杂环化合物和光学记录材料的制作方法

文档序号:2498818阅读:397来源:国知局
专利名称:杂环化合物和光学记录材料的制作方法
技术领域
本发明涉及新型的杂环化合物和含有该杂环化合物的光学记录材料。该杂环化合物除了适用于光学记录剂以外,还可以适用于光吸收剂、光敏化剂和紫外线吸收剂等。
背景技术
光学记录介质一般都具有记录容量大、记录和再生以非接触的方式进行等优良特征,因而得到广泛的普及。WORM、CD-R、DVD-R等追加记录型光盘是将激光聚集在光学记录层的极小面积上并改变光学记录层的性状来进行记录,并根据与未记录部分的反射光量的不同来进行再生。
目前,有关上述光盘,用于记录和再生的半导体激光的波长为对CD-R而言为750~830nm,对DVD-R而言为620~690nm,为了进一步增加容量,对使用短波长激光的光盘进行了研究,例如正在研究使用380~420nm的光作为记录光的光盘。
在这些短波长用光学记录介质的光学记录层中,作为光学记录材料,研究了吲哚衍生物。作为吲哚衍生物,例如对比文献1中报道了单次甲基花青(monomethinecyanine)化合物,专利文献2中报道了吲哚化合物。
对于光学记录材料,最大吸收波长(λmax)必须适应记录光和再生光。此外,吸收强度较大的材料在记录感度和记录速度方面有优势。上述化合物的吸收波长特性不一定适合短波长激光。
专利文献1特开2003-237233号公报专利文献2WO 01/44374号小册子

发明内容
因而,本发明旨在提供一种适合使用短波长的记录光和再生光的光学记录介质的化合物、以及含有该化合物的光学记录材料。
本发明者等经过反复研究发现,具有特定结构的杂环化合物适合于光学记录材料,该光学记录材料用于采用380~420nm的激光的光学记录介质的光学记录层,从而完成了本发明。
即,本发明提供下述通式(I)所示的杂环化合物、以及含有所述杂环化合物的光学记录材料,所述光学记录材料用于在基体上形成有光学记录层的光学记录介质的该光学记录层中。
(式中,环A表示可以具有作为取代基的碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基或卤素基的苯环;或者表示可以具有作为取代基的碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基或卤素基的萘环,X表示CRaRb、NY、O、S或Se原子,Ra和Rb表示可连接起来形成3~6元环的碳原子数为1~12的烃基,Y表示氢原子或碳原子数为1~30的有机基团,R1和R2分别独立地表示氢原子、卤素基、氰基、碳原子数为1~4的烷基或碳原子数为7~18的芳烷基,R3和R4分别独立地表示碳原子数为1~4的烃基或连接起来形成不含多重键的杂环的基团,Y1表示氢原子、碳原子数为1~30的有机基团或下述通式(II)所示的基团,Anq-表示q价的阴离子,q表示1或2,p表示保持电荷为中性的系数。) (式中,R5~R13分别独立地表示氢原子或可被卤原子取代且链中的亚甲基可被-O-或-CO-取代的碳原子数为1~4的烷基,M表示Fe、Co、Ni、Ti、Cu、Zn、Zr、Cr、Mo、Os、Mn、Ru、Sn、Pd、Rh或Pt,Z表示直接键合或碳原子数为1~8的亚烷基,所述亚烷基中的亚甲基可以被-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-或-CH=CH-取代。)具体实施方式

