专利名称:电动工具的制作方法
技术领域:
本发明涉及可以被电动机驱动并旋转的电动工具,具体地说,本发明涉及由于改
进了电动机的冷却机构而提高了耐用性并提高了工作效率的电动工具。
背景技术:
作为用于紧固螺钉、螺栓等的电动工具,已知一种使用油压产生撞击力的油压脉 冲工具。在油压脉冲工具中,不存在金属之间的碰撞。因此,与机械式冲击工具相比,油压脉 冲工具的特征在于工作噪音低。作为这种类型的油压脉冲工具,例如在JP-2005-040881-A 中公开了一种技术,该技术使用电动机作为驱动油压脉冲单元的动力源,并且电动机的输 出轴直接与油压脉冲单元连接。因为油压脉冲单元在使用时温度升高,所以在电动机与油 压脉冲单元之间(在电动机的前端侧)设置风扇;并且电动机可以被风扇冷却。当扣动用 于操作油压脉冲工具的触发开关时,驱动电流被供应至电动机。在JP-2005-040881-A中, 在电动机的旋转轴与输出轴之间设置减速齿轮,并且通过以高转速驱动小型电动机来保证 必要的输出转矩,从而减小了产品(即,油压脉冲工具)的尺寸。 在普通的电动工具中,在电动机的旋转轴与输出轴之间设置减速齿轮,并且通过 以高转速驱动小型电动机来保证必要的输出转矩,从而减小了产品(即,电动工具)的尺 寸。在油压脉冲工具中,使用油压产生撞击力,并且突然在某一角度向安装在电动机输出轴 上的前端工具施加电动机的旋转力。在撞击操作中,工具受到来自前端工具侧的反作用力, 并且该反作用力施加在减速齿轮的支撑部分上;因此,当在油压脉冲工具中设置减速齿轮 时,反作用力变大,这增大了撞击操作时的振动。因此,为了减小撞击操作时的振动,提出了 一种直接驱动机构,在这种直接驱动机构中,在电动机的旋转轴与油压脉冲机构之间不设 置减速齿轮。 为了采用这种直接驱动机构,必须使用提供低速度高转矩类型的电动机。 一般来 说,与使用减速齿轮的高速度低转矩类型的电动机相比,低速度高转矩类型的电动机的尺 寸更大。此外,当使用低速度高转矩类型的电动机时,必须充分保证用于支撑电动机转子的 轴承部分的强度。特别的是,在使用这种电动机的工具的使用过程中,当出现与工具的原始 使用目的不同的状态(例如掉落)时,如果转子支撑部分的强度不够,那么就存在因转子的 惯性力而使工具损坏的可能性。因此,转子支撑部分必须构造成使得转子支撑部分的两端 分别保证足够的强度。 在油压脉冲机构中,在撞击之后,由于来自前端工具侧的反作用力的作用,油压脉 冲单元的转数减少;并且在包括直接驱动机构的无刷DC(直流)电动机中,由于没有设置减 速齿轮,所以电动机的转数也会减少。假设使用了无刷DC电动机,那么当电动机的转数因 为反作用力而减少时,可能会在驱动电路中产生大电流,因而使开关元件的温度异常升高。
发明内容
本发明的目的是提供一种电动工具,该电动工具提高了用于冷却电动机、油压脉冲单元等的动力传输机构的冷却效率,从而能够提高电动工具的耐用性。 本发明的另一目的是提供一种电动工具,通过与电动机的旋转不同步地驱动风
扇,即使电动机停止,该电动工具也可以保持这种提高的冷却效率。
根据本发明的一个方面,提供了一种电动工具,该电动工具包括电动机;动力传
输机构,其可被电动机旋转驱动以传输电动机的旋转力并且与钻头连接;以及壳体,其用于
在其中容纳电动机和动力传输机构。具体地说,根据这种电动工具,在壳体内部设置有用于
冷却动力传输机构或电动机的电风扇;从前部起顺序地布置动力传输机构、电动机和电风
扇;并且电风扇布置在壳体内部的后面并且设置在电动机与壳体后表面之间。 根据本发明的另一个方面,电风扇为鼓风机并包括吸入口、外壳和排放口。电风
扇的外壳通过弹性部件安装在壳体上。优选的是,弹性部件可以优选由泡沫部件制成,并且
该弹性部件还可以设置成围绕排放口和鼓风机外壳的一部分。 根据本发明的又一个方面,电风扇构造成该电风扇的驱动与电动机的旋转不同 步。电动机是无刷DC电动机,并且在该无刷DC电动机的后端布置有电动机驱动电路基板, 该电动机驱动电路基板设置在电动机与电风扇之间,并且该电动机驱动电路基板包括控制 无刷DC电动机的开关元件。在壳体中形成有手柄部分,该手柄部分从壳体的主体部分的容 纳有动力传输机构的部分向下延伸。 根据本发明的第一方面,因为从前部起顺序地布置动力传输机构、电动机和电风 扇,所以可以有效地冷却动力传输机构和电动机。此外,因为电风扇设置在电动机与壳体后 表面之间,所以可以有效地进行电动机冷却操作。 根据本发明的第二方面,因为电风扇从旋转轴前方附近吸入空气并且沿着壳体的
