发光器件及其制造方法

文档序号:2597525阅读:191来源:国知局
专利名称:发光器件及其制造方法
技术领域
本发明涉及使用发光元件的发光器件,发光元件在一对电极之间具有含有机化合物的层(下文称做含有机化合物的层),在电极上施加电场得到荧光或磷光,并涉及制造这种新颖发光器件的方法。这里,在本说明书中使用的术语“发光器件”表示图像显示器件、发光器件以及光源(包括照明单元)中的一种。此外,发光器件可以是发光器件的任何一种,例如其上固定有柔性印刷电路板(FPC)、带式自动接合(TAB)、或载带封装(TCP)的模块;印刷布线板安装在TAB带或TCP端部的模块;以及通过玻板上芯片(COG)系统将集成电路(IC)直接安装在发光元件上的模块。
背景技术
近些年来,使用形成在具有绝缘表面的衬底上的半导体薄膜(厚度在约几纳米到几百纳米范围内)构成薄膜晶体管(TFT)的技术令人关注。薄膜晶体管已广泛地应用在如IC和光电器件等的电子器件中。特别是,这种晶体管的发展加快了提供图像显示器件的开关元件的进程。
使用有机化合物作为发光体的发光元件特点在于厚度薄、重量轻、响应快、低电压DC驱动等,已期望用于下一代平板显示器的应用中。此外,由于宽视角和优良的能见度,其内发光元件排列成矩阵构形的显示器件被认为比常规的液晶显示器件更有优势。
具有有机化合物的发光元件包括含有通过施加电场可以产生电致发光的有机化合物的层(下文称做EL层)、以及阳极和阴极。发光元件的发光机理如下。也就是,当电压施加到夹在一对电极之间的有机化合物层时,由阴极注入的电子和由阳极注入的电子空穴在有机化合物层的发光中心相互复合形成分子激发。随后,当分子激发返回基态时,通过释放能量发生发光。在本领域中已知两种类型的激发态,受激单重态和受激三重态。可以在任何一种状态中发光。
可以由如无源矩阵驱动(单纯矩阵类型)和有源矩阵驱动(有源矩阵类型)等的公知驱动系统中的一种操作由多个排列成矩阵构形的发光元件构成的发光器件。然而,当像素密度增加时,优选使用其中每个像素(或每个点)提供有开关的有源矩阵型系统,是由于它可以在低电压下驱动。
根据光辐射的方向,有源矩阵型发光器件可以设计成两种不同的方式。其中的一种是由EL元件发出的光穿过相对的衬底并射入观察者的眼内(即,下侧辐射型)。此时,观察者能够识别来自相对衬底的图像。另一种是从EL元件发出的光穿过该元件的衬底并射入观察者的眼内(即,上侧辐射型)。此时,观察者能识别来自EL元件方向的图像。
此外,现已研究了单体和聚合材料用于作为有机化合物层(即,严格意义上的发光层)的有机化合物,该化合物为发光元件的中心。其中,更关注聚合材料,是由于与单体材料相比,它的高耐热性和易于处理。
为了由有机化合物形成膜,蒸镀法、旋转涂覆法、以及喷墨法在本领域中已公知。其中,为了使用聚合物材料实现全色图像形成,旋转涂覆法和喷墨涂覆在本领域中特别公知。
具有有机化合物的发光元件的不足之处在于它易于受到由于各种因素而退化,所以它的最大问题是增加它的可靠性(使它的使用寿命更长)。

发明内容
为解决以上问题,本发明的一个目的是提供一种有源矩阵型发光器件的制造方法,以及具有高可靠性的这种有源矩阵型发光器件的结构。
在说明书中公开的本发明的第一方案中,提供一种发光器件,有在具有它们各自的绝缘表面的第一和第二衬底之间包括多个发光元件的像素部分,以及包括多个薄膜晶体管的驱动电路,其中发光元件具有第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,其中薄膜晶体管涂覆有由有机绝缘膜和覆盖有机绝缘膜的无机绝缘膜的叠层组成的层间绝缘膜;在层间绝缘膜的开口处,由无机绝缘膜的侧表面和有机绝缘膜的侧表面形成的台阶部分;无机绝缘膜沿有机绝缘膜的上端部具有带曲率半径的弯曲表面;并且第一电极的端部涂覆有绝缘材料,在它的上端部具有带曲率半径的弯曲表面。
根据本发明第一方案的发光器件的结构,有机绝缘膜的表面变得平坦,由此第一电极的表面也变得平坦,防止了EL元件发生短路。由于形成了无机绝缘膜,它可以通过阻挡来自EL元件的杂质扩散来保护TFT,并防止了来自有机绝缘膜的气体逸出。此外,由于提供了无机绝缘膜,蚀刻第一电极时,可以防止有机绝缘膜被蚀刻。此外,由于无机绝缘膜具有带曲率半径的弯曲表面,因此源电极或漏电极的覆盖也变得非常好。进行几次蚀刻处理,在层间绝缘膜开口处、在无机绝缘膜的侧表面和有机绝缘膜的侧表面上形成台阶。由此,形成接触孔时可以防止损伤TFT。由于具有曲率半径的弯曲表面提供在覆盖第一电极的绝缘材料上,EL层的覆盖能良好地抑制产生收缩等。
