喷墨头的液体容器的制作方法

文档序号:2506599阅读:230来源:国知局
专利名称:喷墨头的液体容器的制作方法
技术领域
本发明涉及液体容器,其容纳用于喷液头(喷墨头)记录的液体,喷液头把液滴喷到片材上形成图象。
在普通的打印机中,把液滴喷到片材上形成图像的喷墨头装在托架上,托架可在与片平行的平面内沿与供纸方向垂直的方向作往复运动。
在这种扫描型装置中,托架响应指示在一条线上运动,液滴响应喷出信号喷出在纸上成象,随后纸由供送装置供送通过一定的距离,这些操作反复进行。作为液滴喷出型,有使用电热转换元件(加热器)型及使用压电元件型(压电型),在这些型式中,液滴的喷出由电信号控制。在使用电热转换元件的方法中,电信号供到电热转换元件使得邻近电热转换元件的墨瞬时沸腾,由瞬时的墨的沸腾引起的气泡突然增长液滴以高速度喷出。
由于成象过程中液体消耗,喷液头需要总是被供以液体。为完成这过程,有一种系统,例如,其中一墨容器设在喷墨记录装置的主组件中,供墨管从墨容器延伸到记录头,由喷墨头和墨容器之间的静压头差提供的负压供墨。但是,这种结构导致结构笨重,因此从尺寸及价格言,它不可能用于现代型的机器。
另一种系统是带液体容器型,其中液体容器可相对于装在托架上的喷液头可拆卸地安装,并且与喷液头的供液口连接。在该系统中,在容器的液体消耗掉后,用新的液体容器替换用完液体的容器。
在这种装液体容器型中,喷液头通常设在低于液体容器。因此,如果液体容器具有通大气的结构,必须设一个装置产生预定的负压以防止液体通过喷液头的液滴喷出口(孔)漏出。另外,为了稳定喷液性能,应在喷液头的液滴喷出口保持稳定的弯液面。在这种液体容器中,负压调节到考虑了在喷液头的喷出部分和容器中的液体表面之间的静压头差的一预定值,以在喷出口保持稳定的弯液面。因此,在液体容器中的液体状态对从喷液头喷出液滴的性能有影响。
为了产生这种负压,例如日本特许公开昭-56-67269及日本特许公开昭-59-98857公开了一种弹簧顶压的软外壳式的墨容器型,使用在墨容器中的弹簧顶压着一个装墨软外壳。采用这种型式,制造步骤复杂,因此制造成本高,另外如果容器的厚度小,则每单位体积的墨容器中的墨量,也就是墨保存率小,结果使工作成本更高。
例如,日本特许公开平-2-21466公开了一种容器,其内部分成多个墨室,它们通过细孔依次连通,它可以产生负压。但是,在这种型式中,根据墨容器的方向,墨并不存在在细孔部分,结果没有负压,或者由于环境温度等使墨室中的空气膨胀会使负压减小,因此墨比较容易泄漏。
还有一种已知的系统,其中液体吸收材料占据了墨容器的整个内空间,墨由吸收材料保持着。液体吸收材料是海绵类的多孔材料的型式,一般吸收材料原始尺寸比容器的内部容积大,当放入容器中被压缩。
采用这种系统,由于可容纳在吸收材料中的墨量受限制以提供稳定的负压避免漏墨等问题,并且由于负压的绝对值随着吸收材料中含的墨的消耗而增加使吸收材料中的墨有时不能完全用完。
还有一种系统,即所谓的半海绵墨容器型,它增加了可消耗的墨量。在日本特许公开平6-40043中公开了一个实例,其中包括液体吸收元件容放部分容纳了产生负压的吸收液体元件,和一个装墨的装墨部分,与液体吸收元件容放部分相邻并且通过通道与之相连通。因此,这种喷墨打印机的容器设有液体吸收元件容放室,用于容放液体吸收材料,还有装墨的装墨室,因此改进了墨保存率,并且稳定了负压,其结构简单,同时制造成本低,工作成本低,可靠性高及装置的尺寸小。
下面详细说明液体容器

图15和16示出了普通的液体容器。
图15的容器把记录液体供到一触针头,液体吸收材料的前侧部与后侧部的厚度不同,其中当它放入容器中的主体102时,前侧部被盖压缩。采用这种结构,由液体吸收材料102提供的毛细作用力朝着供液口104增加,使墨有效地集中在供墨口。
在图16中,容器与喷墨头成整体,容器的三个室分别容纳液体吸收材料201,其中一个喷液头203设在主体202的底部。液体吸收材料与供液管205压接触,该供液管205与喷液头203的孔204连通(日本特许公开昭63-87242)。采用这种结构,与供液管205接触的液体吸收材料210部分受压缩,因此该部分的毛细作用力较大使墨有效地集中在供液管205。日本特许公开昭55-161661公开了使用纤维作为吸收材料的结构,容器本身的结构是朝着连接部分缩小以改善供墨。
图17示出另一种液体容器,在日本特许公开平-7-125239中公开了,其中容纳负压产生元件402的负压产生元件容放室401通过液体连通通道405与装液体404的装液室403连通,其中在液体连通通道405和设在底部的供液口406之间的负压产生元件容放室401是低下去的,使低下部分负压产生元件402容易压缩,以提供富液区408。
上述液体容器的问题是把吸收材料放入容器中时压缩造成的问题。
图18是示出把液体吸收材料插入具有平薄型的矩形平行六面体的结构的容器中的主体中的示意的剖面图,而图19是液体吸收材料已放入后的液体容器的示意的剖面图。
