更容易,而且成本方面也更经济。
用燃烧器的燃烧火焰加热平板玻璃的情况下,向燃烧器输送可燃性物质和氧使其燃烧。这时,作为可燃物质通常使用气体状的物质,但也可以使用液体状或固体状的物质。此外,气体状的可燃物质、特别是民用燃气(煤气、天然气等)便宜且容易处理,所以是理想的,但并不局限于此,例如也可以是氢气。使用氧气和燃气进行燃烧器加热的情况下,燃烧器可以是将氧气和燃气分别供给燃烧器使其燃烧的后混合型,也可以是预先将两者混合后作为混合燃气供给燃烧器使其燃烧的预先混合型,预先混合型更容易将燃烧器接近玻璃表面,使加热宽度变窄,而且可以减少氧气·燃气的使用流量,所以是理想的。
相反,后混合型因为燃烧结构不同,燃烧器和玻璃表面的间隔一般比预先混合型更大。其结果,燃烧火焰增大,加热宽度增加,因此玻璃容易因其热量而碎裂。这种情况下,如果在燃烧器和平板玻璃间设置采用金属或隔热材料的挡板的狭缝进行加热,则通过狭缝的宽度可以将燃烧火焰的宽度调小,所以可以防止前述热量引起的碎裂。
接着,参看附图,对本发明中的加热进行更详细的说明。如果用燃烧器的燃烧火焰对平板玻璃的假想切割线部分进行加热(参看图1、2),则平板玻璃从表面沿假想切割线以规定的宽度被加热。图6的A示例了被这样加热了的平板玻璃的刚加热后的与假想切割线垂直方向上的玻璃表面的温度分布。如图6所示,将假想切割线部分S用燃烧器加热了的平板玻璃中,两侧以S为中心以规定的宽度被加热,假想切割线附近呈表示最高温度T(也称加热温度T)的抛物线状或山形状。同一图中,横轴为距S的距离,纵轴为温度。
本发明中,对于促进裂缝的伸展有效的压缩应力区域可以通过将平板玻璃沿假想切割线部分以规定的宽度加热至一定温度以上而形成。即,通过加热使刚加热后的玻璃表面温度中,假想切割线附近的最高温度T大于等于130℃,较好是为130~220℃。另外,通过加热使以假想切割线为中心10mm宽度以内的温度大于等于前述最高温度T的45%。以假想切割线为中心10mm宽度以内的温度分布如图6所示呈抛物线状,所以假想切割线附近达到最高温度T,10mm宽度的左右两端为最低的温度t(左右两端部的温度的平均值,下同)。本发明中,该t大于等于T的45%。这样的温度分布通过燃烧器加热可以得到,而用激光难以得到该分布。基于图6对此进行说明。同图的虚线B所示的是作为参考的用激光对同一平板玻璃加热至与燃烧器加热同样的最高温度T时的玻璃表面的温度分布的图形。如图所示,由于通过激光假想切割线部分的玻璃被以较小的宽度集中地局部加热,因此即使假想切割线部分附近被加热至T,前述10mm宽度两端的温度t′未达到t,为未满T的45%的温度。因此,通过激光无法将平板玻璃的切割部加热至所需的温度分布。
若前述加热温度T低于130℃,则难以对玻璃的板厚方向进行充分的加热,促进裂缝伸展的热变形效果低下。其结果,由于裂缝无法顺利地伸展,因此裂缝的线性劣化,或无法获得切割所需深度的裂缝。但是,T达到某个一定的温度以上后,裂缝的伸展性几乎不变,而且加热负担增大,另外,如果T过高,则裂缝不易沿板厚方向笔直伸展,裂缝会部分分成2条,因此T较好是小于等于220℃。
被用燃烧器加热了的部分的平板玻璃的表面温度在到下一步的局部冷却之间通过放热和向周围的热传导而下降。该下降的程度根据从加热到冷却的时间和周围温度等而改变,不能一概而定,但前述时间越长则下降越大,而且周围温度越低则越容易放热,因此下降也越大。如果局部冷却时的玻璃表面温度过低,则裂缝难以伸展,因此本发明中将该温度保持在一定温度以上是重要的。本发明中,局部冷却时的玻璃表面温度是指刚要开始对加热部进行冷却时的玻璃表面温度。作为该温度,假想切割线附近较好是大于等于83℃,更好是大于等于90℃。如果局部冷却时的玻璃表面温度保持大于等于83℃,则裂缝的伸展得到促进,可以沿假想切割线形成所需深度的裂缝。
