专利名称:制备薄膜/无纺层压体的方法
技术领域:
本发明涉及具有压花密封件的薄膜/无纺织物制品和用于形成所述制品的方法。
背景技术:
存在很多已知的暂时将薄的幅材粘附在一起以形成密封件的方法,包括例如使用粘合剂、加装上机械紧固元件诸如Velcro、以及通过热密封或热机粘结而熔合所述幅材。例如,美国专利5,462,166公开了通过热机方法施加热和压力将热塑性聚合物薄膜软化并熔合在一起。然而,这些方法为用于形成密封件的方法增添了不可取的成本和低效率以及复杂性。此外,在熔融状态中通过将幅材熔合在一起而形成的密封件还可能在非密封件位置发生不可取的撕裂,并且会具有使用者所不喜欢的僵硬的塑料般密封件。此外,这些已知的密封方法还会产生如下的密封件当所述两个幅材被分离和密封件断裂时,其可表现出相对大的噪声例如Velcro密封件断裂时会发出特征性的大声音。 尽管本领域现有的知识,人们仍然希望开发更有效的制造具有密封件的制品和断裂时安静的具有密封件的制品的方法。这对于用作女性护理产品的包装的制品来讲尤其如此。非常期望具有如下的密封包装当打开此类包装时,其产生极小的噪声,甚至不产生噪声;从而允许使用者更加隐私地打开包装。发明概沭在一个实施方案中,制品包括薄膜和具有纤维的无纺织物,以及连接薄膜和无纺织物的一部分的压花密封件。所述密封件包括在薄膜中形成并由薄膜中的陆地(lands)围绕的离散的延伸元件。所述离散的延伸元件具有开ロ近端、开ロ或闭ロ远端、以及设置在近端和远端之间的侧壁,所述离散的延伸元件各部分的厚度小于陆地的厚度。所述无纺织物的纤维通过开ロ近端嵌入陆地的至少ー个中以及离散的延伸元件的侧壁中。在另ー个实施方案中,形成压花密封件的方法包括在压カ源和成形结构之间进料薄膜和具有纤维的无纺织物。所述成形结构包括成形元件,所述成形元件选自离散的孔、离散的凹陷、离散的突起元件、以及它们的组合。所述方法还包括从压カ源对薄膜、无纺织物和成形结构施加压力,所述压力足以使薄膜适形于成形结构的成形元件并使无纺织物的纤维的至少一部分嵌入薄膜中以形成压花密封件,所述压花密封件包括多个由陆地围绕的离散的延伸元件。所述离散的延伸元件具有开ロ近端和侧壁,并且所述无纺织物的纤维通过离散的延伸元件的开ロ近端嵌入陆地的至少ー个中以及离散的延伸元件的侧壁中。附图
简沭虽然在说明书之后提供了特别指出和清楚地要求保护本发明的权利要求书,但是据信通过下面的描述并结合附图可以更充分地理解本发明。为了更清晰的表示其它元件,一些图形可以通过省略所选的元件简化。在某些图形中此类对元件的省略不必要在任一示例性实施方案中指示特别元件存在或不存在,除非在相应的成文描述中可以明白地描绘出来。附图中没有ー个是必定符合比例的。图I为根据本公开的实施方案的成形结构的顶视图;图2A为根据本公开的实施方案的成形结构的透视图,其示出了孔和凹陷之间的区别;图2B为具有离散的突起元件的成形结构的一部分的放大透视图;图3A为根据本公开的实施方案的压花密封件的扫描电子显微(SEM)图像;图3B为图3A的压花密封件的放大的SEM图像;图3C为根据本公开的实施方案的压花密封件的放大的SEM图像;图4为根据本公开的实施方案的方法的示意图;图5A为根据本公开的实施方案的压花密封件的示意图,其示出了设置在具有离散的延伸元件的开ロ近端的薄膜的侧面上的无纺织物;
图5B为根据本公开的实施方案的压花密封件的示意图,其示出了设置在具有离散的延伸元件的远端的薄膜的侧面上的无纺织物;图6为根据本公开的实施方案的压花密封件的离散的延伸元件的剖面图;图7为根据本公开的实施方案的离散的延伸元件的透视图,所述元件具有压花密封件的开ロ远端;图8为根据本公开的实施方案的方法的示意图,其示出了静态气体压カ充气室;并且图9为根据本公开的实施方案的用于制造压花幅材的连续方法的示意图。发明详沭本文公开了制品和形成所述制品的方法,所述制品具有粘附至少ー个薄膜和无纺织物的部分的密封件,并且所述方法克服了现有技术的前述缺点中的ー个或多个缺点。具体地,所述制品的实施方案现在使如下制品成为可能在分离所述薄膜和无纺织物时,所述制品基本上声音更小。该方法的实施方案现在使ー种更高效的幅材密封方法成为可能。例如,所述制品和方法的实施方案现在能够避免使用昂贵的粘合剂或附加机械粘附元件诸如钩/环(即Velcro)和脊/槽、以及与施用粘合剂或机械粘附元件相关联的复杂方法。所述制品和方法的实施方案也能够避免使用将所述薄膜和无纺织物熔融并熔合在一起以形成密封件的复杂方法。此类密封件在分离时可能声响很大和/或导致所述薄膜和无纺织物撕裂(而不是在密封件处分离)。參考图3A、3B和3C,在一个实施方案中,所不制品一般包括至少一个薄膜33、无纺织物34、以及连接薄膜33和无纺织物34的部分的压花密封件16。所述密封件包括由薄膜33中形成的陆地13围绕的离散的延伸元件22。所述离散的延伸元件22具有开ロ近端30、开ロ或闭ロ远端24、以及设置在近端30和远端24之间的侧壁。所述密封件还包括无纺织物34的纤维23,所述无纺织物34嵌入陆地13的至少ー个中以及离散的延伸元件22的侧壁中。离散的延伸元件22相对于陆地13可为薄化的。例如,离散的延伸元件22的远端24和/或侧壁可为薄化的。压花密封件16,包括其中嵌入的具有无纺织物34的纤维23的离散的延伸元件22,在薄膜33和无纺织物34之间具有大的面间表面积。离散的延伸元件22在z方向上延伸以形成三维的元件。具有嵌入其中或在由离散的延伸元件22围绕的陆地13中的纤维23的离散的延伸元件22,据信可产生高撕裂强度,从而防止在制品的操纵过程中薄膜33和无纺织物34发生分离。令人惊奇的是,即使没有粘合剂、附加的机械粘附元件或薄膜33与无纺织物34的熔融融合,密封件仍能具有非常高的剥离强度。不受理论的约束,据信压花密封件16的強度取决于以下因素所述具有嵌入其中的无纺织物34的纤维23的薄膜33区域的大面间表面积、所述薄膜33和无纺织物34的粘附到它们自身上和粘附到彼此上的能力、以及压花密封件16可被变形的容易程度。所述薄膜33和无纺织物34的面间表面积取决于至少离散的延伸元件22的几何形状和压花密封件16中的离散的延伸元件22的密度。据信压花密封件16的剥离强度随着面间表面积的增加而增加。所述薄膜33和无纺织物34的粘附到它们自身上和粘附到彼此上的能力,至少取决于薄膜33和无纺织物34的摩擦系数、薄膜33和无纺织物34的表面能、以及薄膜33和无纺织物34的纤维23之间和/或具有薄膜33的薄膜33的接触部分和/或具有无纺织物34的纤维23的无纺织物34的纤维23之间的吸引力,例如范德瓦尔斯力、偶扱-偶极作用力、静电力、氢键カ等。据信压花密封件16的剥离强度一般随着所述薄膜33和无纺织物34粘附到它们自身上和粘附到彼此上的能力的増加而增加。还据信,如果压花密封件16更具柔性而不是刚性,则剥离强度增加。采用更具柔性的压花密封件16,薄膜33和无纺织物34能够相互移动和挠曲,因此当被挠曲时密封区域能保持紧密接触。据信当使用较低模量和/或较低规格的薄膜和无纺织物时,可产生更柔 性的密封件。如果压花密封件16为刚性的,则当被挠曲时所述薄膜33和无纺织物34可更易于分离,并且此类分离可弱化压花密封件16的剥离强度。參考图4,形成压花密封件16的方法一般包括在压カ源(例如,柔顺基底44)和包括多个离散的成形元件11的成形结构10之间进料薄膜33和具有纤维23的无纺织物34。所述成形元件11可包括例如离散的突起元件15、离散的孔12、离散的凹陷14、或它们的组合。所述方法还包括从压カ源对薄膜33、无纺织物34和成形结构10施加压力,所述压力足以使薄膜33的部分适形于离散的成形元件11并使无纺织物34的纤维23的至少一部分嵌入薄膜33中以形成压花密封件16。所述压花密封件16包括多个由陆地13围绕的离散的延伸元件22。所述离散的延伸元件22具有开ロ近端30和侧壁。所述无纺织物34的纤维23通过开ロ近端30嵌入陆地13的至少ー个中以及离散的延伸元件22的侧壁中。下文更详细地描述了所述制品和方法的这些方面。此外,在某些实施方案中,所述纤维23被包含在薄膜33中,诸如例如当所述纤维23不通过薄膜33延伸吋。