如图18所示,液体吸收材料303受纵向压缩插入到容器的主体304中,这是通过使用压板305及306把液体吸收材料压下到小于主体304的纵向内部尺寸。这时,在靠近压板305,306处压缩比较高,在中部较低。当液体吸收材料303以这种状态放入容器的主体304中,在其插入主体304后保持液体吸收材料303的这种压缩比的分布(如图19所示)。
由于这种不均匀的压缩比,多孔材料的孔尺寸不均匀,因此,吸收材料中浸渍的液体的毛细作用力局部是不同的。因此,仅仅毛细作用力较小的中部区域的液体消耗了,而毛细作用力较大的邻近容器侧壁处的液体留下,结果恶化了供墨性能,例如在液体用完前就中断供应液体。
通过使用图15,16所示的结构能减轻这个问题,但图15仍存在不均匀压缩,而在图16结构中,虽然邻近供液管处压缩比高但仍存在压缩不均匀。采用图17的结构,供液是充分的。
在平薄型液体容器中,容器的最大面积侧的尺寸必须随着装液能力的增加而增加。液体容器的通气口由密封材料密封着以避免运输或储存过程中液体的蒸发。因此,如果热塑性树脂材料制的液体容器保存在高温环境下,较易变形的最大面积侧被内压膨胀甚至到塑性变形的程度,结果使外尺寸增加。结果容器不能装到托架上,特别在小尺寸的装置的情形更是如此。
因此,本发明的主要目的是提供一种液体容器,它能稳定地尽可能多地把液体供到喷液头。
本发明的另一个目的是提供一种液体容器,即使由于运输等过程中高温环境引起塑性变形使容器的外尺寸增加,容器仍能装到托架上。
由于上述半海绵墨容器型设有吸收材料,有同样的问题。当装墨室的墨量变少,墨会留在角部,留在装墨室底表面的边缘区或邻近突块处,使可消耗的墨量减少。当对装墨室进行残余墨量探测时,由于有残存的墨,不可能测出真实的残余墨量,结果在合适的定时前会产生小的打印警告,或有不合适的强制打印停止定时。
本发明的另一个目的是提出喷墨记录装置的液体容器,使用这种容器,大量的墨可稳定地供出。
按照本发明的一个方面,提供了一种液体容器,包括一个容纳成象用的液体的主体;容纳在所述的主体中用于保持液体的液体吸收材料;在所述的主体内,用于把液体朝喷液头供应用来成象的供液口;用于在所述的主体与环境流体连通的通气口;其中在邻近所述的供液口处所述的主体的内表面部分设有朝所述的主体突起的突出表面。
最好,所述的突起表面与具有所述的供液口的窄壁隔开一段距离。
最好,所述的主体有一个平薄的基本矩形平行六面体结构的外观,所述的供液口设在其窄的一侧,所述的突出表面设在与所述的供液口邻近的,夹住具有供液口的一侧的各最大面积侧壁处。
最好,所述的主体的最大面积侧壁的基本中央部分的外表面是凹下的。
按照本发明的另一方面,提供了一种墨容器,包括一个第一室,容放液体吸收材料,并设有把墨朝喷液头供应用来成象的供液口及与环境流体连通的通气口;一个第二室,用于装要供入所述的第一室的液体,所述的第二室通过邻近所述的主体的底部设的连通部分与所述的第一室流体连通,在使用中,除了所述的连通部分外所述的第二室是密封的;一个隔壁,用来隔开所述的第一室和第二室,并限定所述的连通通道的顶端,其中所述的容器具有基本平薄的矩形平行六面体的结构,和在邻近所述的供液口处所述的第一室夹住具有供液口一侧的各侧面的内表面部分设有朝所述的主体内部突起的突起表面。
最好,所述的供液口设在使用中所述的第一室的底部,并且所述的隔壁设有从所述的隔壁非端部分延伸到所述的连通部分的环境空气通道,并且所述的突起表面设在底部到所述的环境空气通道方向之间。
最好,所述的突起表面与所述的隔壁及没有所述的供液口的窄壁隔开一段距离。
最好,所述的第一室的最大面积侧壁的基本中央部分的外表面是凹下的。
在本发明中,所述的液体吸收材料是一种不压缩型元件,当它放在所述的主体中时压缩到要求的压缩比。或者所述的液体吸收材料是一种热压缩型元件,在它放在所述的主体中前已基本压缩到要求的压缩比。所述的液体是包括至少黄色、兰绿色、深红色或黑色成分的彩色墨,或者所述的液体含有可与包括至少黄色、兰绿色、深红色或黑色成分的彩色墨反应的成分的液体。
按照本发明的第一方面,内突起表面有效地压缩液体吸收材料的低压缩比部分使得沿纵向的压缩比分布相对比较均匀。因此容器中更大量的液体可用完。
在液体容器运送中,容器的通气孔通常是密封的,最大面积侧壁倾向于被内压膨胀,产生变形,使容器的外尺寸膨胀。但是由于在最佳实施例中,外表面是向内凹下的,即使最大面积侧壁向外膨胀,还能保持最大宽度(最小尺寸处)。因此,容器可以小的精度装入安装空间。
突起表面可有效地压缩第一室中液体吸收材料低压缩比部分使得沿纵向的压缩比分布变得相对均匀。可保持第一室中液体水平不达到具有供液口的壁以保证从第二室供液,同时允许环境空气导入。
但是,由于在本发明这一方面的最佳实施例中,外表面向里凹下,因此即使最大面积侧壁向外膨胀,仍能保持最大宽度(最短的尺寸处)。因此,可以小的精度把容器装入安装空间。