上述通式(I)中,作为A所表示的苯环或萘环的取代基的碳原子数为1~8的烷基,可以列举出甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异丁基、戊基、异戊基、叔戊基、己基、环己基、环己基甲基、环己基乙基、庚基、异庚基、叔庚基、正辛基、异辛基、叔辛基、2-乙基己基等。作为上述取代基的碳原子数为1~8的卤代烷基,可以列举出氯甲基、二氯甲基、三氯甲基、溴甲基、二溴甲基、三溴甲基、氟甲基、二氟甲基、三氟甲基、2,2,2-三氟乙基、全氟乙基、全氟丙基、全氟丁基等。作为上述取代基的碳原子数为1~8的烷氧基,可以列举出甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、仲丁氧基、叔丁氧基、己氧基、辛氧基等。作为上述取代基的碳原子数为1~8的卤代烷基,可以列举出氯甲氧基、二氯甲氧基、三氯甲氧基、溴甲氧基、二溴甲氧基、三溴甲氧基、氟甲氧基、二氟甲氧基、三氟甲氧基、2,2,2-三氟乙氧基、全氟乙氧基、全氟丙氧基、全氟丁氧基等。作为上述取代基的磺酰基或亚磺酰基所具有的碳原子数为1~12的烃基,可以列举出甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异丁基、戊基、异戊基、叔戊基、己基、环己基、环己基甲基、2-环己基乙基、庚基、异庚基、叔庚基、正辛基、异辛基、叔辛基、2-乙基己基、壬基、异壬基、癸基、十二烷基等烷基;乙烯基、1-甲基乙烯-1-基、丙烯-1-基、丙烯-2-基、丙烯-3-基、丁烯-1-基、丁烯-2-基、2-甲基丙烯-3-基、1,1-二甲基乙烯-2-基、1,1-二甲基丙烯-3-基等链烯基;苯基、萘基、2-甲基苯基、3-甲基苯基、4-甲基苯基、4-乙烯基苯基、3-异丙基苯基、4-异丙基苯基、4-丁基苯基、4-异丁基苯基、4-叔丁基苯基、4-己基苯基、4-环己基苯基、2,3-二甲基苯基、2,4-二甲基苯基、2,5-二甲基苯基、2,6-二甲基苯基、3,4-二甲基苯基、3,5-二甲基苯基、2,4,5-三甲基苯基等芳基;苄基、2-甲基苄基、3-甲基苄基、4-甲基苄基、2,4-二甲基苄基、苯乙基、2-苯基丙烷-2-基、二苯基甲基、苯乙烯基、肉桂基等芳烷基。作为具有上述取代基的烷基胺基或二烷基胺基所具有的碳原子数为1~8的烷基,可以列举出以上列举的碳原子数为1~8的烷基。作为构成上述取代基的碳原子数为1~8的酰胺基的酰基,可以列举出乙酰基、丙酰基、辛酰基、丙烯酰基、甲基丙烯酰基、苯甲酰基等。作为上述取代基的卤素基,可以列举出氟、氯、溴、碘。
上述通式(I)中,作为Ra和Rb所示的碳原子数为1~12的烃基,可以列举出上述磺酰基所具有的碳原子数为1~12的烃基,作为Ra和Rb连接形成的3~6元环,可以列举出环丙烷-1,1-二基、环丁烷-1,1-二基、2,4-二甲基环丁烷-1,1-二基、3-二甲基环丁烷-1,1-二基、环戊烷-1,1-二基、环己烷-1,1-二基。Y所示的碳原子数为1~30的有机基团没有特别的限制,可以列举出例如,甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异丁基、戊基、异戊基、叔戊基、己基、环己基、环己基甲基、2-环己基乙基、庚基、异庚基、叔庚基、正辛基、异辛基、叔辛基、2-乙基己基、壬基、异壬基、癸基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基等烷基;乙烯基、1-甲基乙烯基、2-甲基乙烯基、丙烯基、丁烯基、异丁烯基、戊烯基、己烯基、庚烯基、辛烯基、癸烯基、十五烯基、1-苯基丙烯-3-基等链烯基;苯基、萘基、2-甲基苯基、3-甲基苯基、4-甲基苯基、4-乙烯基苯基、3-异丙基苯基、4-异丙基苯基、4-丁基苯基、4-异丁基苯基、4-叔丁基苯基、4-己基苯基、4-环己基苯基、4-辛基苯基、4-(2-乙基己基)苯基、4-硬脂酰基苯基、2,3-二甲基苯基、2,4-二甲基苯基、2,5-二甲基苯基、2,6-二甲基苯基、3,4-二甲基苯基、3,5-二甲基苯基、2,4-二叔丁基苯基、环己基苯基等烷基芳基;苄基、苯乙基、2-苯基丙烷-2-基、二苯基甲基、三苯基甲基、苯乙烯基、肉桂基等芳基烷基,此外可以列举出上述烃基被醚键和/或硫醚键中断的基团,例如2-甲氧基乙基、3-甲氧基丙基、4-甲氧基丁基、2-丁氧基乙基、甲氧基乙氧基乙基、甲氧基乙氧基乙氧基乙基、3-甲氧基丁基、2-苯氧基乙基、2-甲硫基乙基、2-苯硫基乙基;而且这些基团可以被烷氧基、链烯基、硝基、氰基、卤原子等取代。