在某些实施方案中,所述离散的延伸元件23具有开ロ远端30,并且所述纤维23不通过薄膜23延伸井伸出开ロ远端30。此外,在某些实施方案中,所述纤维23不形成针对薄膜23的毛绒束。成形结构參见图I和图2,适用于本公开的方法的成形结构10包括多个离散的成形元件11。所述离散的成形元件11可能包括离散的突起元件15、离散的孔12、离散的凹陷14、或它们的组合。所述成形结构10还可包括完全围绕离散的成形元件11的陆地13。相对于常规压花方法中的成形结构上所用的典型图案来讲,成形结构10的离散的成形元件11可在尺度上较小。本公开的方法可生产出包括具有薄化远端24和/或侧壁的相对高的纵横比的延伸元件11的压花密封件16,甚至在不加热薄膜和无纺织物的情况下且甚至以高速运行时也是如此。成形结构10可包括例如具有离散的成形元件11的部分和不具有离散的成形元件的部分19。成形结构10有时候被称为成形筛网。图2A示出了孔12和凹陷14之间的区別。如本文所用,“孔”是指成形结构10中的开ロ,所述开ロ不包括限制所述开ロ的深度的底部表面。相比之下,如本文所用,“凹陷”是指成形结构10中的具有底部表面的开ロ,所述底部表面将所述开ロ的深度限制成小于成形结构10的厚度。底部表面可为例如多孔的或无孔的。例如,底部表面可包括开ロ,所述开ロ具有小于凹陷14的直径的宽度,所述直径通过允许空气穿过凹陷14而使凹陷14通气。在一个实施方案中,成形结构10具有某种部件以允许任何被截留薄膜33下面的空气逸出。例如,可提供真空辅助以除去薄膜33下面的空气以便不増加所需的柔顺压力。底部表面可为平坦的、圆化的或尖鋭的。成形结构10可为实心辊,或具有约25微米至约5000微米,或约100微米至约3000微米的厚度。孔12和凹陷14可具有约10微米至约500微米,或约25微米至约5000微米的深度。如本文所用,孔12的深度对应于成形结构10的厚度,因为孔12不具有限制其深度的底部表面。在一个实施方案中,孔12和凹陷14可具有大体上等于薄膜33的厚度,至少两倍的薄膜33的厚度,或至少三倍的薄膜33的厚度的深度。优选地,孔12和凹陷14具有为至少三倍的薄膜33的总厚度的深度。此外,在某些实施方案中,诸如例如图3A所示,离散的突起元件15可间隔紧密,使得在幅材形成过程中离散的突起元件15之间的间隙起到凹陷的作用。成形结构10的薄膜/无纺织物接触表面上的孔12或凹陷14的周边可具有直边或可具有曲率半径,所述曲率半径从成形结构10的薄膜/无纺织物接触表面測量到孔12或凹陷14中。曲率半径可为约0微米至约2000微米,优选地约0微米至约25微米,并且 更优选地约2微米至约25微米。在一个实施方案中,使用通常称作斜面的成角度的锥形。在一个实施方案中,使用直边和半径的组合。离散的突起元件15可具有至少约50微米,至少约75微米,至少约100微米,至少约150微米,至少约250微米,或至少约380微米的高度。离散的突起元件15可具有直径,就大致圆柱形结构而言,所述直径为外径。就突起元件15的非均匀横截面、和/或非圆柱形结构而言,将直径dp测量为突起元件15的在突起元件15的V2高度hp处的平均横截面尺寸,如图2B所示。离散的突起元件15可具有直径dp,所述直径可为约10微米至约5,000微米,约50微米至约5,000微米,约500微米至约5,000微米,约50微米至约3,000微米,约50微米至约500微米,约65微米至约300微米,约75微米至约200微米,或约800微米至约2,500微米。在一个实施方案中,成形结构10的离散的突起元件15将具有小于约500微米的直径。对于姆个突起元件15,可确定被定义为hp/dp的突起元件纵横比。突起元件15可具有至少约0. 5,至少约0. 75,至少约1,至少约I. 5,至少约2,至少约2. 5,或至少约3或更高的纵横比hp/dp。一般来讲,由于各个突起元件15的实际高度hp可有变化,因此多个突起元件15的平均高度(“hpavg”)可通过确定成形结构10的预定区域上的突起元件的平均最小振幅(“Apmin”)和突起元件的平均最大振幅(“Ap_”)来确定。同样,对于变化的横截面尺寸,可针对多个突起15来确定平均突起直径(“dpavg”)。此类振幅和其它尺寸的測量可通过本领域已知的任何方法,诸如通过计算机辅助扫描显微术和相关的数据处理来进行。因此,就成形结构10的预定部分而言,突起元件15的平均纵横比(“ARpavg”)可被表示为hpavg//dPaVg。成形结构10的离散的突起元件15可具有远端24,所述远端为平坦的、圆化的或尖锐的,这取决于是否期望所生产出的压花密封件16具有包括开ロ的(在成形结构10上需要更尖锐的突起元件)或闭合的(在成形结构10上需要更圆化的突起元件)远端24的离散的延伸元件22。成形结构10的离散的突起元件15的圆化远端24可具有某种尖端半径,诸如约5微米至约150微米,约10微米至约100微米,约20至约75微米,或约30微米至约60微米。离散的突起元件15的侧壁可为完全竖直的或可为锥形的。在一个实施方案中,离散的突起元件15具有锥形的侧壁,因为锥形的侧壁可影响压カ源的耐久性和使用寿命。例如,当使用柔顺基底44时,锥形的侧壁可便于柔顺基底44在其适形在成形结构10的离散的成形元件11周围时减轻柔顺基底44上的压缩或张紧。这也可使得压花后所述薄膜33和无纺织物34更便捷地从成形结构10上分离出来。在一个实施方案中,侧壁通常将具有约0°至约50°,约2°至约30°,或约5°至约25°的锥度。在一个实施方案中,成形元件可具有变化的几何形状,诸如突起元件15的高度和孔12或凹陷14的深度,所述几何形状可选择性地影响薄膜33和无纺织物34的某些区域的粘结强度。例如,成形元件的高度可逐渐增加或在数十个或数百个相邻突起元件15的范围内逐渐增加,这可得到具有包括变化的高度的离散的延伸元件22的薄膜33,继而可得到具有强度梯度的压花密封件16。可调整导致离散的延伸元件22的对应特征的成形结构10·的其它特征以形成具有强度梯度的压花密封件16。例如,成形结构10可包括具有面密度梯度的成形元件。在一个实施方案中,突起元件15可为球形、椭球形、雪人形,它们沿突起元件的高度具有不同的或变化的直径。孔12或凹陷14具有直径,就大致圆柱形结构而言,所述直径为内径。就孔12或凹陷14的非均匀横截面、和/或非圆柱形结构而言,将直径測量为孔12或凹陷14在成形结构10的顶部表面处的平均横截面尺寸。每个孔12或凹陷14可具有约40微米至约2,000微米的直径。其它合适的直径包括例如约50微米至约500微米,约65微米至约300微米,约75微米至约200微米,约10微米至约5000微米,约50微米至约5000微米,约500微米至约5000微米,或约800微米至约2,500微米。在一个实施方案中,孔12或凹陷14的直径为恒定的或随着深度的增加而减小。在另ー个实施方案中,孔12或凹陷14的直径随着深度的增加而增加。例如,离散的孔12或凹陷14可具有第一深度处的第一直径和深于第一深度的第二深度处的第二直径。例如,第一直径可大于第二直径。例如,第二直径可大于第一直径。离散的孔12或凹陷14的侧壁可为完全竖直的或可为锥形的。在一个实施方案中,离散的孔12或凹陷14具有锥形的侧壁。这可以使得压花后所述薄膜33和无纺织物34更便捷地从成形结构10上分离出来。在一个实施方案中,侧壁通常将具有约0°至约-50°至约50°,约-30°至约30°,约0°至约50°,约2°至约30°,或约5°至约25°的锥度。成形结构10的离散的成形元件11可具有多种不同的横截面形状,诸如大致柱状或非柱状形状,包括圆形、椭圆形、沙漏形、星形、多边形等、以及它们的组合。多边形横截面形状包括但不限于矩形、三角形、六边形、或梯形。在一个实施方案中,离散的凹陷14可具有大体上等于成形结构10的长度的长度以便围绕成形结构10的基本上整个长度形成凹槽。在另ー个实施方案中,离散的突起元件15的长度可大体上等于成形结构10的长度以便围绕成形结构10的基本上整个长度形成延伸的突起元件。例如,当成形结构10呈辊形式时,可围绕所述辊的整个圆周形成凹槽和/或延伸的突起元件15。所述凹槽和/或延伸的突起元件15可为基本上直的(例如,一致地平行于所述辊的边缘)或可为波状的。作为另外一种选择,在某些实施方案中,成形结构10不包括仅沿纵向排列配置的离散的成形元件