本发明中,前述加热温度T可以通过加热条件,即燃烧器的喷出口的大小和个数、氧气·燃气量、平板玻璃的运送速度等的单个或组合来进行调整。另外,也可以通过改变燃烧器(燃烧器的燃烧口部分)与玻璃表面的距离、即燃烧器的高度来调整加热温度。例如,加热不充分时降下燃烧器,加热温度过高时升起燃烧器,从而调节温度。这种情况下,如果燃烧器过高,则燃烧火焰的加热宽度变大,因此加热效率下降,相反如果过近,则燃烧火焰的状态不稳定,容易产生裂缝深度的不均。另外,加热温度也随加热时的平板玻璃的温度(以下称作板温)而改变,所以加热条件的设定较好是也考虑到板温。即,板温高时可以减少加热量。
本发明中,接着对这样被加热了的平板玻璃的假想切割线部分进行局部冷却。通过在前述加热燃烧器的下游侧设置冷却喷嘴,由该冷却喷嘴产生的喷雾局部地冷却用燃烧器加热了的假想切割线部分,从而进行该局部冷却。用燃烧器加热了的假想切割线部分的平板玻璃成为压缩应力区域,因此如果局部冷却该区域,则被冷却了的部分的玻璃受到大的热冲击,同时热收缩而产生拉伸应力。刻痕部的微细裂缝通过该拉伸应力而向垂直方向伸展加深,进一步被拉伸应力区域引导,沿假想切割线伸展,形成平板玻璃的切割所需的裂缝。这种情况下,最好是对最高温度的假想切割线附近进行局部冷却。
因此,前述局部冷却是使切割所需的裂缝按照假想切割线正确地伸展所不可缺少的。该局部冷却中,技术上的要点在于将被加热了的假想切割线部分通过喷雾以较小的冷却宽度高效地进行冷却。该冷却宽度为1~20mm,较好是1~10mm。一般冷却宽度越小越好,但如果冷却宽度未满1mm,则无法获得充分的冷却效果,因此裂缝的伸展恶化。此外,如果冷却宽度超过20mm,则裂缝的线性恶化,切割精度下降。
用燃烧器的燃烧火焰进行加热时,在燃烧器和平板玻璃间设置以金属或隔热材料的挡板形成的狭缝以规定宽度的燃烧火焰进行加热的情况下,燃烧火焰的宽度和局部冷却中的冷却宽度的关系较好是冷却宽度比燃烧火焰的宽度小。冷却宽度与燃烧火焰的宽度相同或比燃烧火焰的宽度更大时,即使进行冷却也无法引入裂缝,即使引入裂缝,在裂缝的深度和线性方面也可能无法供于实用。
本发明中,前述局部冷却较好是通过如图3所示的冷却喷嘴4来实现。图3为冷却喷嘴4的主视图,图4为其底视图。如图所示,冷却喷嘴4在喷嘴中心部的液体喷出口18的外侧具有环状的气体喷射口19,而且具有该液体喷出口18比气体喷射口19更突出的喷嘴结构。通过这样的喷嘴结构,可以将从冷却喷嘴4的液体喷出口18喷出的液体在喷出的同时用来自气体喷射口19的高压气体雾化,生成液体和气体的混合物(喷雾)。同时,通过前述高压气体可以极力抑制该喷雾向侧向的扩散。因此,通过将由冷却喷嘴4生成的小宽度的喷雾喷到平板玻璃的被加热了的假想切割线部分上,可以对该假想切割线部分以规定的冷却宽度局部地进行急冷,即可以进行局部冷却。作为这样的局部冷却的冷却介质,较好是通过气化热作用冷却效率高的喷雾。该喷雾与喷水不同,几乎不沾湿玻璃,也有利于防止玻璃的污染。冷却喷嘴4作为可以生成这样的喷雾的喷嘴,是特别优异的。
接着,对冷却喷嘴4进行更详细的说明。如图3所示,作为冷却喷嘴4,液体喷出口18比外侧的气体喷射口19突出c。该突出量c满足0<c≤20mm,较好是0<c≤1.0mm,0.3≤c≤0.7mm。通过使液体喷出口18这样比气体喷射口19突出,可以使从气体喷射口19喷射的气体(例如空气)立即作用于从该液体喷出口18喷出的液体,能够将前述液体完全或几乎完全雾化。液体喷出口18不比气体喷射口19突出的情况下,即液体喷出口18与气体喷射口19处于同一平面或比气体喷射口19更靠后的情况下,难以获得局部冷却最适的喷雾。此外,如果c大于20mm,则难以将喷出的液体在到玻璃表面的有限的范围内充分雾化。用这样c不适合的冷却喷嘴生成的喷雾的冷却效率低下,因此即使用该喷雾冷却平板玻璃,裂缝也会无法达到所需的深度。