径向向外方向从壳体侧表面排出空气,所以可以提高电风扇的冷却操作的效率。 根据本发明的第三方面,电动机的旋转轴被分别布置在电动机前方和后方的两个
轴承保持,并且布置在电动机后方的轴承位于电动机与电风扇之间。这样可以縮短两个轴
承之间的距离,并且这两个轴承还可以使用较小的轴承来实现。 根据本发明的第四方面,因为电风扇为包括吸入口 、外壳和排放口的鼓风机,所以 与轴流式风扇相比,可以提高冷却效果。 根据本发明的第五方面,因为电风扇外壳通过弹性部件安装到壳体上,所以可以 防止电风扇振动。 根据本发明的第六方面,因为弹性部件由泡沫部件制成,所以可以防止电风扇振 动,并且还可以使电风扇与壳体彼此完全密封。 根据本发明的第七方面,因为弹性部件设置成围绕排放口和鼓风机外壳的一部 分,所以可以使鼓风机的排放侧与吸入侧保持气密性,从而能够防止空气流出鼓风机并泄 漏到外部。 根据本发明的第八方面,因为电风扇的驱动与电动机的旋转不同步,所以即使在 电动机停止的状态下,也可以驱动电风扇,从而可以有效地冷却电动机。
根据本发明的第九方面,电动机是无刷DC电动机,并且在无刷DC电动机的后端布 置有电动机驱动电路基板,该电动机驱动电路基板设置在电动机与电风扇之间,并且该电 动机驱动电路基板包括控制无刷DC电动机的开关元件。借助于这种结构,可以通过电风扇 同时有效地冷却电动机和逆变电路基板。
根据本发明的第十方面,因为电风扇没有安装在电动机的旋转轴上,所以可以独 立地控制电风扇而不会受到电动机旋转的影响,从而能够节省电风扇消耗的电力。
图1是根据实施例的油压脉冲工具的剖视图。 图2示出了图1所示的油压脉冲单元4和旋转轴11,图2 (1)是油压脉冲单元4的 放大剖视图,图2(2)是旋转轴11的放大剖视图。 图3是沿着垂直于油压脉冲单元4的轴向延伸的表面截取的脉冲式油压单元4的 剖视图;具体地说,图3示出了油压脉冲单元4在使用时的一次旋转运动的八个阶段。
图4是当从前面观看时图1所示的冷却风扇单元的透视图。
图5是沿图1所示的箭头标记线A-A截取的剖视图,也就是说,
图5是当从后面观看时冷却风扇单元17的后视图。 图6是壳体6的主体部分6a的局部透视图,示出了主体部分6a的后端部分的右 侧的内部形状。 图7是沿着图1所示的箭头标记线C-C截取的剖视图,示出了内部板32与电动机 3的线圈3c之间的位置关系。 图8是沿着图1所示的箭头标记线B-B截取的电动机3的定子部分的剖视图。
图9是沿图7所示的箭头标记线D-D截取的剖视图,示出了内部板32与电动机3 的线圈3c之间的位置关系以及从内部板32向线圈3c方向流动的空气流。
图10是根据本发明修改形式的内部板42的剖视图,示出了沿图1所示的箭头标 记线c-c截取的剖面形状。 图11示出了根据本发明实施例的油压脉冲工具的油压脉冲单元4与手柄部分6b 之间的位置关系。
具体实施例方式
下面将参考附图对根据本发明的实施例进行描述。在本发明说明书的下面描述 中,使用油压脉冲工具作为电动工具的例子;并且在下面描述中提到的上方、下方、前方、后 方是图1所示的上方、下方、前方、后方。 图1是根据本发明实施例的油压脉冲工具的整体的剖视图。该油压脉冲工具1使 用通过电源线2从外部供应的电源,使用电动机3作为驱动源,并且使用电动机3驱动用 作动力传输机构的油压脉冲单元4,以便把旋转力和撞击力施加在与油压脉冲单元4连接 的输出轴5上,由此旋转撞击力被连续地或间歇地传输至例如套筒钻头等前端工具(未示 出),以便执行例如螺钉紧固操作和螺栓紧固操作等操作。 通过电源线2供应的电源是DC(直流)电源或者例如AC 100V等AC(交流)电源; 对于AC电源,在其通过设置在油压脉冲工具1内部的整流器(未示出)转换为DC电源之 后,被输送到电动机的驱动电路。