11。例如,在某些实施方案中,成形结构10包括沿横向排列配置的离散的成形元件11。一般来讲,成形结构10,就其给定部分而言,将包括每平方厘米至少约0. 15个离散的成形元件11,诸如例如每平方厘米至少约4个离散的成形元件11,每平方厘米至少约10个离散的成形元件11,每平方厘米至少约95个离散的成形元件11,每平方厘米至少约240个离散的成形元件11,每平方厘米约350至约10,000个 离散的成形元件11,每平方厘米约500至约5,000个离散的成形元件11,或每平方厘米约700至约3,000个离散的成形元件11。离散的成形元件11可具有约30微米至约1000微米,约50微米至约800微米,约150微米至约600微米,或约180微米至约500微米的两个相邻孔12或凹陷14之间的平均
边缘至边缘间距。在某些实施方案中,成形结构10的一部分(或区域)可包括如前段所述面密度的离散的成形元件11,而成形结构10的其它部分(或区域)可不包括离散的成形元件11。不具有离散的成形元件11的成形结构10的区域可定位在不同的水平面中。在其它实施方案中,成形结构10的离散的成形元件11可定位在成形结构10的不同的水平面中。定位在成形结构10的不同的水平面中的不具有离散的成形元件11的区域和/或具有离散的成形元件11的区域可呈具体图案或设计的形式,诸如花、鸟、条带、波紋、卡通人物、徽标等形式,以便压花密封件16将具有如下的区域,所述区域相对于薄膜33和无纺织物34的剰余部分在视觉上突显出来、和/或当触摸时具有不同的手感。例如,压花密封件16可包括相对于压花区域在视觉上突显出来、和/或具有不同于压花区域的手感的非压花区域。美国专利5,158,819提供了可用于这些实施方案的成形结构的合适的实例。在一个实施方案中,孔12或凹陷14的平均深度或离散的突起元件15的平均高度对薄膜33的厚度的比率为至少约1:1,至少约2:1,至少约3:1,至少约4:1,至少约5:1,或至少约10:1。该比率可为重要的以确保薄膜33受到足够的拉伸以便各自被永久地变形以产生压花密封件16,尤其是以所期望的エ艺条件和速度来拉伸。成形结构10可由任何材料制成,所述材料可被成形成包括具有必要尺寸的离散的成形元件11以制造出压花密封件16,并且在成形结构10所经受的エ艺温度和压カ范围内是尺寸上稳定的。在一个实施方案中,离散的成形元件11与成形结构10整体地制成。S卩,通过除去材料或积聚材料将成形结构10制成为整合结构。例如,具有所需的相对小尺度的离散的成形元件11的成形结构10可通过以如下方式局部选择性地除去材料来制造诸如通过化学蚀刻、机械蚀刻,或通过使用高能量源诸如放电机(EDM)或激光来消融,或通过电子束(e束),或通过电化学加工(ECM)。在一个实施方案中,成形结构10—般可根据美国专利4,342,314的教导通过光蚀刻层压体方法来构造。在一种制造合适的成形结构10的方法中,将易于激光修改的基体材料进行激光“蚀刻”以选择性地除去材料从而形成孔12或凹陷14。所谓“易于激光修改的”,是指材料可通过激光以受控方式来选择性地除去,应当认识到,在所述激光加工中所用的光的波长以及功率水平可能需要适配于所述材料(或反之亦然)以便产生最佳結果。激光蚀刻可通过已知的激光技术来实现,选择必要的波长、功率和时间參数以生产出所述期望的突起元件尺寸。目前已知的易于激光修改的材料包括热塑性塑料诸如聚丙烯、こ缩醛树脂诸如源自DuPont (Wilmington DE, USA)的DELRINr、热固性塑料诸如交联聚酯、或环氧化物、或甚至金属诸如铝、铜、黄铜、镍、不锈钢、或它们的合金。任选地,可将热塑性材料和热固性材料填充上颗粒或纤维填料以增加与某些波长的激光的相容性和/或改善模量或韧性以制造出更耐用的孔12或凹陷14。例如,通过用足够量的中空碳纳米管纤维均匀地填充某些聚合物诸如PEEK,可以更高的分辩率并以更高的速度来激光加工所述聚合物。在一个实施方案中,可以连续方法来激光加工成形结构10。例如,可将聚合材料诸如DELRINk'提供为圆柱形形式以作为基体材料,所述基体材料具有中心纵向轴线、外表面和内表面,所述外表面和内表面限定基体材料的厚度。也可将其提供为实心辊。活动激光源可大致正交于所述外表面指向。所述活动激光源可在某个方向上平行于基体材料的中心纵向轴线移动。所述圆柱形基体材料可围绕中心纵向轴线旋转,同时激光源加工或蚀刻基体材料的外表面以按某种图案除去基体材料的选定部分,所述图案限定多个离散的孔12或凹陷14和/或离散的突起元件15。 成形结构10可呈如下形式平坦板、辊、帯、环形带、套管等。在一个优选的实施方案中,成形结构10呈辊形式。在另ー个优选的实施方案中,成形结构10呈环形带形式。环形带可根据美国专利7, 655,176,6, 010,598,5, 334,289和4,529,480的教导来形成。成形结构可用于低应变速率方法诸如美国专利申请2008/0224351A1所述的低应变速率方法以生产出本发明的压花幅材,其中活化带为坚实基底或柔顺基底44。如果成形结构10包括突起元件15以及离散的孔12和凹陷14,则离散的延伸元件22可在薄膜33中形成,所述延伸元件从薄膜33的表面伸出,所述表面与成形结构10的孔12或凹陷14在其处形成离散的延伸元件22的表面相対。因此,可产生两面的压花密封件16,在压花密封件16的每个侧面上具有不同图案或尺寸的延伸元件22。取决于在成形结构10和柔顺基底44之间所产生的压カ以及成形结构10的孔12或凹陷14和任选的柱或脊的几何形状,压花密封件16的离散的延伸元件22可具有闭合或开ロ远端24。压カ源用来提供对成形结构10的力的压カ源可为例如柔顺基底44、静压充气室36、速度压カ源、或它们的组合。适用于提供速度空气压カ以使薄膜33和无纺织物34适形于成形结构的装置的ー个实例为高压气刀。高压气刀可从例如CanadianAir Systems商购获得。利用空气压カ使薄膜33和无纺织物34适形于成形结构10的合适的装置和方法的另ー个实例详述于美国专利5,972,280中。适用于提供水压以使薄膜33和无纺织物34适形于本发明的成形结构10的装置的ー个实例为水充气室,诸如美国专利7,364,687所述的水充气室。例如,合适用于制造压花密封件16的方法为液压成形法。液压成形法的非限制性实例描述于美国专利4,609,518和美国专利4,846,821中。如本文所述的成形结构10、薄膜33和无纺织物34可用于这些液压成形方法中。另ー种合适的例如用于制造压花密封件16的方法为真空成形法。真空成形法的非限制性实例描述于美国专利4,456,570和4,151,240、以及美国专利申请公布2004/0119207A1中。如本文所述的成形结构10、薄膜33和无纺织物34可用于此类真空成形法以生产出本公开的压花密封件16。其它合适的方法描述于美国专利4,846,821和美国专利申请公布2004/0119207A1中。柔顺某底參见图9,在最低限度上,柔顺基底44的外表面(即,柔顺基底44的朝成形结构10取向的表面)包括柔顺材料46。例如,柔顺基底44可包括用柔顺材料46覆盖的刚性材料48。刚性材料48可为金属(诸如钢)、塑料、或显著地硬于柔顺材料46的任何其它材料。覆盖刚性材料48的柔顺材料46的厚度通常将不大于约26mm,并且优选地约Imm至约26mm,更优选地约Imm至约7mm。作为另外一种选择,整个柔顺基底44均可由柔顺材料46制成。柔顺基底44或柔顺材料46可包括弾性体、毡、充液囊状物、充气囊状物、以及它们的组合。在一个实施方案中,柔顺基底44为多孔弾性体。柔顺基底44或柔顺基底44中所用的柔顺材料46优选地具有弾力特性(诸如压缩恢复),使得柔顺材料46足够快速地回弹以有利于该方法,尤其是连续方法的进行。 