另外,优选的冷却喷嘴中,液体喷出口18的口径a较好是0.15~0.6mm,最好是使用a为0.15~0.3mm的喷嘴。如果a大于0.6mm,则失去与气体的平衡,雾化容易变得不充分,所以是不理想的。此外,如果a小于0.15mm,则喷雾的冷却效率低下,冷却会不充分。
另一方面,气体喷射口19被呈环状设置于上述液体喷出口18的外侧。为了获得所需的气体喷射量和喷雾宽度,该环状的气体喷射口19的外径b与内径b′较好是满足b-b′在0.05~1.45mm的范围内。b-b′未满0.05mm时,气体的喷射量不足,难以生成理想的喷雾。此外,如果b-b′超过1.45mm,则因过剩的气体而喷雾稀薄化,因此冷却效率低下,难以形成所需的裂缝,所以是不理想的。所述双重结构的冷却喷嘴中,液体喷出口18的喷嘴厚度d(参看图4)较好是使用小于等于0.2mm的薄的结构,通常由0.05mm左右的金属板形成。液体喷出口18和气体喷射口19为椭圆形或长圆形的情况下,a、b、b′指其短轴。
作为用于生成喷雾的液体,考虑到成本、气化热、处理的简便度等,最好是水。该情况下,如果改变水温,则喷雾的温度也改变,裂缝的深度受到影响,因此较好是使用常温的水,将水温尽可能保持在低温并恒定,减小裂缝深度的不均。此外,从液体喷出口18喷出的水量只要是在1~10毫升/分钟的范围内,都可以实施,实用上较好是3~6毫升/分钟左右,根据要切割的平板玻璃的厚度和种类等适当选定。而且,由于作业中水量的变动使裂缝的深度改变,因此作业中使水量保持一定。
作为生成喷雾所使用的气体,通常使用空气。从气体喷射口喷射的空气的压力根据可将从液体喷出口喷出的液体雾化的条件选定。因此,空气压力没有特别限定,由于压力越高,则喷雾的扩散越受到抑制,可以将冷却宽度保持较小,因此较好是设定为较高的压力。但是,如果该空气压力过高,则冲击了玻璃表面的空气弹回,从反方向冲击从液体喷出口喷出的液体,因此该空气压力较好是0.1~0.4MPa,特别好是0.12~0.24MPa。
将平板玻璃的被加热了的假想切割线部分通过用冷却喷嘴生成的喷雾进行局部冷却时,其冷却宽度实质上与到达玻璃表面的喷雾的宽度(以下称作喷雾宽度)相同,所以局部冷却的冷却宽度可以用喷雾宽度表示。该喷雾宽度随气体喷射口的外径的增大而增大,也根据从气体喷射口喷射的空气的压力而改变。此外,由冷却喷嘴生成的喷雾一般一边扩散一边喷射,因此冷却喷嘴(更准确为冷却喷嘴的最下端)离玻璃表面的距离(以下称作冷却喷嘴的高度)越长则喷雾宽度越大。因此,改变冷却喷嘴的高度的方法作为局部冷却的冷却宽度的调整手段是有效的。另外,如果冷却喷嘴的高度过高,则冷却宽度增大,裂缝的线性恶化,裂缝容易发生弯曲。相反,如果冷却喷嘴的高度过低,则由于空气的逆流,难以生成所需的喷雾。对于图3所示的冷却喷嘴,其高度通常较好是小于等于约10mm,特别好是2~5mm左右。
因为容易控制喷雾宽度,典型的冷却喷嘴较好是液体喷出口和气体喷射口为圆形。但是,也可以使用液体喷出口和气体喷射口为椭圆状的喷嘴,设置成长轴与假想切割线一致。此外,单个冷却喷嘴足可以到达目的,但也可以在假想切割线方向并列多个。
如前所述,这样使液体喷出口比气体喷射口突出的突出型冷却喷嘴可以生成冷却宽度小的喷雾,由此可以提高裂缝的线性,因此是理想的。但是,冷却喷嘴并不局限于所述的突出型。虽然没有图示,但例如可以将液体和气体在喷嘴内部进行混合并雾化,将该生成了的喷雾从喷射口喷射。
本发明中,沿假想切割线以规定的深度形成了切割所需的裂缝的平板玻璃可以通过给予该裂缝部挠距来进行折断。因为该折断实质上与公知的使用切割器的切割中的折断相同,所以略去说明。