此外,有机绝缘膜可以形成在覆盖薄膜晶体管的无机绝缘膜上。因此,本发明的第二方案是提供一种发光器件,具有在有它们各自绝缘面的第一和第二衬底之间包括多个发光元件的像素部分,以及包括多个薄膜晶体管的驱动电路,其中发光元件具有第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,其中薄膜晶体管涂覆有由无机绝缘膜和有机绝缘膜的叠层组成的层间绝缘膜;在层间绝缘膜的开口处,由无机绝缘膜的侧表面和有机绝缘膜的侧表面形成台阶部分;有机绝缘膜的上端部具有带曲率半径的弯曲表面;第一电极的端部涂覆有绝缘材料,在它的上端部具有带曲率半径的弯曲表面。
根据本发明第二方案的发光器件的结构,有机绝缘膜的表面变得平坦,由此第一电极的表面也变得平坦,防止了EL元件发生短路。此外,无机绝缘膜形成在TFT的有源层附近的位置,通过阻挡来自EL元件的杂质扩散有效地保护了TFT。此时,扩散氢原子的无机绝缘膜和阻挡来自EL元件的杂质扩散的无机绝缘膜叠置同时相互接触。
在本发明的以上各方案中,像素部分可以具有电连接到第一电极的薄膜晶体管,如图1到5所示。与薄膜晶体管的源区或漏区接触的布线接触第一电极的一部分,并且可以提供在第一电极上。此时,形成布线之后,形成第一电极。此外,如图6到8所示,像素部分可以包括电连接到第一电极的薄膜晶体管,第一电极可以接触与薄膜晶体管的源区或漏区接触的部分布线并提供在布线上。此时,在形成布线之前形成第一电极。
本发明的第三方案是提供一种发光器件,具有在有它们各自绝缘表面的第一和第二衬底之间包括多个发光元件的像素部分,以及包括多个薄膜晶体管的驱动电路,其中发光元件具有第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,其中薄膜晶体管涂覆有由有机绝缘膜和覆盖有机绝缘膜的无机绝缘膜的叠层组成的层间绝缘膜;在层间绝缘膜的开口处,由无机绝缘膜的侧表面和有机绝缘膜的侧表面形成台阶部分;无机绝缘膜沿有机绝缘膜的上端部具有带曲率半径的弯曲表面;第一电极的端部涂覆有绝缘材料,在它的上端部具有带曲率半径的弯曲表面;以及第一电极的端部具有延伸到第一电极中心的倾斜面,其中倾斜面反射由含有机化合物层发出的光。
此外,本发明的另一方案可以构成图16和17所示的例子,因此本发明的第四方案是一种发光器件,具有在有它们各自绝缘表面的第一和第二衬底之间包括多个发光元件的像素部分,以及包括多个薄膜晶体管的驱动电路,其中发光元件具有第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,其中薄膜晶体管涂覆有由无机绝缘膜和有机绝缘膜的叠层组成的层间绝缘膜;在层间绝缘膜的开口处,由无机绝缘膜的侧表面和有机绝缘膜的侧表面形成的台阶部分;有机绝缘膜的上端部具有带曲率半径的弯曲表面;第一电极的端部涂覆有绝缘材料,在其上端部具有带曲率半径的弯曲表面;以及第一电极的端部具有延伸到第一电极中心的倾斜面,其中倾斜面反射由含有机化合物层发出的光。
在本发明的以上第三和第四方案中,第一电极具有延伸到第一电极中心的倾斜面,它的倾斜角可以超过30°并小于70°。
在本发明的以上第三和第四方案中,覆盖第一电极端部的绝缘材料在它的上端部具有带曲率半径的弯曲表面,曲率半径可以为0.2μm到3μm。由于具有曲率半径的弯曲表面形成在覆盖第一电极端部的绝缘材料的上端部上,因此清洗第一电极表面时,第一电极的表面可以防止异物(灰尘或类似物)留在第一电极的底部。
在本发明的以上各方案中,含有机化合物的层可以是发红光的材料、发绿光的材料、或发蓝光的材料。或者,含有机材料的层可以是发白光的材料,可以与提供在第一衬底或第二衬底上的滤色器一起使用。此外,在本发明的以上各方案中,含有机化合物的层可以是发单色光的材料并且可以与形成在第一衬底或第二衬底上的变色层或着色层一起使用。
此外,为了制造新颖的发光器件,本发明的一个方案是具有发光元件的发光器件的制造方法,其中发光元件包括具有绝缘表面的衬底上的薄膜晶体管、电连接到薄膜晶体管的第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,包括以下步骤通过蚀刻覆盖薄膜晶体管的源区和漏区的无机绝缘膜形成延伸到薄膜晶体管的源区或漏区的接触孔,然后形成有机绝缘膜,通过蚀刻有机绝缘膜再次形成延伸到源区或漏区的接触孔;形成连接电极,接触薄膜晶体管的源区或漏区;形成接触连接电极的第一电极;形成覆盖第一电极端部的绝缘材料;形成与绝缘材料的侧表面和第一电极接触的含有机化合物的层;以及在含有机化合物的层上形成第二电极。