柔顺基底44或柔顺基底44中所用的柔顺材料46,优选地也具有足够的耐久性以便在薄膜33和无纺织物34上大量地压花。因此,柔顺基底44优选地具有合适的韧度和耐磨度,其中在该方法期间柔顺基底44将趋于被成形结构10磨蚀。柔顺基底44可呈如下形式平坦板、辊、帯、环形带、套管等。在一个实施方案中,柔顺基底44为用柔顺材料46诸如弾性体覆盖的金属辊。在另ー个实施方案中,柔顺基底44和成形结构10两者均呈辊的形式。在另ー个实施方案中,柔顺基底44为辊,其具有大于成形结构10辊的直径的直径。在另ー个实施方案中,柔顺基底44为辊,其具有小于成形结构10辊的直径的直径。在另ー个实施方案中,柔顺基底44辊具有与成形结构10辊的直径相同的直径。柔顺基底44或柔顺基底44中所用的柔顺材料46通常将具有约30至约90硬度测验器,优选地约35至约80硬度测验器,并且更优选地约40至约70硬度测验器的按肖氏硬度A标度计的硬度。以肖氏硬度A标度计的硬度通常通过使用ASTM D2240硬度计诸如得自PTC Instruments (Los Angeles, California)的型号为306的A型经典式硬度计来确定。应当认识到,柔顺基底44可表现出变化的硬度,例如靠近柔顺基底44的外表面的较低硬度和朝内表面的较高硬度(即在柔顺基底44的z方向上变化的硬度)或在柔顺基底44的外表面上变化的硬度(即在柔顺基底44的x-y平面中变化的硬度)。柔顺基底44中所用的柔顺材料46通常将具有约IMPa至约20MPa,优选地约2MPa至约18MPa,并且更优选地约3MPa至约IOMPa的拉伸模量。柔顺材料46的拉伸模量可在0. IsecT1的应变速率下确定。合适的柔顺材料的非限制性实例包括天然橡胶、尿烷橡胶、聚氨酯橡胶、氯磺化聚こ烯橡胶(以商品名HYPALOW得自DuPont)、氯丁ニ烯橡胶、降冰片烯橡胶、腈橡胶、氢化腈橡胶、苯こ烯橡胶、丁苯橡胶、丁ニ烯橡胶、硅橡胶、こ烯-丙烯-ニ烯(“EPDM”)橡胶、异丁烯-异戊ニ烯橡胶、毡(诸如压制的羊毛毡)等。尤其适用的柔顺材料为异戊ニ烯、EPDM、氯丁橡胶、和HYPALON"',它们具有约40至约70硬度测验器的肖氏硬度A。柔顺材料46也可为诸如吸收芯之类的材料,所述材料可与所述薄膜33和无纺织物34—道在刚性材料48和成形结构10之间进料。此类材料可用于产生压力,对所述薄膜33和无纺织物34和成形结构10,以便在所述薄膜33和无纺织物34上压花。然后可将这种材料与与压花密封件16 —道结合到成品消费品诸如妇女卫生制品中。柔顺基底44可任选地包括凹进区域,所述凹进区域的深度足以防止所述薄膜33和无纺织物34在特定区域中压花或在特定区域中仅最低程度地压花所述薄膜33和无纺织物34。静压充气室參考图8,静压充气室36用于对所述薄膜33和无纺织物34提供压カ,所述压カ使薄膜33适形于成形结构10的离散的成形元件11并使无纺织物34的纤维23嵌入薄膜33中。优选地,静压充气室36为静态气体压カ充气室。所述气体可为空气、氮气、ニ氧化碳、以及它们的组合。静压充气室36在所述薄膜33和无纺织物34上施加压力。静态气体压カ充气室36可能包括护罩38,所述护罩限定邻近所述薄膜33和无纺织物34的充气室40。护罩38可包括至少ー个高压气体入口 42,所述入口允许高压气体或其它流体进入护罩38从而产 生静压条件。在静态气体压カ条件下,不存在如同速度压カ源诸如气刀的情况ー样的对未压花的薄膜33和无纺织物34进行冲击的速度和密度。恰恰相反,在护罩38中保持静态高气压,其在薄膜33和无纺织物34的面向静压充气室36的表面和薄膜33和无纺织物34的面向成形结构10的表面之间产生横跨薄膜33和无纺织物34的压差。所述压カ差足以使薄膜33适形于成形结构10的离散的成形元件11。例如可通过向薄膜33的面向成形结构10的表面上施加真空来增强所述压カ差。薄膜和无纺织物薄膜33和无纺织物34由压花密封件16连接。合适的薄膜包括如下的材料,所述材料可被压カ源变形,使得薄膜适形于成形结构10的离散的元件11以在薄膜33中生产出离散的延伸元件22。优选地,薄膜33具有粘附到其自身和/或其它薄膜和/或无纺织物的性能。薄膜33通常包括合成材料、金属材料、生物材料(具体地,动物衍生材料)、或它们的组合。所述薄膜33和无纺织物34可为相同的材料或不同的材料。所述薄膜33和无纺织物34可任选地包括纤维素材料。在一个实施方案中,所述薄膜33和无纺织物34不含纤维素材料。合适的薄膜的非限制性例子,诸如聚合物或热塑性薄膜、胶原蛋白薄膜、脱こ酰壳多糖薄膜、人造丝、玻璃纸等。合适的薄膜还包括这些材料的层压体或共混物。薄膜33可为任何材料,诸如聚合物薄膜,所述材料具有足够的材料特性从而通过本公开的压花方法成形为本文所述的压花密封件16。薄膜33通常具有屈服点,并且薄膜33优选地被拉伸超过其屈服点以形成压花密封件16的离散的延伸元件22。S卩,薄膜33应当具有足够的屈服特性,使得薄膜33可被无破裂地应变至某种程度,以生产出所期望的具有闭合远端24的离散的延伸元件22,在包括具有开ロ远端24的离散的延伸元件22的压花密封件的情形中,产生破裂以形成开ロ远端24。如下所述,エ艺条件诸如温度可因给定的聚合物而有变化以允许其有破裂或无破裂地拉伸,从而形成具有所期望的离散的延伸元件22的压花密封件16。因此,一般来讲,已发现优选的要用作薄膜33的起始材料表现出低屈服和高伸长特征。此外,按照前述的讨论,薄膜33优选地已被应变硬化。薄膜的实例包括包含以下物质的薄膜低密度聚こ烯(LDPE)、线性低密度聚こ烯(LLDPE)、聚丙烯、以及它们的共混物。其它合适的聚合物薄膜包括热塑性薄膜诸如聚こ烯、聚丙烯、聚苯こ烯、聚对苯ニ甲酸こニ酯(PET)、聚甲基丙烯酸甲酯(PMMA)、聚こ烯醇(PVA)、尼龙、聚四氟こ烯(PTFE)(例如,特氟隆)、或它们的组合。合适的聚合物薄膜可包括聚合物的共混物或混合物。在某些实施方案中,薄膜33可包含供应充足的聚合物诸如聚交酷、聚こ交酷、聚羟基链烷酸酯、多糖、聚己酸内酯等、或它们的混合物。压花之前的每ー薄膜33的厚度通常将在约5微米至约300微米,约5微米至约150微米,约5微米至约100微米,或约15微米至约50微米的范围内。其它合适的厚度包括约I微米,2微米,3微米,4微米,5微米,6微米,7微米,8微米,9微米,10微米,20微米,30微米,40微米,50微米,60微米,70微米,80微米,90微米,100微米,150微米,200微米,250微米或300微米。一种被发现适于用作薄膜33的材料为得自The Dow Chemical CompanyCMidland,MI, USA)的DOWLEX 2045A聚こ烯树脂。具有20微米的厚度的该材料的薄膜33可具有至 少12MPa的拉伸屈服;至少53MPa的极限拉伸;至少635%的极限伸长率;和至少210MPa的拉伸模量(2%正割)(上述每ー测量值均是根据ASTM D 882确定的)。其它合适的薄膜包括得自RKW US, Inc. (Rome, Georgia)的约25微米(I. Omil)厚且具有约24克/平方米(“gsm”)的基重的聚こ烯薄膜以及得自RKW US, Inc.的具有约14gsm的基重和约15微米厚度的聚こ烯/聚丙烯薄膜。所述无纺织物34包括纤维23。无纺织物34可具有高密度使得其作用类似于薄膜33材料。这种高密度的无纺织物34的ー个实施例为TYVEK/ 无纺织物34可包括非粘结纤维、缠绕纤维、丝束纤维等。纤维23可为可延伸的和/或具有弾性,并且可被预先拉伸来用于加工。无纺织物34的纤维23可以是连续的,诸如由纺粘法生产的纤维,或切割到长度,诸如通常用于粗梳エ艺。纤维23可具有吸收性,并且可包括纤维性吸收胶化材料。纤维23可以是无纺织物和纤维23的领域中已知的双组分、多组分、成型的、卷曲的或任何其它配方或构型。无纺织物34可以是任何已知的无纺织物,该无纺织物包括含有具有足够伸长特性的聚合物纤维的聚合物纤维以形成压花密封件16。一般来讲,聚合物纤维可为可粘结的、通过化学键(例如通过胶乳或粘合剂粘结)、压カ粘结、或热粘结来粘结。无纺织物34可包括约100重量%的热塑性纤维。