本发明中,通过上述切割装置实际对平板玻璃进行切割时,使切割装置和平板玻璃相对移动。无论怎样相对移动,构成切割装置的切割器、加热燃烧器和冷却喷嘴都相对于裂缝的形成方向依次在平板玻璃的假想切割线上呈直线配置。该配置中,只要切割器在加热燃烧器的上游,可以是在任意位置,加热燃烧器到冷却喷嘴的距离根据它们的加热条件和冷却条件、以及要切割的平板玻璃的板厚和速度等适当设定,使得可以以所需的深度形成切割必需的裂缝。其中,作为切割所需的裂缝的深度,对于公称厚2mm的玻璃,较好是板厚的7~10%左右。如果裂缝的深度小于板厚的7%,则给予挠距进行折断时,会难以进行而导致切割损伤。此外,如果裂缝以超过板厚的10%的深度形成,则特别是对薄的平板玻璃,即使不给予挠距,平板玻璃也会出乎意料地自发断裂,所以是不理想的。
此外,切割所需的裂缝的深度因玻璃的板厚的不同而不同,板厚越厚裂缝的深度越深即可。公称厚3.5mm的情况下,切割所需的裂缝的深度较好是板厚的8~18%左右。公称厚5mm的情况下,切割所需的裂缝的深度较好是板厚的8~18%左右。公称厚8mm的情况下,切割所需的裂缝的深度较好是板厚的8~23%左右。公称厚15mm的情况下,切割所需的裂缝的深度较好是板厚的12~23%左右。公称厚19mm的情况下,切割所需的裂缝的深度较好是板厚的15~25%左右。
该裂缝的深度可以通过加热燃烧器与冷却喷嘴的距离以及冷却喷嘴的个数的改变来简便地进行调节。通过加长前述距离,可形成更深的裂缝。但是,如果该距离过长,则局部冷却时的假想切割线附近的玻璃表面温度低于83℃,因此无法形成所需深度的裂缝。该距离可以考虑平板玻璃的相对移动速度和板厚、使用燃烧器燃烧火焰的加热及局部冷却的条件等来进行确定。本发明的优选的实施方式中,将加热燃烧器和冷却喷嘴的至少一方可沿平板玻璃的裂缝形成方向进行位置调整地设置,使得可以改变加热燃烧器到冷却喷嘴的距离,能够容易地调整加热后到局部冷却的时间。通常将冷却喷嘴的位置设为可变的。
接着,根据附图对本发明所述的平板玻璃的切割装置的实施方式进行说明。但是,本发明并不局限于该实施方式及附图。图1是本发明所述的平板玻璃的切割装置的平面图,图2是图1的主视图。图1中,只图示了平板玻璃1的一部分,而且略去了运送辊的图示。
本实施例为将平板玻璃1通过运送辊22沿箭头方向运送,用设置于该平板玻璃1上方的切割装置进行切割的情况。切割装置如下构成在平板玻璃1的运送路线上沿裂缝的形成方向设置基座9,在该基座9上从平板玻璃1的运送方向的上游侧依次安装切割器2、加热燃烧器3、冷却喷嘴4。其中,平板玻璃1的运送方向与假想切割线7的方向一致,切割器2、加热燃烧器3和冷却喷嘴4在该假想切割线7上呈直线设置。通过这样的设置,在以一定速度运送平板玻璃1的同时,先在该平板玻璃1的假想切割线7上的切割起始点通过切割器2刻入刻痕5,该平板玻璃1前进时通过加热燃烧器3自刻痕5沿假想切割线7进行加热,接着通过冷却喷嘴4对该加热了的部分沿假想切割线7进行局部冷却,从而形成切割所需的裂缝。
本装置中, 切割器2简单地使用被广泛用于玻璃切割的金刚石砂轮。该切割器2装置于安装在设于基座9上的切割器座10的气缸8的动作端,平板玻璃1通过运送辊22以规定的速度运送时,气缸8动作,降至平板玻璃1的假想切割线7的端部,在该端部沿假想切割线7的方向刻入长约5~10mm、深50~150μm左右的刻痕5。由此,在刻痕5底部的玻璃上沿垂直方向形成作为切割所需的裂缝的起始点的微细的裂缝。该情况下,由于刻入刻痕5所需的切割器2的加压不是很大,因此对刻痕5的玻璃实质上不会形成引起碎玻璃的水平裂缝。形成了刻痕5的切割器2通过气缸8上升,待机并准备下一块平板玻璃的切割。