按照本发明的另一方面,提供了一种墨容器,其中容纳液体吸收材料的液体吸收材料容放室通过流体连通通道与装墨的装墨室连通,其特征在于在所述的装墨室中设有延伸到所述的流体连通通道的导墨槽。
在本发明这一方面的一个最佳形式中所述的装墨室的一底面是倾斜的。最好,所述的倾斜使邻近所述的装墨室的部分较低。
按照本发明的这一方面,导墨槽有效地提供了在吸墨材料和装墨室各部分中的墨之间的液体通道,因此,甚至当装墨室中墨量很少时,也能使墨供到墨吸收元件容放室。
在最佳实例中,装墨室的底表面的倾斜有效地保持在流体流通通道侧,装墨室底表面是水平的或更低,甚至当墨容器装到托架上仍如此。因此有助于正确的墨的流动。
按照本发明的又一方面,本发明提供了一种墨容器,包括一个第一室,容放液体吸收材料,并设有把液体朝喷液头供应用来成象的供液口,及与环境流体连通的通气口;一个第二室,用于装要供入所述的第一室的液体,所述的第二室通过邻近所述的主体的底部设的连通部分与所述的第一室流体连通,在使用中,除了所述的连通部分外所述的第二室是密封的;一个隔壁,用来隔开所述的第一室和第二室,并限定所述的连通通道的顶端,其中所述的容器具有基本平薄的矩形平行六面体的结构,和其中在邻近所述的供液口处,所述的第一室夹住具有供液口一侧的各侧面的内表面部分设有朝所述的主体内部突起的突起表面,和所述的第二室设有延伸到所述的连通部分的导液槽。
通过下面参照附图对本发明最佳实施例的详细说明,可以更加明白本发明的上述及其它目的,特点及优点,附图中图1是本发明的一个实施例的液体容器的示意图;图2是沿图1所示的容器的主体的突出区域中A-A’线剖切的剖面;图3是按照另一个实例沿图1所示的容器的主体的突出区域中A-A’线剖切的剖面;
图4是按照再一个实例沿图1所示的容器的主体的突出区域中A-A’线剖切的剖面;图5是按照又一个实例沿图1所示的容器的主体的突出区域中A-A’线剖切的剖面;图6是按照一个实例沿图1所示的容器的凹下区中的B-B’线剖切的剖面;图7是按照另一个实例沿图1所示的容器的凹下区中的B-B’线剖切的剖面;图8是示出按照本发明另一个实施例的液体容器的示意的剖面图;图9示出图8的液体容器的外观,其中(a)是顶视图,而(b)是部分剖视图。
图10(a)是沿图9(b)中方向D所示的视图;而(b)是沿图9(b)中C-C’剖切的视图;图11示出图8所示的液体容器中的液体消耗过程;图12示出图8所示的液体容器中的液体消耗过程;图13示出液体容器不设有内突出区域时的消耗过程;图14示出液体容器不设有内突出区域时的消耗过程;图15示出普通的液体容器的实例;图16示出另一个普通的液体容器的实例;图17示出另一个普通的液体容器的实例;图18是示出把液体吸收材料插入平薄型的矩形的平行六面体结构的容器中的一个示意的剖视图;图19是在放入液体吸收材料后图18的液体容器的示意的剖面图;图20是本发明一个实施例的第二室的示意图,其中(a)是一个剖面图;(b)是沿E-E’线剖切的剖面图;而(c)是沿F-F’线剖切的剖面图;图21是按照本发明另一实施例的第二室的示意图,其中(a)是一个剖面图,(b)是沿G-G’线剖切的剖面图;图22是按照本发明又一实施例的第二室的示意图,其中(a)是一个剖面图,(b)是沿H-H’线剖切的剖面图;(c)是沿I-I’线剖切的剖面图;图23是按照本发明再一个实施例的第二室的示意图,其中(a)是一个剖面图,(b)是沿J-J’线剖切的剖面图;图24是本发明另一实施例的第二室的示意的剖面图;图25是本发明又一实施例的第二室的示意图,其中(a)是一个部分剖视图;(b)是沿K-K’线剖切的剖面图;图26是本发明再一个实施例的液体容器的示意的剖面图。
下面参照附图详细说明本发明的实施例。第一实施例图1是本发明第一实施例的液体容器的示意图。本实施例的液体容器设有容纳用于成象的液体的容器主体1,把液体保持在容器主体1中的液体吸收材料2,把液体供出到设在容器主体(使用中)的底部的喷液头(未示出)的供液口3。在本实施例中,容器的外观是平薄型的矩形平行六面体的结构。
如图1所示,具有最大面积的且夹住设有供液口3的壁各个侧壁设有向内突起的内区(突出表面)及向内凹进的内区(凹进区域)。向内突起的区5设在最大面积侧的内表面上的至少与供液口3相邻的区域。向内突起的区5设在与在使用中垂直的窄侧面隔开一段距离。
图2-5示出沿A-A’线剖切的液体容器的主体1的突起区5的剖面图的一些实例。向内突起区5可以是如图2所示的只设在内部的梯形的突起或是如图3所示的突出的曲面结构(凸形)。或者可以是如图4所示的内部为梯形结构但不改变侧壁厚度的,或者是如图5所示的弯曲形。在图中,向内突起区L2相对容器主体的纵向内尺寸L1小40%-80%,而内尺寸W2相对容器主体的内宽度尺寸W1小5%-20%。