对于制造本发明第三和第四方案的发光器件,本发明的另一方案是制造具有发光元件的发光器件的方法,其中发光元件包括具有绝缘表面的衬底上的薄膜晶体管、电连接到薄膜晶体管的第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,包括以下步骤形成覆盖薄膜晶体管的由氮化硅膜和氮氧化硅膜的叠层组成的无机绝缘膜之后,氢化无机绝缘膜;通过蚀刻无机绝缘膜形成延伸到电极的接触孔和延伸到源区或漏区的接触孔;形成连接到源区或漏区的电极;形成覆盖电极的层间绝缘膜;
通过蚀刻层间绝缘膜形成延伸到电极的接触孔和延伸到源区或漏区的接触孔;形成由连接到源区或漏区的金属层的叠层组成的第一电极;形成覆盖该电极的层间绝缘膜;形成覆盖第一电极端部的绝缘材料;通过使用绝缘材料作为掩模进行蚀刻减薄第一电极的中心,以使沿第一电极的边缘露出倾斜表面;形成含有机化合物的层;以及在含有机化合物的层上形成第二电极,其中第二电极由透光的金属薄膜组成。
此外,形成氮氧化硅膜之后,可进行氢化。因此,为了得到本发明第三和第四方案的发光器件,本发明的另一方案是制造具有发光元件的发光器件的方法,其中发光元件包括具有绝缘表面的衬底上的薄膜晶体管、电连接到薄膜晶体管的第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,包括以下步骤形成覆盖薄膜晶体管的氮氧化硅膜之后进行氢化;通过溅射法在氮氧化硅膜上形成氮化硅膜;通过蚀刻氮氧化硅膜和氮化硅膜形成延伸到源区或漏区的接触孔;形成连接到源区或漏区的电极;形成覆盖该电极的层间绝缘膜;通过蚀刻层间绝缘膜形成延伸到电极的接触孔和延伸到源区或漏区的接触孔;形成由连接到源区或漏区的金属层的叠层组成的第一电极;形成覆盖第一电极端部的绝缘材料;通过使用绝缘材料作为掩模进行蚀刻减薄第一电极的中心,以使沿第一电极的边缘露出倾斜表面;形成含有机化合物的层;以及在含有机化合物的层上形成第二电极,其中第二电极由透光的金属薄膜组成。
为了制造本发明第三和第四方案每一个的发光器件,本发明的再一方案是制造具有发光元件的发光器件的方法,其中发光元件包括具有绝缘表面的衬底上的薄膜晶体管、电连接到薄膜晶体管的第一电极、含有有机化合物并与第一电极接触的层、以及与含有有机化合物的层接触的第二电极,包括以下步骤形成覆盖薄膜晶体管的氮氧化硅膜之后进行氢化;通过蚀刻氮氧化硅膜形成延伸到源区或漏区的接触孔;形成连接到源区或漏区的电极;通过溅射法在电极上形成氮化硅膜和氮氧化硅膜;在氧氮化硅膜上形成层间绝缘膜;通过蚀刻层间绝缘膜和氮化硅膜形成延伸到电极的接触孔和延伸到源区或漏区的接触孔;形成由连接到源区或漏区的金属层的叠层组成的第一电极;形成覆盖第一电极端部的绝缘材料;通过使用绝缘材料作为掩模进行蚀刻减薄第一电极的中心,以使沿第一电极的边缘露出倾斜表面;形成含有机化合物的层;以及在含有机化合物的层上形成第二电极,其中第二电极由透光的金属薄膜组成。
在本发明的制造方法以上方案的每一个中,第一电极可以是发光元件的阳极或阴极。
此外,在本发明的制造方法以上方案的每一个中,有机树脂材料在它的上端部可以具有带曲率半径的弯曲表面,曲率半径可以为0.2μm到3μm。
此外,在本发明的制造方法的每个以上方案中,覆盖第一电极端部的绝缘材料可以在它的上端部具有带曲率半径的弯曲表面,曲率半径可以为0.2μm到3μm。
此外,发光元件(EL元件)包括含有通过施加电场产生电致发光的有机化合物的层(下文称做EL层),以及阳极和阴极。有机化合物有两种类型的发光激发态。一种是由受激单重态返回到基态时发光(荧光),另一种是由受激三重态返回到基态时发光(磷光)。这两种都可以应用到本发明制造的发光器件上。此外,含有机化合物层的层(EL层)也可以含有如硅的无机材料。
对于本发明的发光器件,图像表示的驱动方法不限于具体的方法。例如,可以用点顺序驱动系统、线顺序驱动系统、相顺序驱动系统等。通常,采用线顺序驱动系统。如果需要,可以以适当的方式使用时分等级驱动法或区域等级驱动法。此外,输入发光器件源线中的图像信号可以是模拟信号或数字信号。此外,可以适当地设计驱动电路以适合图像信号。