如本实施例所示,切割一定长度的平板玻璃时,对于每一块平板玻璃切割器2进行升降形成刻痕5,但例如在制造流水线中对以浮法成形的带状平板玻璃的端部进行切割时,只要裂缝顺利地伸展,原则上刻痕5只需在最初刻入即可。该情况下,作为裂缝中途停止时的对策,在冷却喷嘴后设置例如摄像头,摄像头检测到裂缝中途停止的情况下,向切割器输送信号使其降下,再次引入作为裂缝的起始点的刻痕。由此,其后通过加热和局部冷却可以连续地形成裂缝。
加热燃烧器3为氧气·民用燃气的预混合燃烧器,设置在安装于基座9的保持部件11上。该保持部件11按平板玻璃1的运送方向设置在切割器2的下游侧,本实施例中固定于基座9上,也可以设置为可在基座9上移动。如图5所示意地,加热燃烧器3的燃烧口部由以规定的间距直线排列的多个火焰口23形成。该情况下,火焰口23的大小、间距和直线排列的个数等主要根据要切割的平板玻璃1的板厚和运送速度确定。另外,本实施例的加热燃烧器3具备将50个口径0.6mm的火焰口23以2.3mm的间距成直线状排列的长约120mm的燃烧口部。该加热燃烧器3以前述燃烧口部距平板玻璃1的表面例如7mm的高度进行设置,在平板玻璃1运送的同时,将平板玻璃1的假想切割线部分以规定的加热宽度通过其燃烧火焰24连续地加热至规定的加热温度。这时,燃烧器的高度根据需要通过高度调节机构(未图示)进行调节。
冷却喷嘴4通过保持部件12以距玻璃表面约2mm的高度安装在基座9上。该冷却喷嘴4具有与图3和图4所示例的喷嘴同样的结构,通过喷雾26对用加热燃烧器3加热了的部分的假想切割线7部分进行局部冷却,使切割所需的裂缝沿假想切割线7进行伸展。本实施例的冷却喷嘴4在喷嘴中心部的液体喷出口(口径a0.2mm)的外侧具备环状气体喷射口(外径b0.9mm,内径b′0.3mm),该液体喷出口较气体喷射口突出0.5mm。该冷却喷嘴4的液体喷出口和气体喷射口上分别连接送水管20和送气管21(参看图3),将从该送水管20供给的常温的水从喷嘴中心部的液体喷出口18以一定流量喷出,同时使从送气管21送来的压缩空气从气体喷射口19喷射,从而生成喷雾。接着,通过生成的喷雾对平板玻璃1的被加热了的假想切割线7部分以约2mm的宽度进行局部冷却。
即,用加热燃烧器3加热了的平板玻璃1被运送至冷却喷嘴4的下方时,从冷却喷嘴4喷出喷雾26,自平板玻璃1的假想切割线7的形成有刻痕5的端部开始局部冷却,然后随着平板玻璃1的运送,沿假想切割线7连续地进行冷却。由此,平板玻璃1的假想切割线7部分被以2mm的宽度高效地冷却,该部分的玻璃由于急冷而受到较大的热冲击,因而产生拉伸应力。其结果,刻痕5的微细裂缝由于该应力的作用沿垂直方向伸展,形成达到板厚的7~15%的裂缝,该裂缝进一步以刻痕5为起始点连续地在形成拉伸应力的区域沿假想切割线7伸展,形成切割所需的裂缝6(参看图1)。该裂缝6具有规定的深度,所以平板玻璃通过挠距可以容易地折断。
如图2中以虚线所示,因为本实施例中以可进行位置调整地将冷却喷嘴4设置在基座9上,所以可以适当改变与加热燃烧器3的间隔。另外,虽然未图示,但冷却喷嘴4具备高度调整功能,可以根据需要改变距玻璃表面的高度。
对于非带状的平板玻璃,因为几乎没有翘曲和起伏,以运送辊22进行运送时,加热燃烧器3及冷却喷嘴4分别与玻璃表面的间隔实质上是不变的。但是,例如在浮法玻璃制造流水线中对带状平板玻璃进行切割的情况下,由于端部产生残留应力,因此例如在板厚方向产生10~20mm左右的翘曲和起伏。这样的情况下,通过使用设置于切割装置的例如滚动轮25(参看图2),将平板玻璃的翘曲和起伏传递至加热燃烧器3和冷却喷嘴4,使加热燃烧器3和冷却喷嘴4的高度随玻璃表面的变化而动,或通过未图示的压辊按压玻璃表面来矫正翘曲和起伏,从而可以进行稳定的燃烧火焰加热和局部冷却。
相反,使用激光的局部加热的情况下,不但设备复杂,而且重量大,难以随具有翘曲和起伏的平板玻璃作出相应的变化。此外,即使使激光装置与平板玻璃随动的情况,或将平板玻璃压平的情况下,依然无法避免激光装置与平板玻璃的距离的不均,若该距离稍有偏差,则难以用激光对玻璃表面恒定地进行加热。此外,如果对平板玻璃按压过度,玻璃会碎裂。