这里,说明内突起区5的作用。如已经参照图18、19说明的那样,液体吸收材料2放在容器的主体中,其纵向尺寸压到小于主体1的内纵向尺寸。没有向内突出区,液体吸收材料2的压缩比在邻近窄垂直壁(使用中的)处大,而在中部则小。但是,按照本实施例,内突出区对具有低压缩比部分的液体吸收材料2的部分加压,而不对具有高压缩比部分的液体吸收材料2加压。结果,在纵向液体吸收材料2的压缩比分布基本均匀。因此,当喷液头(未示出)受驱动使得含在液体吸收材料2中的液体通过供液口3朝着喷液头消耗时,液体连续供出而不会留在邻近侧壁处。
再参见图1,外凹下区6是在除了内突起区5外的在中部处最大面积侧的外面向内凹下的区域。
图6和7是沿着图1中的容器的主体1的实例的外凹下区6的B-B’线剖切的剖面图。在外凹下区6,只有最大面积侧的外表面是如图6所示的梯形凹部或是如图7所示的曲面的凹部结构。
下面说明外凹下区6的作用。在液体容器1运送中,容器的通气口4通常由密封材料密封着以防止液体的蒸发或由于容器中液体的膨胀引起的液体泄漏。当运送中液体容器1放在或保存在高温环境中,比较容易变形的热塑性树脂制的最大面积侧壁会被增加的内压膨胀甚至胀到塑性变形的范围,结果使外尺寸增加。但是,按照本实施例,只有最大面积侧的基本中部区构成外凹下区6,因此,即使最大面积侧的外膨胀,最外面的宽度尺寸保持同样。因此,容器可以以小精度装到安装空间。第二实施例在前面的实施例中,说明了所谓的全海绵型的液体容器,其中液体吸收材料占了容器的基本整个空间。下面说明所谓的半海绵型的液体容器。
图8是按照本发明的第二实施例的液体容器的示意的剖面图。图9是图8的液体容器的详细的外观图。图10(a)和(b)是沿图9(b)中方向D看的外观和沿C-C’线剖切的剖面。与图1部件有同样功能的部件标以与图1同样的标号,为简单起见不再详细说明。
液体容器1是有基本为平薄型的矩形平行六面体结构。容器1包括容纳液体吸收材料2的第一室7,及与第一室相邻的容纳液体11的第二室9,第二室9与第一室7被隔壁8隔开。第一室7(在使用中的)的底部设有供液口3用来把液体供向喷液头(未示出),第一室7(使用中的)的上部设有通气口4。供液口3可设有纤维元件(用于排墨的压接触元件)以允许满意地排液。第一室7通过设在邻近隔壁8的底部的连通部分10与第二室9连通。第二室9的上部设有充液口12用来把墨充入。充液口12被球密封件13密封着,因此除连通部分10外,第二室9基本是密封的。与连通部分10相邻,在第二室9的底部有允许光学检测液体11的残余量的残余液探测部分14。隔壁8在第一室7的表面设有环境空气通道15,它包括从其非端部朝连通部分10延伸的槽。日本特许公开平6-40043在此结合作为参考,其说明了环境空气通道15的详细结构。(在使用中)垂直的窄壁的外面设有栓杆16,它的作用是把容器的主体1与卡盒牢固地接合起来。
在第一室7中,夹住设有供液口3的壁的各最大面积侧壁有内突起区5及外凹下区6。内突起区5设成使得在最大面积侧的里面至少邻近供液口3的区域3向第一室7的里面突出。内突起区5与第一室7的(在使用中的)窄的垂直壁离开一段距离。内突起区5从第一室7的底部延伸到环境空气通道15的顶端Pa的附近。通过内突起区5沿B-B’线剖切的图8的剖面图与图2和图3所示的一样。
另一方面,第一室7中的外凹下区6设在各最大面积侧的外面,基本上除了内突起区5外的中央部分。通过外凹下区6沿B-B’线剖切的图8的容器的剖面图与图6或7所示的相同。
下面说明本实施例的液体容器的工作原理。图11和12示出图8的液体容器1中的液体的消耗过程。
如图18和19所示,液体吸收材料2容放在容器的主体1的第一室7中,液体吸收材料2的纵向尺寸被压缩至小于主体1的第一室7的内纵向尺寸。结果,在液体吸收材料2放入第一室中后,邻近(使用中的)窄的垂直壁处,液体吸收材料2的压缩比大,而在中央部分较小。
如果液体通过喷液头(未示出)的出口喷出,在第一室7中的液体吸收材料2中包含的液体首先通过供液口3供入喷液头。随着喷液操作的进行,由于供液(消耗),在液体吸收材料2中的液体量减小。由于邻近液体容器1的窄的垂直壁和邻近隔壁处液体吸收材料2的压缩比高,液体留在那里,仅仅只在毛细管力较小的第一室的中部的液体供出。因此,液体吸收材料2的液面在第一室7的中部降低(如图11所示)。
当液体吸收材料2中的液体消耗,液体吸收材料2中的液面达到内突起区5。仅仅在低压缩比部分而不是在高压缩比部分,内突起区5对液体吸收材料1加压,使得在第一室7的中部的液体水平,特别是降低的液体水平升高。结果,已达到内突起区5的液体吸收材料2的液体水平保持基本恒定。
由于内突起区始于基本等于环境空气通道15的顶端Pa的水平,当液体吸收材料2中的液体水平达到预定的水平时,在液体吸收材料2中的液体水平处的空气可通过环境通道15及通过连通部分导入第二室9。这时,由喷液头的喷液部分提供的静压头,在第二室9中减小了的压力及在液体吸收材料2中的毛细力平衡。由于环境空气通道的顶端和内突起区的上部基本在同样的水平,从环境通道引导空气是稳定的,并且静压头差可保持恒定,因此通过喷液头喷出墨也稳定。从稳定供墨的观点言,也希望有同样的高度水平特点。