图1A示出了本发明的一个实施例的发光器件的俯视图,图1B示出了驱动电路和像素部分(例1)的剖面图;图2示出了本发明的一个实施例的发光器件的像素部分和连接部分(例1)的剖面图;图3示出了例1的剖面图;图4A和4B示出了例2的剖面图;图5A和5B示出了例1的剖面图;图6A和6B示出了例3的剖面图;图7A和7B示出了例3的剖面图;图8A和8B示出了例3的剖面图;图9A和9B示出了例4的剖面图;图10A和10B示出了例5的剖面图;图11A和11B示出了例5的剖面图;图12A示出了像素部分(例4)的俯视图,图12B示出了图12A的剖面图;图13A到13C示出了制造工艺(例4)的剖面图;图14示出了例6的剖面图;图15A和15B示出了例7的剖面图;图16示出了例8的剖面图;图17A和17B示出了例8的剖面图;图18A示出了像素部分的俯视图,图18B示出了等效电路(例8);图19为TEM观测的照片(例4);图20A到20C示出了例9的图;图21A到21F示出了电子设备的例子(例10);图22A和22C示出了电子设备的例子(例10)。
具体实施例方式
下面参考附图介绍本发明的优选实施例。
下面参考图1A、1B和2,首先,介绍作为本发明的一个优选实施例的有源矩阵型发光器件的结构。图1A示出了发光器件的俯视图,图1B示出了沿图1A中的点线A-A’和点线B-B’的装置两部分的剖面图。
在图1A、1B中,参考数字1表示源信号线驱动电路,2表示像素部分,3表示栅极信号线驱动电路。此外,参考数字4表示密封的衬底,5表示密封的粘合剂。由密封粘合剂5环绕和限定的内部区域为空区。此外,参考数字7表示在发光元件公共的上电极和衬底上的布线之间进行连接的连接区。
此外,设计本实施例的发光器件以使从提供作为外部输入端子的柔性印刷电路(FPC)6接受视频信号和时钟信号。这里,虽然图中没有示出,但印刷线路板(PWB)可以贴附到FPC上。本说明书中使用的术语“发光器件”不仅表示发光器件自身,也表示带有FPC或贴附有PWB的FPC的发光器件。
现在参考图1B,介绍发光器件的剖面结构。在衬底10上,形成驱动电路和像素部分。在图中,示出了作为驱动电路的源信号线驱动电路1和像素部分。此外,在源信号线驱动电路1中,形成CMOS电路,为n沟道TFT8和p沟道TFT9的组合。n沟道TFT8包括沟道形成区13a,在其上通过栅绝缘膜15堆叠有栅电极17的上层;低浓度杂质区13d,在其上通过栅绝缘膜15堆叠栅电极17的下层;低浓度杂质区13c,在其上不堆叠栅电极17的下层,并且提供高浓度的杂质区13b作为源区或漏区。此外,p沟道TFT9包括沟道形成区14a,在其上栅电极18的上层通过栅绝缘膜15堆叠;低浓度杂质区14d,在其上通过栅绝缘膜15堆叠栅电极18的下层;低浓度杂质区14c,在其上不堆叠栅电极18的下层,并且提供高浓度的杂质区14b作为源区或漏区。此外,参考数字25、26和27表示源电极或漏电极。可以使用公知的CMOS电路、PMOS电路或NMOS电路制备形成驱动电路的TFT。在本实施例中,提供一种驱动电路形成在衬底上的驱动器集成型。然而根据本发明,不限于这种设计。此外,可以形成在外部,而不是衬底上。
此外,像素部分2包括开关TFT40和包括第一电极(阳极)28a和电流控制TFT的多个像素,其中提供第一电极28a作为电连接到电流控制TFT的漏区或源区12b(高杂质浓度区)的下电极。多个TFT形成在一个像素中。电流控制TFT包括沟道形成区12a,在其上通过栅绝缘膜15堆叠栅电极16a和16b的上层16b;低浓度杂质区12d,在其上通过栅绝缘膜15堆叠栅电极的下层16a;以及低浓度杂质区12c,在其上没有堆叠栅电极的下层16a。这里,参考数字23表示源电极或漏电极,24表示第一电极28a和高浓度杂质区12b之间进行连接的连接电极。
在图1B中,仅示出了电流控制TFT。然而在图2中的剖面图也示出了排列在像素部分2上的开关TFT40和电容(capacity)41。在图2中,使用n沟道TFT举例说明开关TFT40,具有多个沟道形成区50a,在其上通过栅绝缘膜15堆叠栅电极44。这里,参考数字47和48表示源布线或漏布线,50b表示源区或漏区,50c表示低浓度杂质区,在其上没有堆叠栅电极44,50d表示低杂质浓度区,在其上堆叠栅电极44。在电容41中,提供层间绝缘膜22,20作为介质材料,使用电极46和电极43形成保持电容。此外,提供栅绝缘膜15作为介质材料,使用电极43和半导体膜42形成保持电容。在图2中,与图1A和1B中相同的结构部件用相同的参考数字表示。