电动机3是无电刷DC电动机,其内周侧包括具有永磁体 的转子3b,其外周侧包括具有缠绕在铁芯3a上的线圈3c的定子;并且,电动机3由两个轴 承10a和10b支承,使得电动机3的旋转轴11可以旋转。位置靠前的轴承10b是具有大直 径的轴承,并且可以通过内部板32固定在壳体6的圆柱形主体部分6a内部。位置靠后的轴承10a是直径比前轴承10b小的轴承,并且可以固定在与主体部分6a形成一体的轴承保 持架15上。壳体6可以通过模制塑料部件等方式制成,使得主体部分6a与手柄部分6b形 成一个整体。 在电动机3的后部布置有用于驱动电动机3的驱动电路基板7。在该电路基板7 上载有逆变电路,该逆变电路由例如FET(场效应晶体管,Field Effect Transistor)等开 关元件7a和例如Ha11 IC(霍尔传感器)等用于探测转子3的旋转位置的位置探测元件形 成。在主体部分6a的内部后端附近布置有冷却风扇单元17。冷却风扇单元17可以使用电 动操作的离心式风扇,该离心式风扇可以独立于电动机3旋转,并且可以抽吸前轴周围的 空气,然后将空气沿着圆周方向单向排出;并且,可以通过小型DC电动机驱动冷却风扇单 元17。 壳体6还包括从主体部分6a基本直角向下方延伸的手柄部分6b,并且在手柄部 分6b的安装部分附近布置有触发开关8。手柄部分6b的内部设置有开关电路基板14,并 且与触发开关8的扣动量成比例的信号可以被传送至电动机控制基板9a。手柄部分6b的 下侧布置有多个电路基板9,其中包括电动机控制基板9a和用于冷却风扇的电源电路基板 9b。 容纳于主体部分6a前侧的油压脉冲单元4包括衬板23,该衬板23用作油压脉冲 单元4的输入轴。衬板23与电动机3的旋转轴11直接连接,由此电动机3的旋转可以直 接传输给衬板23而不会减小。因此,在轴承10b的内侧,衬板23的连接部分23a可以装配 在形成于旋转轴11的前端中的六角形孔llf中。因为衬板23与旋转轴11之间的连接部 分以这种方式在轴向上与内部板32布置在同一位置,所以可以提高连接部分的刚性。
当扣动触发开关8并且电动机3由此启动时,电动机3的旋转传输至油压脉冲单 元4。油压脉冲单元4的内部装有油,并且当没有在输出轴5上施加负载时或者施加小负载 时,仅仅由于油的阻力,输出轴5可以与电动机3的旋转基本上同步地旋转。当在输出轴5 上施加大负载时,会使得输出轴5的旋转停止,而只有油压脉冲单元4外周侧的衬套继续旋 转。在每次旋转的同一位置,油压突然升高,从而给输出轴5施加大的紧固转矩(撞击力), 由此输出轴5以较大的力旋转。从此时起,多次重复类似的冲击操作,并且间歇性地重复传 输撞击力,直到被紧固部件以设定转矩紧固为止。 图2(1)是图l所示的油压脉冲单元4的剖视图,图3是沿着图l所示的箭头线 C-C截取的剖视图,具体地说,图3是油压脉冲单元4的剖视图,示出了油压脉冲单元4在 使用时的一次旋转运动的八个阶段。油压脉冲单元4包括两个主要部分,即可与电动机3 同步旋转的驱动部分,和可与将要安装前端工具的输出轴5同步旋转的输出部分。
可与电动机3同步旋转的驱动部分包括衬板23,其与电动机3的旋转轴直接连 接;衬套21,其固定在衬板23的外周侧并向前延伸,并且其外径基本为圆柱形;以及下部板 26,其固定在衬套21的前部内周侧。可与输出轴5同步旋转的输出部分包括主轴24;以 及可以通过弹簧安装在主轴24上的叶片25a、25b(图3)。 主轴24穿过下部板26,并且被支撑为可以在衬套21内旋转。衬套21与主轴24 之间填充有操作用油,同时操作用油被分别安装在衬套21两端的衬板23和下部板26密封 住。在下部板26与主轴24之间以及在衬套21与衬板23之间设置有0型环27和28, 0型 环27和28分别用于保证这些部件之间的气密性条件。这里,衬套21包括溢流阀22,其用于把油压从高压室减小到低压室。因此,可以控制所产生的最大油压,从而可以调节紧固转矩。 在衬套21内形成有衬套室,在该衬套室的剖面中形成了如图3所示的大致四个区 域。叶片25a和25b通过弹簧插入到主轴24的外周部分中,更具体地说,插入到主轴的相 对的两个槽部分中;弹簧对叶片25a和25b施压,使得叶片25a和25b可以与衬套21的内 表面接触。