当从供液口3供液(消耗),第一室7中的液体量不减小,而在第二室9中的液体11消耗。因此,与供液相应的液量从第二室9中消耗。相应量的环境空气通过通气口4导入第一室7中,而并不改变在第一室7中的液体分配。只要液体从第二室9中消耗,上述作用反复使容器主体1中提供了恒定的负压。
一当第二室9的液体消耗终止,液体再从第一室7中的液体吸收材料2中供应。由于液体吸收材料2的密度分布是均匀的,液体通过供液口3连续消耗到终了,与第一实施例类似。
作为与本实施例比较,下面说明没有设突起区5时的作用。图13和14示出当液体容器1没设有内突起区5时的液体消耗过程。
在这一情形下,由于液体吸收材料2插入第一室7中,也是在邻近液体容器1的窄的垂直壁和邻近隔壁8的部分,液体吸收材料2的压缩比高。因此,随着液体消耗,在图13所示的第一室7的中部液体吸收材料2的液面降低。随着连续喷液,第一室7的中部的液面大大地降低,有时甚至在邻近液体吸收材料2的液面处的环境气体达到环境气体通道15的顶端Pa以前,就达到第一室7的内底表面。根据液体吸收材料2的不均匀性,液体会在底部断开,如图13所示。如果发生这一情形,液体11不会从第二室9供入第一室7,另外,空气通过供液口3导入喷液头,结果喷液不均匀甚至使喷液失效。
但是,按照本实施例,随着由于插入液体吸收材料2压缩比低的中部液体消耗使液面降低被内突起区5抑制,因此使液面保持稳定。如此,可避免在第一室7和第二室9开始气-液交换前在第一室中液体吸收材料2中的液面达到具有供液口3的底部使环境气体导入供液口失败,这样能保持稳定喷墨的性能。
外凹下区6的功能与第一实施例是一样的。简言之,由于只是最大面积侧的外表面的中部构成外凹下区(朝着内侧),能保持容器的最大宽度,即使由于在运输等过程中产生高温环境使最大面积的壁向外膨胀也能如此。因此容器可以小的精度安装到安装空间。
在第一和第二实施例中可用的液体吸收材料2可以是任何材料,只要不管液体的重量如何及有轻的震动,这些材料都要能保持液体。其可以是包括纤维网的棉花似的元件或具有通孔的多孔材料。最好是如泡沫聚氨脂之类的海绵材料因为保持液体的力及产生负压是可方便地调节的。泡沫材料是优选的,因为可进行调节以便在制造液体吸收材料时提供要求的压缩比(孔隙率)。例如,有热压缩型,可在放入容器主体前通过热压缩处理把压缩比控制到预定的水平,还有未压缩型,单位体积有预定孔隙率的泡沫材料切成预定尺寸以在放入容器的主体中时提供要求的压缩比。热压缩型及未压缩型材料都有在把吸收材料放入容器的主体中时压缩分布的问题。
用于成象的液体11可以是含如黄色、兰绿色、深红色、黑色等的彩色成分的彩色墨。
在另一实施例中,在用彩色墨在片材上成象的前后,处理液体可施加到同一区域,或处理液体可涂到片材的整个表面以改进墨在片材上的定影效果。在这种情形下,液体11可以是含可与彩色墨反应的成分的液体。这种液体的实例包括使用正离子反应或负离子反应的液体。
如上所述,本发明可用于一个液体容器,其包括一主体,容放在主体中的液体吸收材料,设在主体中把液体供给喷液头的供液口,和一个用于环境流体连通的通气口,具有下面的技术优点。由于有上述的突起的表面,当液体吸收材料沿着纵向压缩并插入主体中时,液体吸收材料的压缩比的密度分布是均匀的。结果,液体可连续地用完,而不会留在容器侧壁邻近处。
本发明可用于一个液体容器,其有基本为平薄型的矩形平行六面体的结构,包括开口到环境的第一室,和一第二室,第二室含有要供到第一室的液体并且除了第一室与第二室相互连通的连通部分外基本是密封的,还有在第一室与第二室之间并延伸高于连通部分的隔壁,它具有下面的技术优点。当液体吸收材料插入容器的主体而其纵向尺寸减小时,上述的突起的表面对低压缩比部分加压而不对高压缩比部分加压。因此,可抑制由于在液体吸收材料的压缩比低的中心部分处液体的消耗液面降低,使得可维持基本恒定的液面。
由于突起表面基本在环境通道顶部的同样高度水平,在液体吸收材料的液面达到预定的水平时,与液体表面邻近的环境空气可通过环境通道及连通部分与第二室连通。如此,可避免在第一室7和第二室9之间开始气-液交换前,第一室中液体吸收材料2中的液体水平达到设有供液口3的底部,这样使环境气体与供液口不能相通,因此可保持稳定的喷液性能。
一当第二室的液体消耗,第一室中液体吸收材料中的液体再被消耗,由于内突起区使压缩比分布均匀,液体可连续地从供液口消耗。
由于只在最大面积侧的外表面的中部构成外凹下区6(朝着内侧),可保持容器的最外宽度,即使由于在运输或其它过程中高温环境使最大面积壁向外膨胀仍如此。因此,容器可以小的精度装入安装空间。
下面说明按照本发明一个实施例的第二室的结构。
图20示出使用本实施例的第二室(装墨室)的结构的墨容器。在该图中,(a)是沿基本为纵向中央剖切的垂直剖面;而(b)是沿E-E’线剖切的剖面图;(c)是沿F-F’线剖切的剖面图。