此外,每个层间绝缘膜20,21,22可以是例如光敏或非光敏有机材料(例如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯);用溅射法、CVD法或涂覆法涂覆的无机材料(例如氧化硅、氮化硅、或氮氧化硅);或它们的叠层。在图1A、1B和2中,无机绝缘膜20由氮化硅膜制成,并形成在栅电极和栅绝缘膜15上。形成无机绝缘膜20以便将氢引入膜内,并提供用于通过热处理端接半导体层的悬挂键的氢化。可以氢化位于下部的半导体,而与是否存在由氧化膜构成的绝缘硅膜15无关。此外,通过涂覆光敏有机材料形成层间绝缘膜21,之后用湿法蚀刻或干法刻蚀选择性蚀刻,以使上部变成具有曲率半径的弯曲表面。当有机材料用做层间绝缘膜21时,来自层间绝缘膜21的水、气体或杂质会扩散使以后要形成的发光元件性能变坏。为了防止这种不足,优选用层间绝缘膜22涂覆层间绝缘膜21,层间绝缘膜22例如为氮化硅膜、氮氧化硅膜、氧化的氮化铝膜或它们的叠层。此外,层间绝缘膜22能够防止来自衬底10的杂质扩散到发光元件,或者由发光元件分散到TFT。此外,使用具有吸湿性质的有机材料作为层间绝缘膜21时,当暴露在如随后的步骤中其它构图使用的如脱模(releasing)溶液的溶液时,该膜会膨胀。这需要再次烘烤或用层间绝缘膜22覆盖,以防止层间绝缘膜21膨胀。
此外,本发明不限于图1A、1B和2所示的层间绝缘膜的层叠顺序,或者形成膜和其氢化的步骤顺序。此外,如图3所示,用于防止杂质分散的层间绝缘膜221形成在用于氢化的层间绝缘膜上,然后被氢化,之后通过涂覆法用有机树脂材料形成膜。此时,通过对膜进行湿法蚀刻或干法刻蚀可以形成在它的上端部具有带曲率半径的弯曲表面的层间绝缘膜222。对有机树脂膜进行干法刻蚀时,会产生电荷,由此存在使TFT特性变化的可能性。因此,优选用湿法蚀刻蚀刻膜。蚀刻由无机绝缘膜和有机树脂膜的叠层制成的层间绝缘膜时,可以仅对有机树脂膜进行湿法蚀刻,或者干法刻蚀无机绝缘膜并形成有机树脂膜之后进行湿法蚀刻。
使用光敏有机树脂材料作为层间绝缘膜21时,它的上端部往往会变成具有曲率半径的弯曲表面。另一方面,使用非光敏有机树脂材料或无机材料作为层间绝缘膜222时,所得膜的结构如图4A和4B的剖面图所示。
此外,制备下侧辐射型显示器时,优选使用透明材料作为层间绝缘膜20到21的每一个。
此外,绝缘材料(也称做堤岸(bank)、隔断、隔离物、堤或类似物)30形成在第一电极(阳极)28a的两端,含有有机化合物的层(称做EL层)31形成在第一电极(阳极)28a上。形成EL层31之前或之后,优选通过在真空中加热进行排气。含有机化合物31的层很薄,所以优选使第一电极的表面平坦。例如,构图第一电极28a之前或之后,通过化学或机械研磨处理(通常为CMP技术或类似物)可以使膜平坦。进行CMP时,电极24或绝缘材料30形成为薄膜,电极24的端部需要为锥形以提高第一电极的平坦度。这是由于没有进行CMP的区域减少。为了提高第一电极表面的清洁度,进行清洗(刷洗等)用于除去异物(灰尘或类似物)。为了清洗,电极24的端部制成锥形以防止异物(灰尘或类似物)留在第一电极的端部。
绝缘材料30可以是光敏或非光敏有机材料(例如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯);用CVD法、溅射法或涂覆法涂覆的无机材料(例如氧化硅、氮化硅、或氮氧化硅);或它们的叠层。使用光敏有机材料作为绝缘材料30时,有用的光敏有机材料可以大致分成两种类型。也就是,一种是通过光敏光照射不溶于蚀刻剂的负型,另一种是通过光照可溶于蚀刻剂的正型。根据本发明,可以适当地使用两种类型。
使用光敏有机材料作为绝缘材料30时,如图1A、1B和2所示,往往会变成在上端部具有曲率的弯曲表面。使用非光敏有机材料或无机材料时,绝缘材料330,430变成具有如图4A和4B所示的剖面图的形状。
此外,使用有机材料作为绝缘材料30或每个层间绝缘膜20到22时,重要的是在真空中通过热处理使材料排气以去除膜中的气体或水。因此,优选排气之后形成含有机化合物的层31。
在含有机化合物的层31上,形成第二电极(阴极)32作为上电极。随后,形成由第一电极(阳极)28a、含有机化合物的层31以及第二电极(阴极)32组成的发光元件。当提供发光元件用于发射白光时,着色层和滤色器(为简化图中未示出)安装在衬底10上。
第二电极32可以作为所有像素公用的布线,并通过布线与FPC6电连接。此外,在图2中,示出了用于第二电极32和布线45之间进行电连接的连接区7。布线45延伸至电连接FPC6。
在图1B所示的端子部分上,用如导电粘结剂等的粘结剂将与栅电极相同的步骤形成的电极19a,19b的叠层形成的端电极、与源电极或漏电极相同的步骤形成的电极、以及与第一电极28a的相同步骤形成的电极28b粘结在FPC6上。这里,端子部分的结构不限于图1B所示的结构。可以适当地修改并形成。