实施例(实施例1)使用图1所示的切割装置,在板厚为1.8mm、3.5mm、6mm、12mm、19mm的各平板玻璃的切割起始点上以相同的刻痕形成条件通过金刚石砂轮刻入深100μm、长7mm的刻痕,接着将这些平板玻璃的假想切割线部分用燃烧器加热后,用冷却喷嘴对该加热部沿假想切割线进行局部冷却,形成裂缝,沿该裂缝折断平板玻璃后,对裂缝的形成情况和折断后是否有碎玻璃通过目视进行确认。在支撑平板玻璃的裂缝的正下方的状态下,对裂缝两侧从上方进行加压,通过杠杆原理进行折断。
上述中,使平板玻璃相对于燃气(民用燃气)和氧气的预混合燃烧器(图5)进行相对移动,通过该燃烧器的燃烧火焰对其假想切割线部分连续地进行加热。这时,对每一块平板玻璃都改变燃气和氧气的比例,改变加热温度T。此外,使用图4的冷却喷嘴(a0.2mm,b0.9mm,b′0.3mm,c0.5mm,d0.05mm),将水以4毫升/分钟的比例从液体喷出口喷出,将空气以约0.24MPa从气体喷射口喷射,生成喷雾,对前述加热部通过该喷雾以约3mm的冷却宽度沿假想切割线进行局部冷却。这时,通过改变加热燃烧器与冷却喷嘴的距离,改变局部冷却时的玻璃表面温度。这时,由于用喷雾进行局部冷却,因此在冷却部的玻璃表面几乎没有残留水滴,未发生玻璃的污染。平板玻璃的运送速度全都设为500m/h。此外,板温为25~27℃,外部气温24~28℃。
各平板玻璃的裂缝形成情况和是否有碎玻璃与燃烧器的燃气与氧气的比例、冷却喷嘴与燃烧器的距离L、加热温度T、刚加热后以假想切割线为中心的10mm宽度的两端温度(左右平均值)t、局部冷却时的假想切割线附近的玻璃表面温度T′一起记载于表1和表2。裂缝的形成情况中,以◎表示可特别良好地折断的裂缝(具有足够的深度且线性良好),以○表示可折断的裂缝(部分形成2条裂缝,或者裂缝表面部分具有微量的玻璃粉末,但可以折断,实用上没有障碍),以×表示未形成可折断的裂缝。表1和表2的“折断后的碎玻璃”中,“-”表示没有进行折断评价。t/T未记载于表中,都大于等于45%。



由表1和表2可知,例1、例5、例10、例13和例17中,不论板厚多少,都可以折断,形成良好的裂缝。此外,加热温度T较高的例2、例6、例15和例18中,在裂缝表面部分地产生微量的玻璃粉末,例9、例12和例14虽然部分地形成2条裂缝(认为是由于加热温度高,或者最高温度和冷却宽度中心的偏差造成的),但获得可以折断且实用上没有障碍的裂缝。
(实施例2)使用图1所示的切割装置,在板厚为3.5mm、5mm的各平板玻璃的切割起始点上以相同的刻痕形成条件通过金刚石砂轮刻入深100μm、长7mm的刻痕,接着将这些平板玻璃的假想切割线部分用燃烧器加热后,用由冷却喷嘴(冷却条件与实施例1相同)生成的喷雾对该加热部沿假想切割线进行局部冷却,使裂缝伸展。这时,对于板厚为3.5mm的平板玻璃和板厚为5mm的平板玻璃,分别使燃烧器与冷却喷嘴的距离L在180~380mm的范围和180~460mm的范围内进行变化,对L与形成的裂缝的深度的关系进行考查。其结果示于表3。燃烧器的加热条件在板厚3.5mm时为燃气/O2360/320(Nl/h),在板厚5mm时为燃气/O2340/320(Nl/h),平板玻璃的运送速度设为900m/h。
此外,裂缝的深度(单位μm)通过用切割器在平板玻璃的背面引入与裂缝垂直方向的切割线折断后、用万用投影机(Nikon V-12)对裂缝部分进行放大投影的方法进行测定。


由表3可知,燃烧器与冷却喷嘴的距离L越长,裂缝的深度越深。这推测是由于L越长则加热后到局部冷却的时间越长,这期间热量自玻璃表面沿板厚方向传导,压缩应力区域形成到其深处,这时如果对玻璃表面进行局部冷却,则拉伸应力通过该压缩应力的作用在其深处形成,沿板厚方向的裂缝的伸展得到促进。