在图20中,标号1表示半海绵的墨容器,标号7表示用来容放具液体吸收性能的吸收液体元件2(如聚氨酯海绵)的吸收液体元件容放室;标号9是用于容放液体(墨)11的装墨室;标号4是把环境空气引入吸收液体元件容放室7的通气口;阴影线部分指示的标号11为室中装的墨;标号23是如PP(聚丙烯)或毡之类的纤维元件制的压接触元件。压接触元件与在记录头的墨接收管的端部的过滤部分接触以把墨供到记录头。
另外,标号3为供墨口,过滤器插入其中;标号10是用于在吸收液体元件容放室7与装墨室9之间流体连通的流体流通通道;标号15是用于在吸收液体元件2中的墨用到预定的水平时把环境空气导入装墨室9的导气槽;而标号21是本实施例突特的导墨槽。
如图20(c)所示,导墨槽21设成在装墨室底表面的周边部分的一个槽,而如图2D(b)所示,其包住装墨室9的底表面,并通过流体流通通道10与吸收液体元件2连接。
由于这种结构,在装墨室9的底表面的周边部分或角部的墨11通过导墨槽21吸入吸收液体元件2中,在装墨室9中的没有用过的残余墨量明显减少。
通过把导墨槽21的毛细作用力减到小于吸收液体元件2的毛细作用力,导墨槽21中的墨11可完全吸收,使得进一步改善了墨11的利用率。另外,通过把导墨槽21的横截面积朝流体连通通道10减小,墨可积极地移动,因此这是优选的。
图21(a)和(b)是相应于图20(b)的一个视图及沿G-G’线剖切的剖面图。在图20的实施例中,吸收液体元件容放室7和装液室9的底部水平相同,并且导墨槽终止在流体连通通道10处。但是,在本实施例中,吸收液体元件容放室7的底表面的水平降到导墨槽21的底部水平,使得导墨槽21不终止在流体连通通道10处,因此它继续到吸收液体元件容放室7。
由于这种结构,进一步稳定了通过导墨槽21把墨吸入吸收液体元件2中。用于制造时的分模的范围增加了。
图22(a)、(b)和(c)示出另一个实施例,其中(a)示出与图21(a)相应的视图,(b)是沿H-H’剖切的剖面图,而(c)是沿I-I’剖切的剖面图。
在图20和21的实施例中,构成导墨槽21的凹部只设在底表面,但是在本实施例中,凹部设在流体连通通道10的侧面以构成导墨槽21。
为了保持装墨室9与导墨槽21之间的连接,流体连通通道10的底表面降低到低于装墨室9的底表面,如图22(c)所示。
因此,吸收液体元件2确实进入导墨槽21,稳定了通过导墨槽21吸收墨。
增加了分模的范围。
图23(a)和(b)示出了该实施例,其中(a)示出与图22(a)相应的视图,和沿J-J’线剖切的剖面图。
在图22的实施例中,凹部仅设在流体连通通道10中构成导墨槽21,但是本实施例中,凹部只设在装墨室9的侧表面。
由于这样,改善了装墨室9和流体连通通道10的导墨槽21之间的连接性能,使得通过导墨槽21从装墨室9中吸出墨的稳定性改善了。
在侧表面的导墨槽21可由突起构成。
图24示出本发明另一实施例,示出相应图23(a)的视图。
在图20-23的实施例中,导墨槽21只设在装墨室9的周边,但在本实施例中,在装墨室的底表面设多个导墨槽21。因此,进一步改进了吸出墨的稳定性。
图25示出了另一个实例,其中(a)是示出本实施例的墨容器的底表面结构,而(b)是内部结构的顶视图。
在本实施例中,使用了导墨槽21,另外,装墨室9的底表面是倾斜的,使得即使记录头以同样的倾斜度装到卡盒,也保证流体连通通道10低到一定范围,因此由于重力,装墨室9的墨可流入流体连通通道10。
如图25所示,其中(a)示出一个部分剖视图,(b)是沿(a)中K-K’线剖切的剖面图。装墨室9具有倾斜的表面24,其朝着与吸收液体元件容放室7流体连通的流体连通通道10降低。通过设置倾斜表面24,液体可合适地导入流体连通通道10。另外,在本实施例中,设有一导墨槽21,设成沿装墨室9的最外周边的底部的一个凹部。如前所述,导墨槽21作用是把墨从装墨室9导入流体流通通道10。
装墨室9的底表面的周边部分比在底表面的平表面部分有更大的毛细作用力,使得墨倾向于留在那里。特别,壁部相交的角部区具有较大的毛细作用力,因此墨倾向留在那里。在墨消耗的最后阶段,通到吸收液体元件的液体通道中断,墨流中止,墨留在角部或周边部分。因此墨是不希望地留在装墨室中。因此,最好导墨槽设在装墨室9的底部的角部区及周边部分,并沿着底表面周边延伸以保证与吸收液体元件容放室7的液体连通。
在流体连通通道10处,导墨槽21与设在构成流体连通通道10的壁的侧面的槽25连接。因此,在装墨室9的导墨槽21上方和吸收液体元件容放室7构成连续的槽区。
如图21所示,装墨室9的底表面在高于吸收液体元件容放室7的底表面处,和为了保证从装墨室9的底表面到流体连通通道10的表面的连续,设了第二倾斜表面22,其倾斜角与装墨室的主倾斜表面24的倾斜角不同。为了保持装墨室9的底表面和流体连通通道10的表面之间的连续,通过使用这一结构,就没有阻碍墨流动的部分,因此进一步降低了墨的残余量。