此外,为密封形成在衬底10上的发光元件,使用密封粘结剂5在其上层叠密封的衬底4。此外,为了得到密封的衬底4和发光元件之间的间隔,可以得到由树脂膜制成的间隔层。然后,如氮气的惰性气体填充在密封粘结剂5的内部空间中。此外,密封粘结剂5可以优选由环氧树脂制成。此外,密封粘结剂5可以优选由尽可能少渗透水和氧的材料制成。此外,密封粘结剂5含有将氧和水吸收到空间内部效果的物质。
在本实施例中,密封衬底4可以由如玻璃衬底、石英衬底、或玻璃纤维增强塑料(FRP)、聚氟乙烯(PVF)、miler、聚酯、丙烯、或类似物制成的塑料衬底。此外,使用密封粘结剂5粘贴密封的衬底4之后,可以用密封粘结剂5密封以覆盖侧表面(暴露的表面)。
如上所述,通过将发光元件密封到封闭空间内,发光元件可以完全地与外部隔开,由此可以防止如水或氧等加速有机化合物层退化的物质渗透。因此,可以得到具有高可靠性的发光器件。
此外,本发明不限于图2所示的像素部分的开关TFT结构。如图5A所示,例如,通过栅绝缘膜,没有堆叠在栅电极上的LDD区60c可以仅形成在沟道形成区60a和漏区(或源区)60b之间。这里,不限定栅电极的形状。此外,如图5B所示,可以形成为单层栅电极。
此外,在以上的说明中以顶栅型TFT为例进行了介绍。然而,可以不考虑TFT结构应用本发明。例如,本发明可以应用于底栅型(反向交错型)TFT或正向交错型TFT。
在图1B中,示出了形成连接到源区或漏区的连接电极24之后形成第一电极28a的结构。然而,根据本发明,不具体地限定于这种结构。此外,例如,可以在形成第一电极628a之后形成连接到源区或漏区的连接电极624,如图6A所示。
此外,如图9A所示,通过提供绝缘材料30作掩模并蚀刻掩模制备电极。也就是,形成电极以使它由第一电极1024a、和具有反射来自含有机化合物层1031的光的倾斜面的电极1024b组成。在图9A中,为了在沿中图中箭头所示的方向发射光,提供第二电极1032作为薄金属膜、透明导电膜或其叠层。
此外如图15A所示,形成覆盖接触源区或漏区的电极1424的层间绝缘膜1431之后,第一电极1428a可以形成在层间绝缘膜1431上。
此外,如图16所示,布线1525到1527可以形成在层间绝缘膜20上,然后驱动电路的布线可以延伸或接触其它部件。此外,电极可以由第一电极1524a和电极1524b组成,电极制备成在端部具有倾斜面,反射来自含有机化合物层1531的光,层间绝缘膜1521覆盖在布线上。在图16A中,示出了沿图中的箭头方向中发射光截取的结构(上侧辐射型)。
这里,将参考下面的例子更详细地介绍以上构成的本发明。
这里,使用图1B和2详细介绍在相同的衬底上同时制造像素部分、以及像素部分外围中提供的驱动电路的TFT(n沟道TFT和p沟道TFT)的方法,以制造具有EL元件的发光器件。
对于基底绝缘膜11的下层,在400℃的膜淀积温度下通过使用等离子体CVD,由SiH4、NH3和N2O作为原料气体(组分比Si=32%,O=27%,N=24%,H=17%)形成的50nm厚(优选10到200nm)的氮氧化硅形成在厚度0.7mm耐热玻璃衬底(第一衬底10)上。然后,用臭氧水清洁表面之后,借助稀释的氢氟酸(用1/100稀释)除去表面上的氧化膜。接下来,对于基底绝缘膜11的上层,在400℃的膜淀积温度下通过使用等离子体CVD,由SiH4和N2O作为原料气体(组分比Si=32%,O=59%,N=7%,H=2%)形成100nm厚(优选50到200nm)的氮氧化硅形成于其上,由此形成叠层。此外,不暴露到大气,在300℃的膜淀积温度下通过使用等离子体CVD,由SiH4作为膜淀积气体形成厚度54nm(优选25到80nm)具有非晶结构的半导体膜(此时为非晶硅膜)。
在本例中,基底绝缘膜11显示为两层结构形式,但也可以采用单层绝缘膜或层叠两层或多层的结构。此外,对半导体膜的材料没有限制。然而,半导体膜优选使用已知的方式(溅射、LPCVD、等离子体CVD等)由硅或硅锗(Si1-xGex(x=0.0001到0.02))合金形成。此外,等离子体CVD装置可以是单晶片型或批量型。此外,可以在相同的膜形成室中连续地形成基底绝缘膜和半导体膜,同时不暴露到大气。
随后,清洁具有非晶结构的半导体膜表面之后,由臭氧水在表面上形成厚度约2nm的极薄氧化膜。然后,为了控制TFT的阈值电压,掺杂微量的杂质元素(硼或磷)。这里,使用离子掺杂法,其中乙硼烷(B2H6)为等离子体激活而没有质量分离,在下面的掺杂条件下将硼添加到非晶硅膜15kV的加速电压;用氢气稀释到1%的乙硼烷流速为30sccm;以及2×1012atom/cm2的剂量。