(实施例3)使用图1所示的切割装置,固定使用切割器的刻痕形成条件和使用加热燃烧器的加热条件(燃气/O2300/280(Nl/h)),使用冷却喷嘴的局部冷却条件只改变液体喷出口的突出量来改变冷却宽度,其它条件相同地在平板玻璃(100cm(长度)×100cm(宽度)×3.5mm(板厚))的长度方向形成切割所需的裂缝后,对于该裂缝部施以挠距,将平板玻璃折断,对折断部的线性进行考查。平板玻璃的运送速度设为900m/h。
上述中,在平板玻璃的切割起始点上通过金刚石砂轮刻入深100μm、长7mm的刻痕。将氧气·民用燃气的预混合燃烧器设置在距玻璃表面7mm的高度,在运送平板玻璃的同时对其假想切割线部分连续地进行加热,使加热温度T为162℃,以假想切割线为中心的10mm宽度的两端部的左右平均温度t为85℃,局部冷却时的温度T′为约90℃。这时的外部气温22~26℃,板温为23~25℃。
此外,将与实施例1相同的冷却喷嘴以距玻璃表面3mm的高度设置在燃烧器下游侧300mm的位置,将水以4毫升/分钟的比例从液体喷出口喷出,将空气以约0.24MPa从气体喷射口喷射,生成喷雾,对加热了的部分的假想切割线通过该喷雾进行局部冷却。表4为其结果,表示液体喷出口的突出量与冷却宽度及裂缝的线性(不规则形)的关系。表4的不规则形表示与假想切割线的偏差量(相对于裂缝的行进方向,右侧以+表示,左侧用-表示),线性的评价基于该不规则形的偏差量,用◎特别好、○好、×不良(偏差量超出实用允许量)来表示。


由表4可知,突出量在20mm以内的范围内,得到不规则形较小、在实用上不构成障碍的程度的线性,特别是突出量为0.3~0.7mm时不规则形为可忽略的程度,可以进行线性良好的切割。相反,突出量为30mm时,不规则形为±1.0mm,无法进行线性良好的切割。都没有发现碎玻璃。
(实施例4)通过图1所示的切割装置,在用浮法成形的带状平板玻璃(板厚3.5mm)的两端部的辊痕附近(自辊痕沿板宽度方向内侧0.5英寸(12.7mm)的位置),使用与实施例1相同的加热燃烧器和冷却喷嘴以以下的加热条件和冷却条件形成裂缝,沿该裂缝进行折断,对是否能够正常地切割进行确认。该情况下,首先用切割器形成相对于行进方向垂直的方向(宽度方向)的切割线,以一定的尺寸切割形成了裂缝的带状平板玻璃后,在用辊支撑裂缝的正下方的状态下,对裂缝部的辊痕侧部分从上方用辊进行加压,对裂缝部施以挠距,从而进行折断。
其结果,在该折断部获得未产生碎玻璃、而且线性良好的高品质切割面。切割时的平板玻璃的运送速度为980m/h,气温为37℃,板温为54℃。
(加热条件)燃烧器高度距玻璃表面7mm,燃气量200Nl/h,氧气量220Nl/h,加热部与冷却部的距离220mm(冷却条件)冷却喷嘴高度距玻璃表面2mm,自液体喷出口的水量4毫升/分钟,自气体喷射口的气压约0.24MPa另一方面,将前述带状平板玻璃的相同的部位通过以往的使用切割器的切割方法进行切割后,折断部大量产生碎玻璃、飞边等,得到实用上无法令人满意的切割面,无法进行正常的切割。
(实施例5)使板厚变化,考查切割所需的裂缝的深度。改变玻璃的板厚时,为了可以得到切割所需的裂缝的深度,使燃气量、氧气量、加热部与冷却部的距离、冷却喷嘴的数量、运送速度适当变化。结果示于表5。


由表5可知,切割所需的裂缝的深度随玻璃的板厚而改变,公称板厚越厚,则裂缝的深度设得越深越好,公称厚2mm的玻璃的情况下,较好是板厚的7~10%左右,公称厚19mm的玻璃的情况下,切割所需的裂缝的深度较好是板厚的15~25%左右。