在主轴24的位于叶片25a与25b之间的外周表面上设置有突出密封表面26a 和26b ,突出密封表面26a和26b分别由沿着主轴24的轴向延伸的两个突出带状表面形成。 在衬套21的内周表面上设置有人字形突出部分,即突出密封表面27a和27b以及突出部 分28a和28b 。 在油压脉冲工具1的螺栓紧固操作中,在紧固螺栓的底座表面就位后,主轴24被 加载,由此使得主轴24、叶片25a和25b几乎停止,而只有衬套21继续旋转。由于衬套21 因电动机3的旋转而旋转,所以每次旋转产生一个冲击脉冲。在该冲击脉冲产生期间,在油 压脉冲工具1内,形成在衬套21的内周表面上的突出密封表面27a与形成在主轴24的外 周表面上的突出密封表面26a接触。与此同时,形成在衬套21的内周表面上的突出密封表 面27b与形成在主轴24的外周表面上的突出密封表面26b接触。按照这种方式,因为形成 在衬套21的内周表面上的突出密封表面分别与形成在主轴24的外周表面上的突出密封表 面接触,所以衬套21内部被分成两个高压室H和两个低压室L。并且,由于高压室H与低压 室L之间的压差,主轴24旋转,从而使紧固螺栓紧固。 接下来,下面将对油压脉冲单元4的操作过程进行描述。首先,通过扣动触发开关 8,电动机3旋转,并且随着电动机3的旋转,衬套21也同步旋转。图3(l)-(8)示出了衬套 21以相对于主轴24的相对角度旋转一次的状态。如上文所述,当没有在输出轴5上施加负 载时或者当在输出轴5上施加小负载时,仅仅由于油的阻力,输出轴5可以与电动机3的旋 转基本同步地旋转。当在输出轴5上施加大负载时,会使得直接连接在输出轴5上的主轴 24停止旋转,而只有存在于主轴24外部的衬套21继续旋转。 图3(1)示出了当因为冲击脉冲而在主轴24中产生撞击力时的位置关系。图3(1) 所示的位置是油被密封住的位置,并且每次旋转出现一次这种密封状态。这里,在主轴24 轴向的整个区域上,突出密封表面27a与26a相互接触,突出密封表面27b与26b相互接触, 叶片25a与突出部分28a相互接触,叶片25b与突出部分28b相互接触,因而衬套21的内 部空间被分成四个室,即两个高压室和两个低压室。 这里,术语"高压"和"低压"用于表示衬套21内部所存在的油压。此外,当衬套21 因电动机3的旋转而旋转时,高压室的容积减小,因而油被压縮,从而瞬时产生高压;这种 瞬时高压把叶片25推向低压室一侧。结果,通过叶片25a和25b给主轴24瞬时施力,从而 产生强的转矩。这种高压室的形成把这种强撞击力施加给叶片25a和25b,从而使叶片25a 和25b在图3(1)中的顺时针方向上旋转。图3(1)所示的位置在本说明书中被称为"撞击 位置"。 图3 (2)示出了衬套21从撞击位置转过45度的状态。在经过图3 (1)所示的撞击 位置之后,因为突出密封表面27a与26a之间、突出密封表面27b与26b之间、叶片25a与 突出部分28a之间以及叶片25b与突出部分28b之间的接触状态分别解除,所以衬套21内 部空间的四个分隔室的分隔状态解除,从而允许油在空间中流动;因此,不会产生转矩,从
7而允许衬套21进一步因电动机3的旋转而旋转。 图3(3)示出了衬套21从撞击位置转过90度的状态。在这种状态下,因为叶片 25a和25b分别与突出密封表面27a和27b接触并且沿径向向内移回到不从主轴24伸出 的位置,所以叶片没有受到油压的影响,从而没有产生转矩,因此允许衬套21继续旋转。图 3(4)示出了衬套21从撞击位置转过135度的状态。在这种状态下,因为衬套21的内部空 间相通从而油压没有变化,所以主轴24中没有产生旋转转矩。 图3(5)示出了衬套21从撞击位置转过180度的状态。在该位置,虽然突出密封 表面27a与26b相互接近,并且突出密封表面27b与26a相互接近,但是它们不相互接触。 这是因为,形成在主轴24上的突出密封表面26a和26b相对于主轴24的轴线位置不对称。 类似的是,形成在衬套21内周的突出密封表面27a和27b相对于主轴24的轴线也位置不对 称。因此,在该位置,因为主轴24几乎不受油压影响,所以主轴24中几乎不产生转矩。