最好装墨室9的角部区设成曲面。如果角部区有锐角,会产生毛细作用力,结果留住少量的墨。装墨室9的底表面的结构不局限于上述,整个倾斜可朝向流体连通通道10,可以设图24所示的导墨槽21。
设在流体连通通道10的各侧的槽25的结构不局限于上述的,可以是设在底侧的凹部的形式;或者,如果构成流体连通通道10的角部足够产生毛细作用力,凹部也不是必须的。导墨槽21可以朝流体连通通道10分段地缩小。随后,墨可以合适地朝吸收液体元件容放室供应。
通过使用上述结构,墨可以平滑地从装墨室流到流体连通通道部分,因此,装墨室中的墨可以进一步地平滑地供应。
如上所述,设置导墨槽有效地降低了留在装墨室中不可用的墨量,使墨的利用率增加,因此降低了操作成本。
当对装墨室进行残余墨量测量,残余墨量的测量稳定,因为残余墨量很少,因此避免了损坏打印数据。警告是正确的,打印操作可强制停止。
通过在装墨室底表面设斜面,墨可从装墨室确实地吸出,即使当墨容器倾斜地装到托架上也如此,这样使得不能用的残余墨量减少,增加了墨的使用率及减小了操作成本。
当对装墨室进行残余墨量测量,残余墨量的测量稳定,因为残余墨量很少,因此避免了损坏打印数据,警告是正确的,打印操作可强制停止。
图26示出了另一个实施例。
在该实施例中,设了导墨槽21,主斜面24,第二斜面22及槽25(如图25所示),作为包住流体连通通道10及装墨室9的结构。吸收液体元件容放室7的结构如图9所示。为简单起见,对以上各结构的说明省略了。
使用这些结构,即使当装墨室9中的墨量变得很少,主斜面24和导墨槽21的结合容许墨朝流体连通通道平稳地流动,槽25和设在流体连通通道10的区域的第二斜面的结合允许少量的残余墨朝着吸收液体元件容放室7流动。
另一方面,在吸收液体元件容放室7,对喷液头的静压头可合适地保持以完成稳定的供墨,因为设置了构成稳定墨区的内突起区。关于墨,在内突起区的吸收液体元件的状态非常均匀使残余墨量极大地降低。
因此,本实施例可达到稳定的供墨及墨的高的利用率。
虽然已参照了上述结构说明了本发明,但不能限制在上述的细节,本发明包括进行改进或在下述权利要求书范围内的改型或变化。
权利要求
1.一种液体容器,包括一个容纳成象用的液体的主体;容纳在所述的主体中用于保持液体的液体吸收材料;在所述的主体内,用于把液体朝喷液头供应用来成象的供液口;用于在所述的主体与环境流体连通的通气口;其中在邻近所述的供液口处所述的主体的内表面部分设有朝所述的主体突起的突出表面。
2.按照权利要求1的容器,其特征在于所述的主体有一个平薄的基本矩形平行六面体结构的外观,所述的供液口设在其窄的一侧,所述的突出表面设在与所述的供液口邻近的夹住具有供液口的一侧的各最大面积侧壁处。
3.按照权利要求1或2的容器,其特征在于所述的主体的最大面积侧壁的基本中央部分的外表面是凹下的。
4.按照权利要求2的容器,其特征在于所述的突起表面与具有所述的供液口的窄壁隔开一段距离。
5.按照权利要求1的容器,其特征在于所述的液体吸收材料是一种不压缩型元件,当它放在所述的主体中时压缩到要求的压缩比。
6.按照权利要求1的容器,其特征在于所述的液体吸收材料是一种热压缩型元件,在它放在所述的主体中前已基本压缩到要求的压缩比。
7.按照权利要求1的容器,其特征在于所述的液体是包括至少黄色、兰绿色、深红色或黑色成分的彩色墨。
8.按照权利要求1的容器,其特征在于所述的液体含有可与包括至少黄色、兰绿色、深红色或黑色成分的彩色墨反应的成分的液体。
9.一种墨容器,包括一个第一室,容放液体吸收材料,并设有把墨朝喷液头供应用来成象的供液口及与环境流体连通的通气口;一个第二室,用于装要供入所述的第一室的液体,所述的第二室通过邻近所述的主体的底部设的连通部分与所述的第一室流体连通,在使用中,除了所述的连通部分外所述的第二室是密封的;一个隔壁,用来隔开所述的第一室和第二室,并限定所述的连通通道的顶端,其中所述的容器具有基本平薄的矩形平行六面体的结构,和在邻近所述的供液口处所述的第一室夹住具有供液口一侧的各侧面的内表面部分设有朝所述的主体内部,突起的突起表面。
10.按照权利要求9的容器,其特征在于所述的供液口设在使用中所述的第一室的底部,并且所述的隔壁设有从所述的隔壁非端部分延伸到所述的连通部分的环境空气通道,并且所述的突起表面设在底部到所述的环境空气通道方向之间。
11.按照权利要求9或10的容器,其特征在于所述的第一室的最大面积侧壁的基本中央部分的外表面是凹下的。
12.按照权利要求10的容器,其特征在于所述的突起表面与所述的隔壁及没有所述的供液口的窄壁隔开一段距离。
13.按照权利要求9的容器,其特征在于所述的液体吸收材料是一种不压缩型元件,当它放在所述的主体中时压缩到要求的压缩比。
14.按照权利要求9的容器,其特征在于所述的液体吸收材料是一种热压缩型元件,在它放在所述的主体中前已基本压缩到要求的压缩比。