无纺织物34可包括仅约10重量%的热塑性纤维。同样,无纺织物34可包括在约10重量%和100重量%之间以I重量%递增的任何量的热塑性纤维。无纺织物34的总基重(包括层压体或多层的无纺织物)的范围可为约Sgsm至约500gsm,诸如例如约8gsm至约50gsm,取决于制品的最终用途,并且可在约8gsm至约500gsm之间产生Igsm的梯度的增量。无纺织物34的组分纤维23可为聚合物纤维,并且可为单组分、双组分和/或双成分纤维、中空纤维、非圆形纤维(例如,成型的(例如,三叶形)纤维或毛细管道纤维),并且可具有以0. I微米为増量在约0. I微米至约500微米的范围(t匕如,例如从约5微米至50微米)内变化的主横截面尺寸(例如,对于圆形纤维为直径、对于椭圆形异形纤维为长轴、对于不规则形状而言为最长直线尺寸)。无纺织物34通过已知的无纺织物34挤出法进行成形,诸如例如已知的熔喷法或已知的纺粘法。无纺织物34可为可延展的、弹性的或非弹性的。无纺织物34可为纺粘幅材、熔喷幅材或粘结的梳理幅材。如果无纺织物34为熔喷纤维的幅材,则其可包括熔喷微纤维。无纺织物34可由纤维形成聚合物例如聚烯烃制成。聚烯烃包括以下中的ー种或多种聚丙烯、聚こ烯、こ烯共聚物、丙烯共聚物和丁烯共聚物。薄膜和无纺织物,诸如聚合物薄膜和无纺织物,通常具有约-100°C至约120°C,或约-80°C至约100°C,或其它适当范围的玻璃化转变温度。薄膜和无纺织物诸如聚合物薄膜和无纺织物可具有约100°C至约350°C的熔点。例如,LDPE或LDPE和LLDPE的混合物成形的薄膜33和/或无纺织物34具有约110°C至约122°的熔点。聚丙烯成形的薄膜33和/或无纺织物34具有约165°C的熔点。由聚酯形成的薄膜33和/或无纺织物34具有约2550C的熔点。由尼龙6形成的薄膜33和/或无纺织物34具有约215°C的熔点。由PTFE形成的薄膜33和/或无纺织物34具有约327°C的熔点。在一个实施方案中,所述方法在低于薄膜33的熔点和无纺织物34的熔点的温度下实施。例如,所述方法可在低于薄膜33的熔点和无纺织物34的熔点的10°C的温度下实施。在另ー个实施方案中,所述方法在大体上等于薄膜33的熔点和无纺织物34的熔点的温度下实施。在一个实施方案中,所述方法在高于薄膜33和/或无纺织物34的熔点的温 度下实施。无论所述方法中使用的温度如何,该方法在整个过程中选择的条件使得所述薄膜33和无纺织物34不熔融-熔合。例如,较高的温度可能配合较短的停留时间,使得所述薄膜33和无纺织物34都不会熔融而导致所述薄膜33和无纺织物34熔合。任选地,在该方法中,在压花之前可增塑薄膜33和无纺织物34以减小弹性模量和/或降低它们的脆性。在一个实施方案中,薄膜33和/或无纺织物34被应变硬化。可期望薄膜33的应变硬化特性有利于薄膜33适形于成形结构10的离散的成形元件11。这可优选地用于生产压花密封件16,其中期望具有压花密封件16的延伸元件22的闭合远端24。所述薄膜33和无纺织物34还应具有足够的可变形性以及具有足够的延展性以用于成形压花密封件16。如本文所用,术语“可变形的”描述如下的材料当被拉伸超过其弹性限度时,所述材料将基本上保持其新形成的构象并且表现出薄化。例如,薄膜33可在或接近所得的压花密封件16的离散的延伸元件22的远端24表现出薄化。薄膜33可各自为两个或更多个薄膜33层的层压体,并且可为共挤出的层压体。例如,薄膜33可能包括两层。在另ー个实例中,薄膜33可能包括三层,其中最内层被称为芯层,并且所述两个最外层被称为表皮层。在一个实施方案中,薄膜33包括包括三层的共挤出的层压体,所述层压体具有约25微米(0. OOlin.)的总体厚度,其中芯层具有约18微米(0. 0007in.)的厚度;并且每个表皮层均具有约3. 5微米(0. 00015in.)的厚度。在ー个实施方案中,这些层可包括具有不同应カ/应变和/或弾性特性的聚合物。薄膜33可使用在常规共挤出薄膜制造设备上生产多层的薄膜的常规规程来制造。如果需要包含共混物的层,则可首先干共混上述各组分的粒料,然后在进料该层的挤出机中进行熔融混合。作为另外一种选择,如果在挤出机中发生了不充分混合,则可首先干燥共混所述粒料,然后在预配混挤出机中进行熔融混合,随后在薄膜挤出之前重新制粒。用于制造薄膜33的合适的方法公开于美国专利5,520,875和美国专利6,228,462中。一般来讲,在压花密封件16上形成高面密度(或低平均中心至中心间距)的离散的延伸元件22的能力会受到薄膜33和/或无纺织物34的厚度的限制。
在某些实施方案中,薄膜33和/或无纺织物34可任选地还包括表面活性剤。如果要利用的话,优选的表面活性剂包括源自非离子类的那些,诸如醇こ氧基化物、烷基酚こ氧基化物、羧酸酯、甘油酷、脂肪酸的聚氧こ烯酯、与松香酸相关的脂族羧酸的聚氧こ烯酷、脱水山梨醇酯、こ氧基化脱水山梨醇酯、こ氧基化天然脂肪、油、和蜡、脂肪酸的こニ醇酷、羧基氨化物、ニこ醇胺缩合物、和聚环氧烷嵌段共聚物。所选定的表面活性剂的分子量可在约200克/摩尔至约10,000克/摩尔的范围内。优选的表面活性剂具有约300克/摩尔至约1,000克/摩尔的分子量。如果使用,表面活性剂初始混合进入薄膜33和/或无纺织物34的含量可达整个幅材的10重量%。在所述优选的分子量范围(300-1,000克/摩尔)内的表面活性剂可按较低的含量,一般为或低于总幅材的约5%重量的含量加入。在多个实施方案中,薄膜33和/或无纺织物34还可以包含粘合剂以加强幅材粘附到其自身和其它幅材的能力。任何已知的可提闻薄I旲33或无纺织物34的粘附能力的粘合剂均可使用。例如,可将低分子量聚合物例如聚异丁烯(PIB)和聚(こ烯-こ酸こ烯酷)(EVA)共聚物加入到幅材中。例如,当用于LDPE吋,PIB和EVA具有容易地与彼此相互作用·的链,并且它们的较低分子量使得它们在宿主聚合物基质内更具活动性。优选地,所述薄膜33和无纺织物34不含剥离剂和/或幅材的表面上不含低表面能化学官能团。已发现在幅材的表面上存在低表面能化学官能团可降低幅材的粘结强度。例如,局部地施加到要粘结的幅材表面中的一个或多个上的硅氧烷粘合剂剥离剂可使得所得粘结变弱,尤其是与在没有局部地施加硅氧烷粘合剂剥离剂的相同材料中所形成的粘结相比,更是如此。据信表面之间的吸引力被低表面能处理剂减弱。其它低表面能表面处理剂包括碳氟化合物。在某些实施方案中,薄膜33和/或无纺织物34也可在共混聚合物中包括ニ氧化钛。可提供ニ氧化钛以便增大压花密封件16的不透明度。ニ氧化钛可按幅材诸如低密度聚こ烯的至多约10重量%的量加入。可任选地在薄膜33和/或无纺织物34中加入其它添加剂诸如颗粒材料,例如炭黒、氧化铁、云母、碳酸钙(CaC03)、粒状皮肤护理剂或保护剂、或气味吸收活性物质例如沸石。在一些实施方案中,当用于接触皮肤的应用时,包含颗粒物质的压花密封件16可允许活性物质以非常直接和高效的方式接触皮肤。具体地讲,在一些实施方案中,离散的延伸元件22的形成可在或靠近它们的远端24暴露颗粒物质。因此,活性物质诸如皮肤护理剂可局限在或靠近离散的延伸元件22的远端24以允许当压花密封件16用于接触皮肤的应用时皮肤直接接触到此类皮肤护理剂。如果用于薄膜33和/或无纺织物34,则颗粒材料的平均粒度通常将为0. I微米至约200微米,0. 2微米至约200微米,或约5微米至约100微米。使用某些颗粒材料诸如云母干涉颗粒可显著地改善压花密封件16的视觉外观。薄膜33和/或无纺织物34也可任选地包括用来向材料赋予某种颜色的着色剂诸如顔料、色淀、调色剂、染料、墨或其它试剂,以改善压花密封件16的视觉外观。本文合适的颜料包括无机颜料、珠光颜料、干涉颜料等。合适的颜料的非限制性实例包括滑石、云母、碳酸镁、碳酸钙、硅酸镁、硅酸铝镁盐、ニ氧化硅、ニ氧化钛、氧化锌、红氧化铁、黄氧化铁、黑氧化铁、炭黑、群青顔料、聚こ烯粉末,甲基丙烯酸酯粉末,聚苯こ烯粉末,丝粉、结晶纤维素、淀粉、钛酸云母、氧化铁钛酸云母、氯氧化铋等。