这 里,在该位置产生的转矩不为零的原因如下也就是说,充到衬套内部的油具有粘性,因此, 当突出密封表面27b与26a彼此相对或者突出密封表面27a与26b彼此相对时,形成了高 压室,但高压程度微小,因而与图3(2)-图3(4)和图3(6)-图3(8)的状态不同,产生了微 小的旋转转矩。 图3(6)-图3(8)所示的状态与图3(2)-图3 (4)所示状态几乎相同,并且在这些 状态下,不会产生转矩。当衬套21从图3(8)所示状态进一步旋转时,其状态返回到图3(1) 所示的状态。也就是说,在主轴24轴向的整个区域上,突出密封表面27a与26a相互接触, 突出密封表面27b与26b相互接触,叶片25a与突出部分28a相互接触,以及叶片25b与突 出部分28b相互接触,因而衬套21的内部空间被分隔成四个室,即两个高压室和两个低压 室。因此,在主轴24中产生强转矩。 如上文所述,在紧固操作中,因为有粘性的油被反复加压和降压,所以使油产生热 量。此外,由于电动机3的旋转在撞击操作中被控制,或者根据情况停止旋转(电动机被锁 住),或者电动机3发生微小的反向旋转,所以会使过量电流流入逆变电路和电动机的定子 线圈,从而使线圈3c和开关元件7a产生热量。作为用于防止这种热量产生的措施,提供了 如图1所示的冷却风扇单元17。 再次参考图l,冷却风扇单元17、电动机3和油压脉冲单元4容纳在壳体6的主体 部分6a内,并且它们按照油压脉冲单元4、电动机3和冷却风扇单元17的顺序沿基本平行 于主轴24的旋转轴线的方向布置。严格地讲,油压脉冲单元4与电动机3优选可以相互共 轴地布置;然而,冷却风扇单元17可以不与这些部件完全共轴,而是其中心轴线可以略微 偏移,或者冷却风扇单元17的旋转轴可以相对于电动机3的旋转轴11以一定角度布置。
油压脉冲单元4内的油的性质可能由于热量发生很大变化,因而最需要冷却这些 油;因此,有效的是使导入的空气首先作用于油压脉冲单元4以使其冷却。因此,根据本实 施例,主体部分6a的设置有油压脉冲单元4的部分的上横向形成有多个进气口 31,并且通 过驱动冷却风扇单元17,可以经过进气口 31把空气从外部吸入。尽管图1只示出了一个进 气口 ,然而可以形成总共八个缝隙状进气口 31 ,即在主体部分6a的右侧形成四个进气口 31 并且在主体部分6a的左侧形成四个进气口 31,使得这些进气口 31的纵向与输出轴5基本 平行。这里,进气口 31的形状具有较高的自由度;也就是说,缝隙的方向可以沿着主体部分 6a的周向设置,或者进气口 31可以具有任意形状。
从进气口 31导入的空气首先冷却油压脉冲单元4,然后经过内部板32的通风口 32d并流向电动机3。在电动机3中,空气流动通过转子3b、铁芯3a与线圈3c之间的空间 然后向后流动,从而冷却设置在驱动电路基板7上的电子元件,其中该驱动电路基板7布置 在电动机3的后方并与电动机3的轴向垂直。然后,空气被从冷却风扇单元17的轴附近吸 入,再通过冷却风扇沿周向从排放口 17a排出,然后再经过形成在主体部分6a中的排气口 (下面将要描述),最后扫放到壳体6外部。 根据本实施例,由于使用了具有直接驱动机构的无刷电动机,所以在撞击操作中, 电动机3的转数少,并且由此大电流流入线圈3c,从而开关元件7a的温度容易升高。因 此,通过把驱动电路基板7布置在冷却风扇单元17附近,也就是布置在电动机3后部,增加 了开关元件7a附近的冷空气量,从而能够提高冷却效果,并因此能够提高电动工具的耐用 性。 冷却风扇单元17与电动机3分开驱动。因此,即使当电动机3的旋转停止时,也 可以冷却已经产生热量的油压脉冲单元4和电动机3。冷却风扇单元17通过弹性部件30 设置在壳体6的主体部分6a中。因此,防止了在撞击操作中由油压脉冲单元4所引起的振 动传递到冷却风扇单元17,从而能够防止冷却风扇单元17损坏。此外,虽然在驱动冷却风 扇单元17时由于冷却风扇单元17的旋转振动而产生噪音,但是因为冷却风扇单元17通过 弹性部件30设置在壳体6的主体部分6a中,所以可以限制这种旋转振动。因为弹性部件 30由泡沫材料制成,所以可以提高弹性部件30的振动限制效果并且还可以减轻弹性部件 30的重量。 