然后,使用旋转器涂敷含10ppm重量镍的乙酸镍盐溶液。代替涂敷,也可以使用通过溅射将镍元素喷射到整个表面的方法。
接下来,进行热处理进行结晶化,由此形成具有晶体结构的半导体膜。使用电炉或强光照射的加热工艺进行该热处理。使用电炉进行加热工艺时,可以在500到650℃进行4到24小时。这里,进行用于脱氢的加热工艺(500℃1小时)之后,进行用于结晶化的加热工艺(550℃4小时),由此得到具有晶体结构的硅膜。注意,虽然通过使用电炉的加热工艺进行结晶化,但也可以借助灯退火装置进行结晶化。还应该注意,这里使用了用镍作为促进硅结晶化的金属元素的结晶化技术,但也可以使用其它公知的晶化技术,例如固相生长法和激光晶化法。
此后,通过稀释的氢氟酸或类似物除去具有晶体结构的硅膜表面上的氧化膜之后,在大气中或在氧气气氛中进行第一激光(XeCl308nm波长)照射用于升高晶化速率和修复留在晶粒中的缺陷。波长为400nm或更短的受激准分子激光或YAG激光的二次谐波或三次谐波用做激光。在任何一种情况中,使用约10到1000Hz重复频率的脉冲激光,通过光学系统将脉冲激光会聚为100到500mJ/cm2,进行90到95%覆盖率的照射,由此扫描硅膜表面。这里,在大气中以30Hz的重复频率以及470mJ/cm2的能量密度下进行第一激光照射。应该注意通过第一激光照射在表面上形成氧化膜,是由于在大气或氧气气氛中进行的照射。虽然这里示出了使用脉冲激光的例子,但也可以使用连续的振荡激光。当进行非晶半导体膜的晶化时,优选通过使用能够连续振荡的固态激光施加基波的二次谐波到四次谐波,以便得到大晶粒尺寸的晶体。通常,优选采用NdYVO4激光(1064nm的基波)的二次谐波(厚度为532nm)或三次谐波(厚度为355nm)。具体地,使用非线性光学元件将由10W输出的连续振荡型YVO4激光器发射的激光束转变为谐波。此外,也可以使用将YVO4的晶体和非线性光学元件放入谐振器内发射谐波的方法。然后,更优选,通过光学系统形成激光束以具有矩形或椭圆形,由此,照射要处理的物质。此时,需要约0.01到100MW/cm2(优选01.到10MW/cm2)的能量密度。相对激光束以约10到2000cm/s的速率移动半导体膜,以照射半导体膜。
虽然这里在使用镍作为促进晶化的金属元素进行热处理之后进行激光照射的技术,但也可以不掺杂镍通过连续的振荡激光(YVO4激光的二次谐波)进行非晶硅膜的晶化。
通过该激光照射形成的氧化膜和通过用臭氧水处理表面120秒形成的氧化膜一起制成总厚度1到5nm的阻挡层。虽然这里使用臭氧水形成阻挡层,但也可以使用其它方法,例如在氧气气氛中进行紫外线照射或氧化等离子体处理以氧化具有晶化结构的半导体膜的表面。此外,对于形成阻挡层的其它方法,可以通过等离子体CVD法、溅射法、蒸发法或类似方法淀积厚度约1nm到10nm的氧化膜。在本说明书中,术语阻挡层是指具有的膜质量或膜厚度允许在吸杂(gettering)步骤中金属元素穿过并且在除去作为吸杂点(gettering site)的层的步骤中起蚀刻终止层作用的层。
在阻挡层上,通过溅射形成厚度50到400nm,在本例中为150nm的含氩元素的非晶硅膜作为吸杂点。在本例中通过溅射形成膜的条件包括将膜形成压强设置为0.3Pa,气体(Ar)流速为50sccm,膜形成功率为3kW以及衬底温度为150℃。在以上条件下形成的非晶硅膜含有3×1020到6×1020atom/cm3原子浓度的氩元素,和含1×1019到3×1019atom/cm3原子浓度的氧。此后,在热处理中使用电炉在550℃下4小时,用于吸杂以减少具有晶体结构的半导体膜中的镍浓度。此外,可以使用代替电炉的灯退火装置进行吸杂。
随后,用阻挡层作为蚀刻终止层选择性地除去作为吸杂点的含氩元素的非晶硅膜,然后,通过稀释的氢氟酸选择性地除去阻挡层。应该注意在吸杂中镍有可能移动到高氧浓度的区域,希望吸杂之后除去氧化膜组成的阻挡层。
接下来,在得到的具有晶体结构的硅膜(也称做多晶硅膜)表面上用臭氧水形成薄氧化膜之后,形成抗蚀剂制成的掩模,进行蚀刻工艺得到需要的形状,由此形成相互隔开的岛形半导体层。形成半导体层之后,除去由抗蚀剂制成的掩模。
然后用含氢氟酸的蚀刻剂除去氧化膜,同时,清洁硅膜表面。此后,形成含硅作为主要成分的绝缘膜,变成栅绝缘膜15。在本例中,通过等离子体CVD形成厚度115nm的氮氧化硅膜(组分比Si=32%,O=59%,N=7%,H=2%)。