15.按照权利要求9的容器,其特征在于所述的液体是包括至少黄色、兰绿色、深红色或黑色成分的彩色墨。
16.按照权利要求9的容器,其特征在于所述的液体含有可与包括至少黄色、兰绿色、深红色或黑色成分的彩色墨反应的成分的液体。
17.按照权利要求9的容器,其特征在于所述的第二室设有延伸到所述的连通部分的导墨槽。
18.按照权利要求17的容器,其特征在于所述的导墨槽由在所述的第二室的底部或侧面的内侧的凹部设成。
19.按照权利要求17的容器,其特征在于所述的导墨槽由在所述的第二室的底表面或侧面侧的突起设成。
20.按照权利要求17的容器,其特征在于所述的导墨槽与所述的液体吸收材料接触。
21.按照权利要求17的容器,其特征在于所述的导墨槽的毛细作用力比所述的液体吸收材料的毛细作用力小。
22.按照权利要求17的容器,其特征在于所述的第二室的一底表面是倾斜的。
23.按照权利要求22的容器,其特征在于所述的倾斜使邻近所述的第二室的部分较低。
24.一种墨容器,其中容纳液体吸收材料的液体吸收材料容放室通过流体连通通道与装墨的装墨室连通,其特征在于在所述的装墨室中设有延伸到所述的流体连通通道的导墨槽。
25.按照权利要求24的容器,其特征在于所述的导墨槽由在所述的装墨室的底部或侧面的内侧的凹部设成。
26.按照权利要求24的容器,其特征在于所述的导墨槽由在所述的装墨室的底表面或侧表面侧的突起设成。
27.按照权利要求24的容器,其特征在于所述的导墨槽与所述的液体吸收材料接触。
28.按照权利要求24的容器,其特征在于所述的导墨槽的毛细作用力比前述的液体吸收材料的毛细作用力小。
29.按照权利要求24的容器,其特征在于所述的装墨室的一底面是倾斜的。
30.按照权利要求24的容器,其特征在于所述的倾斜使邻近所述的装墨室的部分较低。
31.一种墨容器,包括一个第一室,容放液体吸收材料,并设有把液体朝喷液头供应用来成象的供液口,及与环境流体连通的通气口;一个第二室,用于装要供入所述的第一室的液体,所述的第二室通过邻近所述的主体的底部设的连通部分与所述的第一室流体连通,在使用中,除了所述的连通部分外所述的第二室是密封的;一个隔壁,用来隔开所述的第一室和第二室,并限定所述的连通通道的顶端,其中所述的容器具有基本平薄的矩形平行六面体的结构,和其中在邻近所述的供液口处,所述的第一室夹住具有供液口一侧的各侧面的内表面部分设有朝所述的主体内部突起的突起表面,和所述的第二室设有延伸到所述的连通部分的导液槽。
32.按照权利要求31的容器,其特征在于所述的供液口设在使用中所述的第一室的底部,并且所述的隔壁设有从所述的隔壁的非终端部分延伸到所述的连通部分的环境空气通道,所述的突起表面设在底部到所述的环境空气通道方向之间。
33.按照权利要求31的容器,其特征在于所述的第一室的最大面积侧壁的基本中央部分的外表面是凹下的。
34.按照权利要求31的容器,其特征在于所述的突出表面与所述的隔壁及设有所述的供液口的窄壁隔开一段距离。
35.按照权利要求31的容器,其特征在于所述的液体吸收材料是一种不压缩型元件,当它放在所述的主体中时压缩到要求的压缩比。
36.按照权利要求31的容器,其特征在于所述的液体吸收材料是一种热压缩型元件,在它放在所述的主体中前已基本压缩到要求的压缩比。
37.按照权利要求31的容器,其特征在于所述的液体是包括至少黄色、兰绿色、深红色或黑色成分的彩色墨。
38.按照权利要求31的容器,其特征在于所述的液体含有可与包括至少黄色、兰绿色、深红色或黑色成分的彩色墨反应的成分的液体。
39.按照权利要求31的容器,其特征在于所述的导墨槽由在所述的第二室的底部或侧面的内侧的凹部设成。
40.按照权利要求31的容器,其特征在于所述的导墨槽由在所述的第二室的底表面或侧面侧的突起设成。
41.按照权利要求31的容器,其特征在于所述的导墨槽与所述的液体吸收材料接触。
42.按照权利要求31的容器,其特征在于所述的导墨槽的毛细作用力比所述的液体吸收材料的毛细作用力小。
43.按照权利要求31的容器,其特征在于所述的第二室的一底表面是倾斜的。
44.按照权利要求43的容器,其特征在于所述的倾斜使邻近所述的第二室的部分较低。
全文摘要
一种液体容器,包括:一个容纳成象用的液体的主体;容纳在所述的主体中用于保持液体的液体吸收材料;在所述的主体内,用于液体朝喷液头供应用来成象的供液口;用于在所述的主体与环境流体连通的通气口;其中在邻近所述的供液口处所述的主体的内表面部分设有朝所述的主体突起的突出表面。
文档编号B41J2/175GK1191806SQ981044
公开日1998年9月2日 申请日期1998年2月19日 优先权日1997年2月19日
发明者岸田创, 土井健 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1