电动机3的转子3b设置在旋转轴11上。图2(2)示出了图1所示的旋转轴11的 放大剖视图。旋转轴ll在其与油压脉冲单元4连接的一侧由轴承10b支撑。使用直径比 轴承10a的直径大的轴承作为轴承10b。旋转轴11的安装有轴承10a的部分是小直径部分 lla,该小直径部分lla的直径比旋转轴11的轴直径部分lib的直径略小;并且旋转轴11 的安装有轴承10b的部分是大直径部分llc,该大直径部分lie的直径比旋转轴11的轴直 径部分lib的直径略大。大直径部分lie的一部分上形成凸缘lld,该凸缘lid的直径沿径 向向外延伸。轴承10b从旋转轴11的前轴端部插入大直径部分11c并且布置成其内环可 以与凸缘lld接触。并且,把定位挡圈35安装在环形槽lie中,从而使轴承lOb可以固定 在旋转轴11上。 内部板32安装在轴承10b的外环侧,轴承10b的外环的前端部分设置成可以与凸 缘32c接触,并且板33与螺钉34螺纹连接,从而把轴承10b固定在内部板32上。内部板 32为厚度与轴承10b的厚度基本相同的板状部件;并且,内部板优选可以由诸如铝合金或 不锈钢合金等金属制成。在轴承10b的两侧,也就是在该轴承10b的内环和外环侧,设置有 用于防止轴承10b相对于内部板32沿轴向(沿前后方向)移动的防滑部分。按照这种方 式,因为轴承10b由相对较大直径的轴承制成并且能够稳固地保持旋转轴ll,所以在与工 具的原始期望使用情况不同的使用情况下,例如在工具掉落的情况下,即使从工具主体的 前方或后方对工具的旋转轴一侧突然加载,由油压脉冲单元4和转子3b的惯性力产生的负 荷也是主要由轴承10b承受。因此,轴承10a的固定部分的强度可以设置为承受仅在旋转过 程中施加在其上的负载。这样可以减小轴承10a的支撑部分(轴承保持架15)的厚度等, 从而能够减小电动工具的尺寸。此外,因为可以减小轴承10a和轴承保持架15的尺寸,所
9以流经电动机3的后端部分的冷却空气的通过面积可以设置得较宽,这可以增加冷却空气 的量,从而提高电动工具的冷却性能。 图4是冷却风扇单元17和弹性部件30的透视图。冷却风扇单元17是通用鼓风 机,包括吸入口 17c,其用于沿轴向吸入空气;风扇外壳17b,其用于容纳旋转风扇,并且还 用于引导空气以沿所需方向吸入和排出;以及排放口 17a,其用于单向排出空气。弹性部件 30通过粘合剂或者双面粘合带连接在冷却风扇单元17上。弹性部件30和粘合材料实现了 把冷却风扇单元17固定在壳体6的内壁上的连接功能,以及减弱传递至冷却风扇单元17 的振动的振动限制功能。此外,弹性部件30a还实现了使排放口 17a与吸入口 17c—侧空 间隔绝的密封功能。 图5是沿图1所示的线A-A截取的剖视图,示出了冷却风扇单元17设置在壳体6 的主体部分6a内部的状态。以这种方式固定冷却风扇单元17,即使冷却风扇单元的排放 口 17a布置成与形成在壳体6的主体部分6a上的排气口 37相对。虽然冷却风扇单元17包 括用于安装冷却风扇单元17的安装孔17d,但是因为冷却风扇单元17布置在由壳体6的后 端部分所包围的空间内,所以使用例如双面粘合带等密封部件固定冷却风扇单元17即可, 而无需使用螺钉紧固。然而,当然,也可以使用密封部件与螺钉结合的方式固定冷却风扇单 元17。 在排放口 17a与排气口 37之间设置有缓冲区33。这可以增加排气口 37超过排 放口 17a的截面面积。因此,即使在排气口37上设置多根肋或类似结构来防止外来物体进 入,也可以减少排气口 37的空气流出损耗。此外,因为封条状的弹性部件30a设置成围绕 排放口 17a和一部分风扇外壳17b,所以冷却风扇单元17可以被弹性部件30a保持,并且还 允许从排放口 17a流入缓冲区33的冷却空气流回到电动机3。 图6是壳体6的主体部分6a的后端部分的右侧内部形状的局部透视图,在该部分 上安装冷却风扇单元17。这里,可在经过轴向并竖直延伸的表面处把壳体6分成两部分; 并且,术语"右侧"是指当操作员用其右手握住油压脉冲工具时,从操作员的角度观看位于 右边的一侧。