上述通式(I)中,作为R1和R2所示的碳原子数为1~4的烷基,可以列举出甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异丁基。作为R1和R2所示的碳原子数为7~18的芳烷基,可以列举出苄基、苯乙基、2-苯基丙烷-2-基、苯乙烯基、肉桂基、二苯基甲基、三苯基甲基等。作为R3和R4所示的碳原子数为1~4的烷基,可以列举出对R1和R2所例示的基团,作为R3和R4连接起来形成的不含多重键的杂环,可以列举出吡咯烷环、咪唑啉(imidazolidine)环、吡唑烷环、噻唑烷环、异噻唑烷环、噁唑烷(oxazolidine)环、异噁唑烷环、哌啶环、哌嗪环、吗啉环等。
上述通式(I)中,作为Y1所示的碳原子数为1~30的有机基团,可以列举出对上述Y所例示的基团。
另外,在上述通式(I)中,作为由Anq-表示的阴离子,例如,作为一价阴离子,可以列举出氯阴离子、溴阴离子、碘阴离子、氟阴离子等卤素阴离子;高氯酸阴离子、氯酸阴离子、硫氰酸阴离子、六氟化磷阴离子、六氟化锑阴离子、四氟化硼阴离子等无机系阴离子;苯磺酸阴离子、甲苯磺酸阴离子、三氟甲磺酸阴离子、二苯基胺-4-磺酸阴离子、2-氨基-4-甲基-5-氯代苯磺酸阴离子、2-氨基-5-硝基苯磺酸阴离子等有机磺酸阴离子;辛基磷酸阴离子、十二烷基磷酸阴离子、十八烷基磷酸阴离子、苯基磷酸阴离子、壬基苯基磷酸阴离子、2,2’-亚甲基双(4,6-二叔丁基苯基)膦酸阴离子等有机磷酸系阴离子等;作为二价阴离子,例如可以列举出苯二磺酸阴离子、萘二磺酸阴离子等。另外,必要时也可使用具有使处于激发态的活性分子去激发(猝灭)功能的猝灭剂阴离子、和在环戊二烯基环上具有羧基、膦酸基、磺酸基等阴离子性基团的二茂铁、二茂钌等茂金属化合物阴离子等。
作为上述猝灭剂阴离子,可以列举出例如下述通式(A)或(B)所示的化合物、特开昭60-234892号公报、特开平5-43814号公报、特开平6-239028号公报、特开平9-309886号公报、特开平10-45767号公报等中记载的阴离子。
(式中,M表示镍原子或铜原子,R14和R15分别独立地表示卤原子、碳原于数为1~8的烷基、碳原于数为6~30的芳基或-SO2-G基,G表示烷基、可由卤原子取代的芳基、二烷基胺基、二芳基胺基、哌啶基或吗啉基;a和b分别表示0~4。另外,R16、R17、R18和R19分别独立地表示烷基、烷基苯基、烷氧基苯基或卤代苯基。)此外,在表示上述通式(I)中的Y1的上述通式(II)中,作为R5~R13所示的碳原子数为1~4的烷基,可以列举出甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、异丁基。作为被卤原子取代的上述烷基,可以列举出氯甲基、二氯甲基、三氯甲基、溴甲基、二溴甲基、三溴甲基、氟甲基、二氟甲基、三氟甲基、2,2,2-三氟乙基、全氟乙基、全氟丙基、全氟丁基等,作为其链中的亚甲基被-O-取代的基团,可以列举出甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、仲丁氧基、叔丁氧基、2-甲氧基乙氧基、2-甲氧基乙基、氯甲氧基、二氯甲氧基、三氯甲氧基、溴甲氧基、二溴甲氧基、三溴甲氧基、氟甲氧基、二氟甲氧基、三氟甲氧基、2,2,2-三氟乙氧基、全氟乙氧基、全氟丙氧基、全氟丁氧基等,作为其链中的亚甲基被-CO-取代的基团,可以列举出乙酰基、丙酰基、一氯乙酰基、二氯乙酰基、三氯乙酰基、三氟乙酰基、丙烷-2-酮-1-基、丁烷-2-酮-1-基等。