适当着色的薄膜和无纺织物描述与共同待决的提交于2010年3月11日的美国专利申请序列12/721,947以及提交于2010年3月11日的美国专利申请序列12/721,965。薄膜33和/或无纺织物34还可任选地包括填充剂、增塑剂等。压花密封件具有压花密封件16的制品可具有各种所期望的结构特征和特性诸如所期望的柔软手感和审美上悦人的视觉外观。压花密封件16包括由陆地13围绕的离散的延伸元件 22。所述离散的延伸元件22具有开ロ近端30和侧壁。所述无纺织物34的纤维23嵌入陆地13的至少ー个中以及离散的延伸元件22的侧壁中。參见图5B,在一个实施方案中,所述无纺织物34设置在薄膜33的侧面,所述薄膜包含离散的延伸元件22的远端24,并且所述无纺织物34的纤维23嵌入由陆地13围绕的离散的延伸元件22中。參见图5Aa,在另ー个实施方案中,所述无纺织物34设置在薄膜33的侧面,所述薄膜包含离散的延伸元件22的开ロ近端30,并且所述无纺织物34的纤维23通过开ロ近端30嵌入离散的延伸元件22的侧壁中和/或由陆地13围绕的离散的延伸元件22中。在一个实施方案中,所述离散的延伸元件22的一部分相对于围绕离散的延伸元件22的陆地13为薄化的。例如,所述离散的延伸元件22的远端24和/或侧壁相对于陆地13可为薄化的。嵌入其中和/或围绕离散的延伸元件22的陆地13的具有无纺织物34的纤维23的离散的延伸元件22具有较高的面间表面积。此外,如上所述,据信存在足够的摩擦力和/或吸引カ以保持所述薄膜33和无纺织物34接合在压花密封件16处。所述薄膜33和无纺织物34在压花密封件16处的分离需要足够的力,以便从离散的延伸元件22和陆地13分离嵌入陆地13中和/或离散的延伸元件22中所述纤维23。与现有技术的粘结方法诸如涉及通过热和压カ来熔合所述薄膜33和无纺织物34的那些方法相比,此类分离产生极小噪声,甚至不产生噪声。当制品所述至少两个层在压花密封件16处分离吋,由所述分离所产生的噪声显著地小于由通过热机粘结方法诸如美国专利5,462,166所述的方法形成的常规密封件所产生的噪声。例如,当制品所述至少两个层在压花密封件16处分离时,由所述分离所产生的声压级可小于约70dB,小于约65dB,或小于约60dB。压花密封件16在分离时声音基本上小于通过使用常规加工条件例如美国专利5,462,166中所述的那些条件的常规热机粘结方法所形成的密封件。例如,压花密封件16在分离时可产生如下的声压级,所述声压级比通过常规热机粘结方法形成的密封件所产生的声压级小至少约2dB,至少约3dB,至少约4dB,至少约5dB,至少约6dB,至少约7dB,至少约8dB,至少约9dB,或至少约10dB,所述通过常规热机粘结方法形成的密封件具有与压花密封件16基本上相同的剥离强度并且在与压花密封件16相同的条件下分离。基本上相同的剥离强度是指剥离强度在压花密封件16的剥离强度的至少约50%,至少约60%,至少约70%,或至少约80%以内。压花密封件16可具有至少大体上等于常规密封件诸如常规热机密封件的剥离强度的剥离强度,所述剥离強度通过“剥离强度试验”来測量。例如,压花密封件16可具有的剥离强度至少在常规热机密封件的剥离强度的30%,40%,50%,60%,70%,80%,90%,或100%以内。“剥离強度试验”可根据美国专利5,462,166所公开的方法来进行。将所述薄膜33和无纺织物34定位在成形结构10和压カ源之间,并且施加压カ以使薄膜33适形于成形结构10的离散的成形元件11。參见图3A、3B和3C,因而生产出具有无纺织物34的纤维23的离散的延伸元件22的压花密封件16的制品,所述纤维23嵌入离散的延伸元件22的侧壁中和/或围绕离散的延伸元件22的陆地13中。除了嵌入在离散的延伸元件22中和/或陆地13中 以外,无纺织物34的纤维23的丝束还能够积压在一起位于邻近的离散的延伸元件22之间。如图3A、3B、3C和6所示,离散的延伸元件22具有开ロ近端30和开ロ(如图7所示)和或闭合(如图3C和4所示)远端24。如上文所述,每个所述薄膜33和无纺织物34可为材料的单层或多层共挤复合或层压材料。层压薄膜材料可为共挤出的,如本领域已知的用于制造层压薄膜的材料,包括具有表皮层的薄膜。离散的延伸元件22被成形为薄膜33的突起延伸部,一般位于其第一表面26上。在某些实施方案中,薄膜33通过无纺织物34,诸如例如图3A中所示的孔21以及图3C中的离散的延伸元件22被推入。令人惊讶的是,当无纺织物在延伸元件的外表面上时,薄膜33可通过无纺织物34被推入。不受理论的约束,据信所述薄膜延伸元件可与无纺织物的纤维缝隙联锁,从而形成附加的密合强度。压花密封件16上的离散的延伸元件22的数目、尺寸和分配情况可基于所期望的粘结强度、柔软感和视觉效应来预定。据信,无纺织物34的纤维23和离散的延伸元件22之间的紧密接触的高面间表面积随着每单位面积的离散的延伸元件22的高度、直径、纵横比和/或数目的增大而増大。还据信,面间表面积的增大将造成压花密封件16的粘结强度相应地増大。參见图6,离散的延伸元件22可被描述成从薄膜33的第一表面26突出。因此,离散的延伸元件22可被描述为与薄膜33成一整体,并且通过永久地局部塑性变形薄膜33来形成。离散的延伸元件22可被描述为具有侧壁28,所述侧壁限定开ロ近侧部分和闭合或开ロ远端24。离散的延伸元件22各自具有高度h,所述高度从相邻延伸元件22之间的最小振幅Amin测量至闭合或开ロ远端24处的最大振幅A_。离散的延伸元件22具有直径d,就大致圆柱形结构而言,所述直径为横向截面的外径。所谓“横向”,是指大致平行于第一表面26的平面。就具有非均匀横向截面的大致柱状离散的延伸元件22、和/或非圆柱形结构的离散的延伸元件22而言,直径d被测量为离散的延伸元件的72高度h处的平均横向截面尺寸。因此,对于每个离散的延伸元件,可确定被定义为h/d的纵横比。离散的延伸元件可具有至少约0. 2,至少约0. 3,至少约0. 5,至少约0. 75,至少约1,至少约I. 5,至少约2,至少约2. 5,或至少约3的纵横比h/d。离散的延伸元件22通常将具有至少约30微米,至少约50微米,至少约65,至少约80微米,至少约100微米,至少约120微米,至少约150微米,或至少约200微米的高度h。延伸元件22通常将具有与薄膜33的厚度至少相同的高度,或至少2倍的薄膜33的厚度、或优选地至少3倍的薄膜33的厚度的高度。离散的延伸元件22通常将具有约50微米至约5,000微米,约50微米至约3,000微米,约50微米至约500微米,约65微米至约300微米,或约75微米至约200微米的直径d。就具有大致非柱状或不规则形状的离散的延伸元件22而言,离散的延伸元件的直径可被限定为两倍的离散的延伸元件在72高度处的回转半径。就具有形状(诸如脊)的离散的延伸元件22而言,所述脊在整个薄膜33材料上纵向地延伸,使得延伸元件22具有开ロ的延伸元件22的侧壁的一部分,离散的延伸元件的直径可被限定为延伸元件在72高度处的两个相对侧壁之间的平均最小宽度。一般来讲,由于任何单个离散的延伸元件的实际高度h可能难以确定,并且由于实际高度可有变化,因此多个离散的延伸元件22的平均高度havg可通过确定压花密封件16的预定区域上的平均最小振幅Amin和平均最大振幅Amax来确定。此类平均高度hpavg通常将落在上述高度范围内。同样,对于变化的横截面尺寸,可针对多个离散的延伸元件22来确定平均直径davg。此类平均直径davg通常将落在上述直径范围内。此类振幅和其它尺寸的测量可通过本领域已知的任何方法,诸如通过计算机辅助扫描显微术和数据处理来进行。因此,压花密封件16的预定部分上的离散的延伸元件22的平均纵横比ARavg可被表示为havg//davg。在一个实施方案中,离散的延伸元件的直径为恒定的或随着振幅的增加而减小(振幅在闭合或开ロ远端24处增加至最大值)。离散的延伸元件22的直径或平均横向截面尺寸可为近侧部分处的最大值,并且横向截面尺寸稳固地减小至远端。据信可期望该结构10帮助确保压花密封件16可容易地从成形结构10上除去。在另ー个实施方案中,离散的 延伸元件22的直径随着振幅的増加而增加。