产业上利用的可能性如果采用本发明的平板玻璃的切割方法,则通过使用加热燃烧器的燃烧火焰的加热和使用喷雾的局部冷却的并用,可以使在切割起始点附近刻入的刻痕的微小裂缝沿假想切割线伸展并形成切割所需的裂缝,本发明可以用于建筑用、车辆用、基板用等各种平板玻璃的切割。
权利要求
1.平板玻璃的切割方法,其特征在于,在平板玻璃的假想切割线的切割起始点附近刻入作为裂缝起始点的刻痕后,利用加热燃烧器的燃烧火焰沿假想切割线对该平板玻璃的假想切割线部分进行加热,使刚加热后的玻璃表面温度中,假想切割线附近的最高温度达到130℃或130℃以上,以假想切割线为中心起算的10mm宽的左右两个端部的平均温度达到所述最高温度的45%或45%以上,接着,通过利用喷雾以1~20mm的宽度沿假想切割线对该加热部进行局部冷却,自前述刻痕沿假想切割线形成平板玻璃的切割所需的裂缝,将平板玻璃沿该裂缝进行折断。
2.如权利要求1所述的平板玻璃的切割方法,其特征还在于,前述的局部冷却在假想切割线附近的玻璃表面温度大于等于83℃的状态下进行。
3.如权利要求1或2所述的平板玻璃的切割方法,其特征还在于,前述假想切割线附近的最高温度为130~220℃。
4.如权利要求1~3中任一项所述的平板玻璃的切割方法,其特征还在于,利用喷雾的冷却宽度为1~10mm。
5.如权利要求1~4中任一项所述的平板玻璃的切割方法,其特征还在于,前述局部冷却通过在喷嘴中心部的液体喷出口的外周具备气体喷射口,且该液体喷出口比气体喷射口更突出的冷却喷嘴进行。
6.如权利要求1~5中任一项所述的平板玻璃的切割方法,其特征还在于,通过改变使用加热燃烧器的加热到使用冷却喷嘴的局部冷却的时间,改变该局部冷却时的玻璃表面温度,调整裂缝的深度。
7.如权利要求1~6中任一项所述的平板玻璃的切割方法,其特征还在于,对连续成形的带状平板玻璃的两端部进行切割。
8.平板玻璃的切割装置,其特征在于,具备用于在平板玻璃的假想切割线的切割起始点附近刻入作为裂缝起始点的刻痕的切割器、用于自刻痕部沿假想切割线利用燃烧火焰对该平板玻璃进行加热的加热燃烧器、和用于产生喷雾的冷却喷嘴,这些切割器、加热燃烧器和冷却喷嘴实质上配置在前述假想切割线上,对利用前述加热燃烧器的燃烧火焰以规定的加热宽度加热至规定的温度的假想切割线部分利用该冷却喷嘴生成的喷雾以规定的冷却宽度进行局部冷却。
9.如权利要求8所述的平板玻璃的切割装置,其特征还在于,前述冷却喷嘴在喷嘴中心部的液体喷出口的外周具备气体喷射口,且该液体喷出口比气体喷射口更突出。
10.如权利要求9所述的平板玻璃的切割装置,其特征还在于,前述冷却喷嘴的液体喷出口的突出量c满足0<c≤20mm。
11.如权利要求8~10中任一项所述的平板玻璃的切割装置,其特征还在于,将前述加热燃烧器和冷却喷嘴的至少一方设置成可沿平板玻璃的假想切割线移动,两者的间隔是可变的。
12.如权利要求8~11中任一项所述的平板玻璃的切割装置,其特征还在于,前述冷却喷嘴的液体喷出口的口径a为0.15~0.6mm,气体喷射口的外径b和内径b′满足b-b′=0.05~1.45mm。
全文摘要
利用热变形的平板玻璃的切割中,防止了碎玻璃的产生、且对较厚的平板玻璃也得到线性优异的良好的切割面。在平板玻璃的切割起始点刻入作为裂缝起始点的刻痕后,通过加热燃烧器沿假想切割线对该平板玻璃进行加热,接着通过由喷嘴中心部的液体喷出口比外周的气体喷射口更突出的冷却喷嘴生成的喷雾对该加热了的假想切割线部分进行局部冷却,使前述刻痕的微细的裂缝沿假想切割线伸展,在平板玻璃上形成切割所需的裂缝。
文档编号B26F3/06GK1890188SQ20048003563
公开日2007年1月3日 申请日期2004年12月2日 优先权日2003年12月5日
发明者片冈靖佳, 高桥富男 申请人:旭硝子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1