上述通式(II)中,作为Z所示的碳原子数为1~8的亚烷基,可以列举出亚甲基、亚乙基、亚丙基、甲基亚乙基、亚丁基、1-甲基亚丙基、2-甲基亚丙基、1,2-二甲基亚丙基、1,3-二甲基亚丙基、1-甲基亚丁基、2-甲基亚丁基、3-甲基亚丁基、4-甲基亚丁基、2,4-二甲基亚丁基、1,3-二甲基亚丁基、亚戊基、亚己基、亚庚基、亚辛基、乙烷-1,1-二基、丙烷-2,2-二基、环丙烷-1,1-二基、环丙烷-1,2-二基、环丁烷-1,1-二基、环丁烷-1,2-二基、环戊烷-1,1-二基、环戊烷-1,2-二基、环戊烷-1,3-二基、环己烷-1,1-二基、环己烷-1,2-二基、环己烷-1,3-二基、环己烷-1,4-二基、甲基环己烷-1,4-二基等。此外,对于上述亚烷基中的亚甲基被-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-或-CH=CH-取代的基团,所取代的位置和数目是任意的。
上述通式(I)所示的杂环化合物中,下述通式(I’)所示的化合物生产成本低廉,其光学特性特别适合于在采用380~420nm的激光的光学记录介质的光学记录层中使用的光学记录材料,因而优选。
(式中,E表示碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基或卤素基,X’表示CR’aR’b、O或S,R’a和R’b表示可连接形成3~6元环的碳原子数为1~12的烃基,R’1表示氢原子、卤素基、氰基、碳原子数为1~4的烷基或碳原子数为7~18的芳烷基,R’3和R’4分别独立地表示碳原子数为1~4的烃基或连接起来形成不含多重键的杂环的基团,Y’1表示氢原子、碳原子数为1~30的有机基团或下述通式(II’)所示的基团,n表示0~4的整数,Anq-、q和p的定义与上述通式(I)相同。) (式中,R’5~R’13分别独立地表示氢原子、或可被卤原子取代且链中的亚甲基可被-O-或-CO-取代的碳原子数为1~4的烷基,Z’表示直接键合或碳原子数为1~8的亚烷基。)在上述通式(I’)中,作为E表示的碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基,可以列举出作为上述通式(I)的A的取代基所列举的基团。作为R’a和R’b表示的可连接形成3~6元环的碳原子数为1~12的烃基,可以列举出对上述通式(I)的Ra和Rb所列举的基团。作为R’1表示的碳原子数为1~4的烷基或碳原子数为7~18的芳烷基,可以列举出对上述通式(I)的R1所列举的基团。作为R’3和R’4表示的碳原子数为1~4的烃基或连接起来形成杂环的基团,可以列举出对上述通式(I)的R3和R4所列举的基团。作为Y’1表示的碳原子数为1~30的有机基团,可以列举出对上述通式(I)的Y所列举的基团。当Y’1为碳原子数为1~30的有机基团时,容易引入Y’1基,不会对光学特性产生较大影响,杂环化合物的生产成本低廉,因而优选。作为所述Y’1,可以列举出可被O原子中断的碳原子数为1~12的烃基。
此外,上述通式(II’)中,作为R’5~R’13所示的氢原子、或可被卤原子取代且链中的亚甲基可被-O-或-CO-取代的碳原子数为1~4的烷基,可以列举出对上述通式(II)的R5~R13所列举的基团,作为Z’表示的碳原子数为1~8的亚烷基,可以列举出亚甲基、亚乙基、亚丙基、甲基亚乙基、亚丁基、1-甲基亚丙基、2-甲基亚丙基、乙烷-1,1-二基、丙烷-2,2-二基、亚戊基、亚己基、亚庚基、亚辛基等。
上述通式(I’)所示的杂环化合物中,Y’1为上述通式(II’)所示基团的杂环化合物具有耐光性特别优良的特征,因而特别适合光学记录材料。
作为本发明的杂环化合物的优选具体例子,可以列举出下述化合物No.1~66。另外,在以下例子中,以省略了阴离子的花青化合物阳离子表示。
化合物No.1 化合物No.2化合物No.3 化合物No.4化合物No.5化合物No.6
化合物No.13 化合物No.14化合物No.15 化合物No.16 化合物No.17化合物No.18 化合物No.19 化合物No.20 化合物No.21