例如,离散的延伸元件22可具有蘑菇形状。薄膜33的薄化可由于所要求的形成高的纵横比离散的延伸元件22的较深冲压而发生。例如,可在或靠近离散的延伸元件22的闭合或开ロ远端24和/或沿侧壁观察到薄化。所谓“观察到”,是指当在放大的横截面中观察时薄化是明显的。此类薄化可为有益的,因为当触摸时,薄化的部分对压缩或剪切提供极小的阻力。例如,当某个人触摸到压花密封件16的表现出离散的延伸元件22的侧面时,其指尖首先接触离散的延伸元件22的闭合或开ロ远端24。由于离散的延伸元件22的高的纵横比、以及薄膜33在或靠近远端24和/或侧壁的壁的薄化,离散的延伸元件22会对由人的手指施加在压花密封件16上的压缩或剪切提供极小的阻力。这种阻力的缺乏表现为柔软感,非常类似于丝绒织物的触感。薄膜33在或靠近闭合或开ロ远端24和/或侧壁的薄化可相对于压花之前的薄膜33的厚度或相对于完全围绕压花密封件16的离散的延伸元件22的着陆区域的厚度进行测量。薄膜33通常将相对于薄膜33的厚度表现出至少约25%,至少约50%,或至少约75%的薄化。薄膜33通常将相对于围绕压花密封件16的离散的延伸元件22的着陆区域的厚度表现出至少约25%,至少约50%,或至少约75%的薄化。应当指出,仅具有如本文所公开的离散的延伸元件22且不具有宏观孔12或包括开ロ远端24的离散的延伸元件22的流体不可滲透的制品可为不要求流体滲透性的任何应用提供柔软性。因此,在一个实施方案中,所述制品包括一个压花密封件16,所述压花密封件在其中至少ー个表面上表现出柔软和丝绸般触觉印痕,所述压花密封件16的丝绸感表面表现出具有无纺织物34的纤维23的离散的延伸元件22的图案,所述纤维嵌入在离散的延伸元件22的侧壁中和/或围绕离散的延伸元件22的陆地13中,每个离散的延伸元件22成为薄膜33表面的突起延伸部,并具有确定开ロ近端和闭合或开ロ远端24的侧壁。在某些实施方案中,离散的延伸元件22在或靠近开ロ近侧部分具有最大横向截面尺寸。可最优化离散的延伸元件22的“面密度”,所述面密度为第一表面26的每单位面积上的离散的延伸元件22的数目,并且压花密封件16通常将包括约4至约10,000,约10至约 10,000,约 95 至约 10,000,约 240 至约 10,000,约 350 至约 10,000,约 500 至约 5,000,或约700至约3,000个离散的延伸元件22/平方厘米。一般来讲,可最优化中心至中心间距以便产生足够的触觉印象,而同时可最小化材料诸如流体在离散的延伸元件22之间的截留。相邻离散的延伸元件22之间的中心至中心间距可为约100微米至约5,000微米,约100微米至约1,000微米,约30微米至约800微米,约150微米至约600微米,或约180微米至约500微米。在一个实施方案中,所述制品可能包括邻近压花密封件16设置的非密封部分17,所述非密封部分17包括所述薄膜33和无纺织物34的部分,在该部分中,无纺织物34通过离散的延伸元件22的开ロ近端30没有嵌入陆地13中或离散的延伸元件22的侧壁中。例如,非密封部分17可能缺乏离散的延伸元件22,如图4所示。在另ー个实施方案中,压花密封件16沿着所述薄膜33和无纺织物34的对侧设置,并且非密封部分17设置在具有压花密封件16的对侧之间。用于制造压花密封件的方法參见图4,成形压花密封件16的方法包括在压カ源例如图4所示的柔顺基底44 和成形结构10之间进料薄膜33和无纺织物34,并且从压カ源对薄膜33、无纺织物34和成形结构10施加压力,所述压力足以使薄膜33的部分适形于成形结构10的离散的成形元件11,因而形成具有被陆地13围绕的离散的延伸元件22的密封件16,无纺织物34的纤维23嵌入离散的延伸元件22的侧壁中和/或陆地13中。取决于所产生的压カ和成形结构10的外形,薄膜33对成形结构10的适形可为局部适形、基本适形、或完全适形。不受理论的约束,据信开ロ远端24可通过在使薄膜33适形于成形结构10的离散的成形元件11的同时局部地破裂薄膜33来形成。为获得所述薄膜33和无纺织物34的永久性变形以形成压花密封件16,施加的压力一般足以拉伸薄膜33超过其屈服点。无纺织物34的纤维也可被压缩和/或拉伸超过其屈服点。该方法可为批量方法或连续方法。批量方法可涉及提供放置在成形结构10和压力源之间所述薄膜33和无纺织物的单个片。连续方法可涉及提供所述薄膜33和无纺织物34的辊,将所述辊退绕并且在成形结构10和压カ源之间进料。所述薄膜33和无纺织物34还可被装备ー个单辊。成形结构10可例如呈辊的形式。随着所述薄膜33和无纺织物34从成形结构10辊和压力源之间穿过,形成压花密封件16。如果压カ源为柔顺基底44,则柔顺基底44也可呈辊的形式。该方法可具有相对短的保压时间。如本文所用,术语“保压时间”是指将压カ施加到所述薄膜33和无纺织物34的给定部分的时间量,通常指所述薄膜33和无纺织物34的给定部分放置在成形结构10和静压充气室之间花费的时间量。通常将压カ施加到所述薄膜33和无纺织物34上并持续小于约5秒,小于约I秒,小于约0. 5秒,小于约0. I秒,小于约0. 01秒,或小于约0. 005秒的保压时间。例如,保压时间可为约0. 5毫秒至约50毫秒。即使用此类相对短的保压时间,也可生产出本文所述的具有所期望的结构特征的压花密封件16。因此,本公开的方法使得能够高速地生产压花密封件16。所述薄膜33和无纺织物34以至少约0. 01米/秒,至少约I米/秒,至少约5米/秒,或至少约10米/秒的速率在成形结构10和压カ源之间进料。其它合适的速率包括例如至少约0. 01米/秒,0. 05米/秒,0. I米/秒,0. 5米/秒,I米/秒,2米/秒,3米/秒,4米/秒,5米/秒,6米/秒,7米/秒,8米/秒,9米/秒或10米/秒。
取决于诸如成形结构10上的离散的延伸元件22的形状和所施加的压カ之类的因素,所生产出的压花密封件16的延伸元件22的远端24可为闭合的或开ロ的。在某些实施方案中,其中,所述无纺织物在延伸元件的外表面的层的构型还能提高开ロ远端的成形,尤其是使用低基重的无纺织物34时,诸如例如无纺织物34具有约20gsm或更低,诸如例如约15gsm或更低,或约IOgsm或更低的基重时更是如此。该方法可在环境温度下进行,这意味着无需有意地加热成形结构10、压カ源、薄膜33或无纺织物34。然而,应当认识到,会由于成形结构10和压カ源之间的压カ而产生热,尤其是在连续方法中更是如此。因此,可冷却成形结构10和/或压カ源以便将エ艺条件保持在所期望的温度诸如环境温度。该方法还可在薄膜33和/或无纺织物34的高温下进行。例如, 薄膜33和/或无纺织物34的温度可低于薄膜33的熔点和无纺织物34的熔点下限。例如,薄膜33和/或无纺织物34的温度可低于薄膜33的熔点和无纺织物34的熔点下限至少约10°C。薄膜33和/或无纺织物34,在加工期间可具有约10°C至约200°C,约10°C至约120°C,约20°C至约110°C,约10°C至约80°C,或约10°C至约40°C的温度。薄膜33和/或无纺织物34可使用加热的压力源来加热,例如用于静压充气室36的加热的流体压カ源或加热的柔顺基底44、和/或通过加热成形结构10来加热。例如,加热的气体可用作用于静压充气室36的压カ源。 在一个实施方案中,在被提供到成形结构10和柔顺基底44之间以前,无论薄膜33还是无纺织物34都没有被加热。在另ー个实施方案中,所述薄膜33和无纺织物34在被提供到成形结构10和柔顺基底44之间以前,无论薄膜33、无纺织物34、成形结构10还是柔顺基底44都没有被加热。一般来讲,本公开的方法可在约10°C至约200°C,约10°C至约120°C,约10°C至约80°C,或约10°C至约40°C的温度下来执行。所述温度可通过例如非接触式温度计诸如红外温度计或激光温度计来测量,测量压力源和成形结构10之间的辊隙处的温度。所述温度也可使用温度敏感材料诸如得自Paper Thermometer Company的温度标贴来确定。压カ源提供平均压力。