与主体部分6a的后端部分一体地形成有轴承保持架15,其作为保持轴承10a 的固定部分;在轴承保持架15的后部设置有肋16,其用于固定冷却风扇单元17并且还用 于把冷却风扇单元17与存在于冷却风扇单元17的排放口 17a侧的空间(缓冲区33)分隔 开。在肋16的后方形成有四个分别竖直延伸的缝隙状排气口 37。在轴承保持架15的上侧 和下侧分别形成有两个螺孔13,用于把轴承保持架15螺纹连接在位于轴承保持架15左侧 的壳体6上。虽然没有示出,但是在主体部分6a的后端部分的左侧内部形状中形成有螺孔 13和轴承保持架15,但既不形成肋16也不形成排气口 37。 这里,在图6中,可以容易理解,在壳体6的后端面上不存在开口。这是因为,冷却 风扇单元17由鼓风机制成,鼓风机的排放侧不是设置在其后侧,而是设置在其旁侧。当使 用其他类型的冷却风扇时,排气口也可以形成在壳体6的后端面上。 接下来,下面将参考图7-图9对内部板32的形状和通过内部板32的冷却空气流 进行描述。图7是沿着图1所示的箭头线C-C截取的剖视图。内部板32包括环形的内周 环32a、环形的外周环32b和用于把两环32a和32b连接在一起的多根支撑柱32c,同时这 些部件共同配合形成允许冷却空气流过的多个通风口 32d。这里,从图7中可以理解,支撑 柱32c在内部板32的周向上的数量和位置设置成与电动机3的线圈3c之间的间隙的数量
10和位置相一致。因此,因为通风口 32d位于与电动机3的线圈3c相对的位置,所以通过通 风口 32d从油压脉冲单元4侧流向电动机3侧的空气必然与线圈3c接触。此外,沿着内部 板32的直径方向,内部板32的内周环32a和外周环32b的位置设置成与电动机3的线圈 3c的内周侧和外周侧的位置几乎一致。 图8是沿着图1所示的箭头线B-B截取的电动机3的定子部分的剖视图,也就是 说,图8是电动机3的定子3b部分的剖视图。在定子3b中,线圈3c围绕在铁芯3a上,同 时在线圈3c之间设置有槽(线圈间隙)3d。从图8可以看出,根据本实施例,电动机3的线 圈在电动机3的外周部分中紧密地缠绕,同时电动机3的内周部分中的线圈数量少于其外 周部分中的线圈数量。 图9是沿着图7所示的箭头线D-D截取的剖视图,示出了内部板32与无刷电动机 定子部分之间的位置关系;也就是说,图9是局部剖视图,示出了从内部板32流到定子的空 气流。图9很好地示出了内部板32的支撑柱32c与电动机3的槽3d之间的位置关系。如 图9所示,从进气口 31进入的冷却空气穿过通风口 32d,流动到主体部分6a的布置有电动 机3的空间中,再经过电动机3的线圈3c的前部,然后流向槽3d。当使用无刷电动机作为 电动机3时,因为线圈3c所产生的热量很大,所以允许冷却空气通过线圈3c的前部,因而 可以高效地使电动机3冷却。 图10示出了图7和图8所示实施例的修改形式。在本实施例中,内部板42中所 形成的支撑柱42c的数量设置为三个,也就是六个槽3d的数量的一半。即使以这种方式将 电动机3的槽3d的数量与内部板32的通风口 32d的数量设置成相互不一致,也可以提高 冷却效率。然而,如图7所示,当电动机3的槽3d的数量与内部板32的通风口 32d的数量 设置成相互一致时,可以最大地提高冷却效率。此外,在图10中,内部板42的通风口 42d 的内径,也就是内部板42的内周环42a的外径略微大于转子3b的外径。因此,通过通风口 42d的冷却空气更容易与转子3b的线圈3c的外周侧接触,这可以进一步提高冷却效率。
图11示出了根据本实施例的油压脉冲单元4与手柄部分6b的位置关系。油压脉 冲机构是产生低噪音的撞击机构,也就是在其撞击操作中产生的振动很小;然而,撞击操作 中产生的反作用力很大。也就是说,反作用运动是以撞击源为中心的弧线运动,反作用力随 着反作用运动距离撞击源变远而增加。根据本发明,使油压脉冲单元4与手柄部分6b在前 后方向上相互接近,这样可以使手柄部分6b的抓握部分更接近撞击源,因此可以减小抓握 位置的反作用力。具体地说,在这种结构的油压脉冲工具中,即在油压脉冲单元4的前端部 分位于壳体6的主体部分6a的前端部分附近的结构中,壳体6的手柄部分6b设置在油压 脉冲单元4的大致正下方。