化合物No.22 化合物No.23 化合物No.24 化合物No.25 化合物No.26 化合物No.27 化合物No.28 化合物No.29 化合物No.30
化合物No.31化合物No.32 化合物No.33 化合物No.34 化合物No.35 化合物No.36 化合物No.37化合物No.38 化合物No.39
化合物No.40化合物No.41 化合物No.42 化合物No.43 化合物No.44 化合物No.45 化合物No.46化合物No.47 化合物No.48
化合物No.49化合物No.50 化合物No.51 化合物No.52 化合物No.53 化合物No.54 化合物No.55化合物No.56 化合物No.57
化合物No.58化合物No.59 化合物No.60 化合物No.61 化合物No.62 化合物No.63 化合物No.64 化合物No.65 化合物No.66 上述通式(I)表示的本发明的杂环化合物的制造方法没有特别限制,可以由利用众所周知的一般反应的方法获得。例如,上述通式(I’)所示的杂环化合物可以按照下述(化13)所示的合成路线,利用氯氧化磷等反应剂使2-甲基杂环衍生物和甲酰胺衍生物反应,必要时进行阴离子交换而获得。
化13 (式中,R’1、R’3、R’4、X’、Y’1、Anq-、q和p的定义与上述通式(I’)相同,D-表示阴离子。)另外,上述2-甲基杂环衍生物中的Y’1可以通过与吲哚环的NH反应的Y’1-D(D表示氯、溴、碘等卤素基;苯基磺酰氧基、4-甲基苯基磺酰氧基、4-氯苯基磺酰氧基等磺酰氧基)而引入。
上述本发明的杂环化合物适合作为针对380~420nm范围的光的光学要素。光学要素是指,通过吸收特定的光而发挥作用的要素,具体地可以列举出光吸收剂、光学记录剂、光敏化剂、紫外线吸收剂等。例如,光学记录剂用于光盘等光学记录介质中的光学记录层,光吸收剂用于液晶显示装置(LCD)、等离子体显示面板(PDP)、电致发光显示器(ELD)、阴极管显示装置(CRT)、荧光显示管、场致发射型显示器等图像显示装置用滤光器,紫外线吸收剂用于使高分子化合物、合成树脂、涂层材料、涂料等具有气候耐性。
本发明的杂环化合物由于其光学特性而特别适合作为用于光学记录材料的光学记录剂。由于本发明的光学记录材料用于在基体上形成有光学记录层的光学记录介质的所述光学记录层中,且含有本发明的杂环化合物,因而包括前述通式(I)所示的本发明的杂环化合物本身以及该杂环化合物与后述的有机溶剂和/或各种化合物的混合物。
关于使用本发明的光学记录材料形成光学记录介质的光学记录层的方法,没有特别的限制。通常,可使用通过旋涂、喷涂、浸渍等在基体上涂布在如下的有机溶剂中溶解有本发明的杂环化合物的溶液的湿式涂布法,上述有机溶剂为甲醇、乙醇等低级醇类;甲基溶纤剂、乙基溶纤剂、丁基溶纤剂、丁基二甘醇等醚醇类;丙酮、甲基乙基酮、甲基异丁基酮、环己酮、双丙酮醇等酮类;乙酸乙酯、乙酸丁酯、乙酸甲氧基乙酯等酯类;丙烯酸乙酯、丙烯酸丁酯等丙烯酸酯类;2,2,2-三氟乙醇、全氟乙醇、2,2,3,3-四氟-1-丙醇、全氟丙醇等氟代醇类;苯、甲苯、二甲苯等烃类;二氯甲烷、二氯乙烷、氯仿等氯代烃类等。作为其它的方法,可以例举出蒸镀法、溅射法等。
上述光学记录层的厚度为0.001~10μ,优选为0.01~5μ的范围。
此外,当使光学记录介质的光学记录层中含有本发明的杂环化合物时,该光学记录层中上述杂环化合物的含量优选为25~100质量%。要形成上述花青化合物含量的光学记录层,在本发明的光学记录材料中,以本发明的光学记录材料中所含的固体成分为基准,优选含有25~100质量%的本发明的杂环化合物。