所述平均压力足以作用于所述薄膜33和无纺织物34 (其位于成形结构10和压カ源之间)使得薄膜33适形于成形结构10的离散的成形元件11,以及将无纺织物34的纤维23嵌入到离散的延伸元件22的薄膜33中或围绕陆地13,因此形成压花密封件16。一般来讲,在成形结构10和静压充气室36之间提供的或由速度压カ源提供的平均压カ为约0. IMPa至约25MPa,约0. 5MPa至约20MPa,约0. 7MPa至约lOMPa,约IMPa 至约 7MPa,约 IMPa 至约 20MPa,约 0. 5MPa 至约 lOMPa,约 IOMPa 至约 25MPa,或约 0. 5MPa至约5MPa。一般来讲,在成形结构10和柔顺基底44之间提供的平均压カ为约IMPa至约IOOMPa,约5MPa至约70MPa,约IOMPa至约60MPa,或约20MPa至约40MPa。例如,外加压カ可为至多约30MPa。当将柔顺基底44用作压カ源时,通过向成形结构10和/或柔顺基底44施加カ将成形结构10和柔顺基底44按压至期望的压缩距离。“压缩距离”通过测量成形结构10被挤压到柔顺基底44中的距离来确定。该距离可通过如下方式来测量使成形结构10和柔顺基底44初始地接触,然后迫使成形结构10和柔顺基底44结合在一起。初始接触之后的成形结构10和柔顺基底44相对于彼此移动的距离被称为“压缩距离”。如果成形结构10和柔顺基底44两者均为辊,则压缩距离可被測量为由于在初始接触之后所施加的カ而引起的成形结构10的旋转轴线和柔顺基底44的旋转轴线之间的距离的变化。成形结构10和柔顺基底44的压缩距离通常将为约0. Imm至约5mm,约0. 2mm至约4mm,或约 0. 3mm 至约 3mm。该方法可任选地与其它方法相组合以进ー步操纵具有压花密封件16的制品。在一个实施方案中,此类附加方法可在相同方法的制造线上与该方法相组合以生产出例如用于吸收制品的包装。该方法还可包括从第二压カ源来施加压力。第二压カ源可相同于或不同于第一压力源,并且可选自静态液体压カ充气室、静态气体压カ充气室、速度气体压力源诸如气刀、速度液体压カ源诸如常规的液压成形法中所用的压カ源、和柔顺基底44。通过第二压カ源施加于所述薄膜33和无纺织物34的压カ通常类似于通过本文前述的第一压カ源施加于所述薄膜33和无纺织物的压力。例如,该方法可包括使用多个静压充气室。在一个实施方案中,提供至少两个静压充气室,并且在成形结构10和第一静压充气室之间将压力施加在所述薄膜33和无纺织物34的第一部分上。然后压力可施加在成形结构10和第二静压充气室之间所述薄膜33和无纺织物34的第一部分,以进一歩将所述薄膜33和无纺织物34的第一部分适形于相同的成形结构10的相同的突起元件15、孔12或凹陷14。这可允许增强通过该方法所形成的离散的延伸元件22。在一个实施方案中,成形结构10包括多个离散的凹陷14和多个离散的突起元件15。參加图3A,所得的压花密封件16可能包括在薄膜33中形成的多个离散的延伸元件22以及多个在薄膜33中形成且在与离散的延伸元件22相反的方向上延伸的离散的孔21。
在另ー个实施方案中,成形结构10包括多个离散的孔12和多个离散的突起元件15。所得的压花密封件16可能包括在薄膜33中形成且在相反方向从薄膜33延伸的多个离散的延伸元件22,其中离散的延伸元件22由孔12在ー个方向上延伸而形成,而离散的延伸元件22由离散的突起元件15在相反方向延伸而形成。制品的用涂所述制品可用于许多不同的方面,包括用作吸收制品的包装材料、包装(诸如流动包裹、收缩包装膜或塑料袋)、垃圾袋、食品包裹物、牙线、擦拭物、电子元件、壁纸、衣服、围裙、窗ロ覆盖物、餐具垫、书籍封面等。本文所公开的尺寸和数值不应被理解为严格限于所述确切数值。相反,除非另外指明,每个上述尺寸_在表示所述值以及该值附近的函数等效范围。例如,所公开的尺寸“40_”旨在表示“约40_”。在发明详述中引用的所有文献均在相关部分以引用方式并入本文。任何文献的引用均不可解释为是对其作为本发明的现有技术的认可。当本文献中术语的任何含义或定义与以引用方式并入的文献中相同术语的任何含义或定义冲突时,将以赋予本文献中那个术语的含义或定义为准。尽管已用具体实施方案来说明和描述了本发明,但是对那些本领域的技术人员显而易见的是,在不脱离本发明的实质和范围的情况下可作出许多其它的改变和变型。因此,所附权利要求书中g在涵盖本发明范围内的所有这些改变和变型。
权利要求
1.一种制品,所述制品包括 薄膜和包含纤维的无纺织物;以及 连接所述薄膜和所述无纺织物的一部分的压花密封件,所述密封件包括在所述薄膜中形成并由所述薄膜中的陆地围绕的离散的延伸元件,所述离散的延伸元件具有开ロ近端、开ロ或闭合远端、以及设置在所述近端和所述远端之间的侧壁,并且所述离散的延伸元件各部分的厚度小于所述陆地的厚度,其中所述无纺织物的纤维通过所述开ロ近端嵌入所述陆地的至少ー个中以及所述离散的延伸元件的侧壁中。
2.如权利要求I所述的制品,其中所述无纺织物设置在所述薄膜的侧面上,所述薄膜包含所述离散的延伸元件的开ロ近端。
3.如权利要求I所述的制品,其中所述无纺织物设置在所述薄膜的侧面上,所述薄膜包含所述离散的延伸元件的闭合远端。
4.如权利要求I所述的制品,其中所述压花密封件不含粘合剤。
5.如权利要求I所述的制品,其中所述离散的延伸元件的远端和侧壁的至少ー个相对于所述陆地薄化至少约25%。
6.如权利要求I所述的制品,其中所述薄膜具有约5微米至约150微米的厚度。
7.如权利要求I所述的制品,其中所述无纺织物具有约8gsm至约50gsm的基重。
8.如权利要求I所述的制品,其中所述无纺织物的纤维具有约0.I微米至约50微米的直径。
9.如权利要求I所述的制品,其中所述离散的延伸元件具有至少大体上等于所述薄膜的厚度的高度。
10.ー种方法,所述方法包括 在压カ源和包括成形元件的成形结构之间进料薄膜和具有纤维的无纺织物,所述成形元件选自离散的孔、离散的凹陷、离散的突起元件、以及它们的组合;以及 从所述压カ源对所述薄膜、所述无纺织物和所述成形结构施加压力,所述压力足以使所述薄膜适形于所述成形结构的成形元件并使所述无纺织物的纤维的至少一部分嵌入所述薄膜中以形成压花密封件,所述压花密封件包括多个由陆地围绕的离散的延伸元件,所述离散的延伸元件具有开ロ近端和侧壁,并且所述无纺织物的纤维通过所述离散的延伸元件的开ロ近端嵌入所述陆地的至少ー个中以及所述离散的延伸元件的侧壁中。
11.如权利要求10所述的方法,其中所述压カ源选自静压充气室、柔顺基底、速度压力源、以及它们的组合。
12.如权利要求10所述的方法,其中所述压カ源为柔顺基底。
13.如权利要求12所述的方法,其中所述施加的压カ为约IMPa至约lOOMPa。
14.如权利要求10所述的方法,其中所述压カ源为静压充气室。
15.如权利要求14所述的方法,其中所述施加的压カ为约0.IMPa至约25MPa。
16.如权利要求10所述的方法,所述方法包括以约0.5毫秒至约50毫秒的保压时间施加压力。
17.如权利要求10所述的方法,其中在所述方法中,所述薄膜和所述无纺织物的温度低于所述薄膜的熔点和所述无纺织物的熔点的下限。
18.如权利要求10所述的方法,其中所述成形元件具有约10微米至约5000微米的平均直径。
19.如权利要求10所述的方法,其中所述压花密封件不含粘合剤。
20.如权利要求10所述的方法,其中所述压花密封件的形成不需要熔融-熔合所述薄膜和所述无纺织物。
全文摘要
制品包括薄膜和具有纤维的无纺织物,以及连接薄膜和无纺织物的一部分的压花密封件。所述密封件包括在薄膜中形成并由薄膜中的陆地围绕的离散的延伸元件。所述离散的延伸元件具有开口近端、开口或闭口远端、以及设置在近端和远端之间的侧壁,并且所述离散的延伸元件各部分的厚度小于陆地的厚度。所述无纺织物的纤维通过开口近端嵌入陆地的至少一个中以及离散的延伸元件的侧壁中。
文档编号B26F1/24GK102791233SQ201080065338
公开日2012年11月21日 申请日期2010年9月10日 优先权日2010年3月11日
发明者K.J.斯通, R.D.扬 申请人:宝洁公司