因此,在从输出轴5的轴向(前后方向)观看时,手柄部分6b 的纵向中心线52的延长线和该延长线与输出轴5的中心轴线交叉的交叉点53设置在油压 脉冲单元4的布置位置51的范围内。此外,如图11的箭头标记范围54所示,将油压脉冲 单元4的后端位置与手柄部分6b的最大凹进位置相比,油压脉冲单元4的后端位置设置在 手柄部分6b的最大凹进位置的后方。在这种结构中,因为当把套筒等前端工具安装在输出 轴5上时,工具整体的重心靠近手柄部分,所以工具在操作中平衡良好,并且可以提高工具 的操作效率。 如上文所述,在根据本实施例的电动工具中,可以在使用便宜的通用冷却风扇的 情况下高效率地冷却电动机和动力传输机构(油压脉冲单元),因此可以提高电动工具的耐用性。此外,因为风扇的驱动与电动机的旋转不同步,所以还可以提高电动机的开关元件 部分的冷却效率。此外,根据本实施例,可以实现一种电动工具,该电动工具可以提高该电 动工具的用于支撑转子的轴承部分的强度。 虽然前面参考实施例描述了本发明,但是本发明不限于上述实施例,而是可以在 不脱离本发明主题的范围的情况下进行各种变化。例如,虽然在实施例中参考使用无刷DC 电动机的油压脉冲工具作为电动工具的例子对本发明进行了描述,但是本发明不限于此, 而是还可以类似地应用于诸如电钻或电研磨器(electric glider)等任意电动工具。此外, 所使用的电动机类型不限于无刷DC电动机,而是也可以使用具有电刷的DC电动机或者AC 电动机。 相关申请的交叉引用 本申请基于2008年11月19日提交的在先日本专利申请No. 2008-296174并要求 该在先日本专利申请的优先权,在此通过引用方式将该在先日本专利申请的全部内容并入 本文。
权利要求
一种电动工具,包括电动机,其产生旋转力;动力传输机构,其由所述电动机驱动以传输所述旋转力,并且与钻头连接;以及壳体,其中容纳有所述电动机和所述动力传输机构,其特征在于,在所述壳体内部设置有用于冷却所述动力传输机构或所述电动机的电风扇;从前部起顺序布置所述动力传输机构、所述电动机和所述电风扇;并且所述电风扇布置在后侧并且设置在所述电动机与所述壳体的后壁之间。
2. 根据权利要求l所述的电动工具,其中, 所述电风扇从所述电动机的旋转轴前方吸入空气,并且所述电风扇沿着所述壳体的径向向外的方向从所述壳体的侧壁排出吸入的空气。
3. 根据权利要求2所述的电动工具,其中,所述电动机的旋转轴被分别布置在所述电动机的前方和后方的两个轴承支撑,并且后方的轴承设置在所述电动机与所述电风扇之间。
4. 根据权利要求3所述的电动工具,其中, 所述电风扇为鼓风机并包括吸入口 ;外壳;以及排放口。
5. 根据权利要求4所述的电动工具,其中,所述电风扇的外壳通过弹性部件安装在所述壳体上。
6. 根据权利要求5所述的电动工具,其中, 所述弹性部件是泡沫部件。
7. 根据权利要求6所述的电动工具,其中, 所述弹性部件设置为围绕所述排放口和所述外壳的一部分。
8. 根据权利要求l所述的电动工具,其中, 所述电风扇的驱动与所述电动机的旋转不同步。
9. 根据权利要求l所述的电动工具,其中, 所述电动机是无刷DC电动机,并且在所述无刷DC电动机的后端布置有电动机驱动电路基板,所述电动机驱动电路基板 设置在所述电动机与所述电风扇之间,并且所述电动机驱动电路基板包括控制所述无刷DC 电动机的开关元件。
10. 根据权利要求l所述的电动工具,其中, 所述电风扇不安装在所述电动机的旋转轴上。
全文摘要
根据本发明的一个方面,提供了一种电动工具,包括电动机,其产生旋转力;动力传输机构,其被所述电动机驱动以传输所述旋转力,并且与钻头连接;以及壳体,其中容纳有所述电动机和所述动力传输机构,其中,在所述壳体内部设置有用于冷却所述动力传输机构或所述电动机的电风扇,从前部起顺序地布置所述动力传输机构、所述电动机和所述电风扇,并且所述电风扇布置在后侧并且设置在所述电动机与所述壳体的后壁之间。
文档编号B25F5/00GK101733740SQ20091022293
公开日2010年6月16日 申请日期2009年11月19日 优先权日2008年11月19日
发明者西河智雅 申请人:日立工机株式会社