另外,上述光学记录层中除了含有上述通式(I)所示的本发明的杂环化合物之外,必要时还可以含有其它的花青系化合物、偶氮系化合物、甲亚胺系化合物、酞菁系化合物、氧杂菁(oxonol)系化合物、方酸内鎓盐(squarylium)系化合物、苯乙烯基系化合物、羟基喹啉系化合物、萘啶系化合物、卟啉系化合物、prophycene系化合物、蒽醌系化合物、甲臜(formazan)金属络合物、吡咯甲川(pyrromethene)金属络合物、富勒烯(fullerene)色素化合物等可用于光学记录层的化合物;聚乙烯、聚酯、聚苯乙烯、聚碳酸酯等树脂类,还可以含有表面活性剂;抗静电剂;润滑剂;阻燃剂;受阻胺等自由基捕捉剂;二茂铁衍生物等凹坑(pit)形成促进剂;分散剂;抗氧化剂;交联剂;耐光性赋予剂等。另外,上述光学记录层可以含有作为单态氧等的猝灭剂的芳香族亚硝基化合物、胺鎓化合物、亚胺鎓化合物、双亚胺鎓化合物、过渡金属螯合物等。上述各种化合物优选以0~75质量%的范围用于上述光学记录层中。因此,在本发明的光学记录材料中,以本发明的光学记录材料所含的固体成分为基准,上述各种化合物的含量优选为0~75质量%。
设置上述光学记录层的上述基体的材料只要是对写入(记录)光和读取(再生)光实质上是透明的即可,没有特别的限制,例如,可以使用聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚碳酸酯等树脂、玻璃等。另外,根据用途,其形状可以使用卷尺状、圆筒状、带状、圆盘状等任意形状。
另外,在上述的光学记录层上,也可使用金、银、铝、铜等通过蒸镀法或溅射法形成反射膜,也可利用丙烯酸树脂、紫外线固化性树脂等形成保护层。
实施例下面,通过实施例更详细地说明本发明。但是,本发明不受到以下实施例的任何限制。
杂环化合物的制造采用下述合成方法,分别合成化合物No.1、2、6、8、15、16、17、18、19、22、23、31的六氟化磷盐(实施例1-1~1-12)。得到的化合物的收率和分析结果示于表1和表2中。根据表1和表2所示的1H-NMR的结果,均证实了所得到的化合物为目标产物。
另外,表1中,光学特性(λmax和ε)是使用浓度为9.22×10-6摩尔/升的氯仿溶液测定的结果,熔点是在10℃/分钟的升温速度下的示差热分析DTA的熔点吸收峰的起始温度。
(合成方法)在反应烧瓶中加入30ml氯仿和103毫摩尔甲酰胺衍生物,在4℃下加入15毫摩尔氯氧化磷后,在4℃下搅拌1小时。在4℃下加入12.7毫摩尔2-甲基杂环衍生物后,升温至70℃并搅拌2小时。将该反应溶液注入通过在200ml水中溶解了14.0毫摩尔六氟化磷钾而得到的溶液中,向其中加入200ml氯仿并充分搅拌后除去水层。得到的有机层用无水硫酸钠干燥后,脱去溶剂得到残渣。得到的残渣用甲苯进行结晶,析出的粗晶体用丙酮和甲苯的混合溶剂进行重结晶,得到目标杂环化合物。
表1

表2
杂环化合物的评价1在直径为12cm的聚碳酸酯圆盘基板上,通过旋涂法(2000rpm,60秒)用浓度为1.0质量%的2,2,3,3-四氟丙醇溶液涂覆上述实施例1得到的杂环化合物(参照表3),形成由杂环化合物构成的光学记录层而得到光学记录介质(实施例2-1~2-6)。对上述光学记录介质进行透射UV光谱和入射角5°的反射光UV光谱的测定。其结果示于表3中。
另外,反射光光谱与光学记录介质的再生特性有关。再生模式是,对于使激光反射到光学记录介质上的反射光,通过激光波长的光量差来检测有无记录,因此反射光的最大吸收光谱越接近所使用的再生光的波长越优选。
表3

根据上表3,可以证实使用本发明的杂环化合物的光学记录介质适合于405nm的激光。
杂环化合物的评价2使用表4所示的杂环化合物,通过与上述实施例2同样的操作得到光学记录介质,对该光学记录介质照射48小时55000勒克司的光。在λmax下照射后的UV吸收强度的残留率示于表4中。
表4

根据上表4,可以证实在本发明的杂环化合物中,在N侧链上具有二茂铁衍生基团的化合物(实施例3-4)也具有特别优良的光稳定性。
根据本发明,可以提供一种适合使用短波长的记录光和再生光的光学记录介质的化合物、以及含有该化合物的光学记录材料。
权利要求
1.下述通式(I)所示的杂环化合物, 式中,环A表示可以具有作为取代基的碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基或卤素基的苯环;或者表示可以具有作为取代基的碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基或卤素基的萘环,X表示CRaRb、NY、O、S或Se原子,Ra、Rb表示可连接起来形成3~6元环的碳原子数为1~12的烃基,Y表示氢原子或碳原子数为1~30的有机基团,R1和R2分别独立地表示氢原子、卤素基、氰基、碳原子数为1~4的烷基或碳原子数为7~18的芳烷基,R3和R4分别独立地表示碳原子数为1~4的烃基或连接起来形成不含多重键的杂环的基团,Y1表示氢原子、碳原子数为1~30的有机基团或下述通式(II)所示的基团,Anq-表示q价的阴离子,q表示1或2,p表示保持电荷为中性的系数; 式中,R5~R13分别独立地表示氢原子或可被卤原子取代且链中的亚甲基可被-O-或-CO-取代的碳原子数为1~4的烷基,M表示Fe、Co、Ni、Ti、Cu、Zn、Zr、Cr、Mo、Os、Mn、Ru、Sn、Pd、Rh或Pt,Z表示直接键合或碳原子数为1~8的亚烷基,所述亚烷基中的亚甲基可以被-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NH-、-CONH-、-NHCO-、-N=CH-或-CH=CH-取代。
2.下述通式(I’)所示的杂环化合物, 式中,E表示碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的卤代烷氧基、氰基、硝基、具有碳原子数为1~12的烃基的磺酰基、具有碳原子数为1~12的烃基的亚磺酰基、具有碳原子数为1~8的烷基的烷基胺基、具有碳原子数为1~8的烷基的二烷基胺基、碳原子数为1~8的酰胺基或卤素基,X’表示CR’aR’b、O或S,R’a和R’b表示可连接起来形成3~6元环的碳原子数为1~12的烃基,R’1表示氢原子、卤素基、氰基、碳原子数为1~4的烷基或碳原子数为7~18的芳烷基,R’3和R’4分别独立地表示碳原子数为1~4的烃基或连接起来形成不含多重键的杂环的基团,Y’1表示氢原子、碳原子数为1~30的有机基团或下述通式(II’)所示的基团,n表示0~4的整数,Anq-、q和p的定义与所述通式(I)相同; 式中,R’5~R’13分别独立地表示氢原子或可被卤原子取代且链中的亚甲基可被-O-或-CO-取代的碳原子数为1~4的烷基,Z’表示直接键合或碳原子数为1~8的亚烷基。
3.如权利要求2所述的杂环化合物,其中,所述通式(I’)中,Y’1所示的基团是可被O原子中断的碳原子数为1~12的烃基。
4.如权利要求2所述的杂环化合物,其中,所述通式(I’)中,Y’1所示的基团是所述通式(II’)所示的基团。
5.一种光学记录材料,其用于在基体上形成有光学记录层的光学记录介质的该光学记录层中,并含有权利要求1~4中任一项所述的杂环化合物。
全文摘要
本发明的杂环化合物如下述通式(I)所示,其适用于采用短波长的记录光和再生光的光学记录介质的光学记录层的形成。(式中,环A表示可以具有作为取代基的碳原子数为1~8的[烷基、卤代烷基、烷氧基、卤代烷氧基、酰胺基]、卤素基、氰基、硝基、具有碳原子数为1~12的烃基的[磺酰基、亚磺酰基]、具有碳原子数为1~8的烷基的[烷基胺基、二烷基胺基]的[苯环或萘环],X表示CR
文档编号B41M5/26GK101031544SQ200580032
公开日2007年9月5日 申请日期2005年8月18日 优先权日2004年9月27日
发明者柳泽智史, 久保田裕介 申请人:株式会社艾迪科
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1