接下来,以叠层形式在栅绝缘膜15上形成厚度20到100nm的第一导电膜和厚度100到400nm的第二导电膜。在本例中,在栅绝缘膜15上依次叠置50nm厚的氮化钽膜和370nm厚的钨膜,在其上构图形成随后将介绍的每个栅电极和每个线。
对于形成第一导电膜和第二导电膜的导电材料,使用选自Ta、W、Ti、Mo、Al和Cu组成的组中的一种元素,或含有以上元素作为主要成分的合金材料或化合物材料。此外,可以使用掺杂有如磷的杂质元素的多晶硅膜为代表的半导体膜,或AgPdCu合金作为第一导电膜或第二导电膜。此外,本发明不限于两层结构。例如,可以采用三层结构,其中依次叠置50nm厚的钨膜、厚度500nm的铝和硅(Al-Si)的合金膜以及30nm厚的氮化钛膜。此外,当为三层结构时,可以使用氮化钨代替第一导电膜的钨,可以使用铝和钛(Al-Ti)的合金膜代替第二导电膜的铝和硅(Al-Si)的合金膜,可以使用钛膜代替第三导电膜的氮化钛膜。此外,也可以采用单层结构。
优选使用ICP(感应耦合等离子体)蚀刻法用于以上提到的第一和第二导电膜的蚀刻工艺(第一和第二蚀刻工艺)。使用ICP蚀刻法,适当地调节蚀刻条件(施加到线圈形电极的电能、施加到衬底侧电极的电能、衬底侧上电极的温度等),由此可以蚀刻导电膜具有需要的锥形。对于蚀刻气体,可以从通常为Cl2、BCl3、SiCl4或CCl4的氯基气体或者通常为CF4、SF6或NF3的氟基气体和O2中选择的合适的一种。
在本例中,形成抗蚀剂掩模之后,700W的RF(13.56MHz)功率施加到线圈形电极,及1Pa的压强作为第一蚀刻条件,CF4、SF6或NF3和O2可以适当地用做蚀刻气体。每个气体流速设置为25/25/10(sccm),150W的RF(13.56MHz)功率也施加到衬底(样品台),以基本上施加负自偏置电压。应该注意,衬底侧上的电极区域的尺寸为12.5cm×12.5cm,线圈形电极(这里使用包括线圈的石英盘)具有25cm的直径。采用第一蚀刻条件,蚀刻W膜将第一导电层的端部形成锥形。该锥形部分的角度从15°到45°。此后,除去抗蚀剂掩模并采用第二蚀刻条件。使用CF4和Cl2作为蚀刻气体,气体的流速设置为30/30sccm,500W的RF(13.56MHz)电源施加到线圈形电极,压强为1Pa,产生等离子体,由此进行蚀刻约30秒。20W的RF(13.56MHz)功率也施加到衬底侧(样品台),以基本上施加负自偏置电压。在混合CF4和Cl2的第二蚀刻条件下,在相同的级别下蚀刻W膜和TaN膜。这里,第一蚀刻条件和第二蚀刻条件称做第一蚀刻处理。
此外,当采用依次层叠50nm厚的钨膜、厚度500nm的铝和硅(Al-Si)的合金膜以及30nm厚的氮化钛膜的三层结构时,在以下第一蚀刻工艺的第一蚀刻条件下BCl3、Cl2和O2用做原料气体;气体的流速设置为65/10/5(sccm);以及450W的RF(13.56MHz)功率施加到线圈形电极,压强为1.2Pa,产生等离子体,由此进行蚀刻117秒。对于第一蚀刻工艺的第二蚀刻条件,CF4、Cl2和O2用做蚀刻气体;气体的流速设置为25/25/10sccm;以及500W的RF(13.56MHz)电源施加到线圈形电极,压强为1Pa,产生等离子体。采用以上条件,进行约30秒蚀刻已足够。
之后,不除去抗蚀剂掩模,使用栅电极作为掩模进行第一掺杂处理以掺杂整个表面。第一掺杂处理使用离子掺杂或离子注入。对于引入n型导电类型的杂质元素,通常使用磷(P)或砷(As)。以自对准的方式形成第一杂质区(n+区)13b和50b。将1×1020到1×1021atom/cm3密度范围中的n型掺杂杂质元素添加到第一杂质区。
随后,不除去抗蚀剂掩模进行第二蚀刻处理。这里CF4和Cl2用做蚀刻气体;气体的流速设置为30/30sccm;以及500W的RF(13.56MHz)功率施加到线圈形电极,压强为1Pa,产生等离子体,由此进行约60秒的蚀刻。20W的RF(13.56MHz)电源也施加到衬底侧(样品台),以基本上施加负自偏置电压。之后,不除去抗蚀剂掩模进行蚀刻处理,在以下第四条件下其中CF4、Cl2和O2用做蚀刻气体;气体的流速设置为20/20/20sccm;以及500W的RF(13.56MHz)功率施加到线圈形电极,压强为1Pa,产生等离子体,由此进行约20秒的蚀刻。20W的RF(13.56MHz)电源也施加到衬底侧(样品台),以基本上施加负自偏置电压。这里,第三蚀刻条件和第四蚀刻条件称做第二蚀刻处理。用第二蚀刻处理对W膜和Tan膜进行各向异性蚀刻。通过将氧气添加到蚀刻气体,W膜和Tan膜之间产生蚀刻速度差异。虽然没有示出,但没有被第一导电层覆盖的栅绝缘膜被蚀刻得更多,并且变得更薄。在该阶段,形成由作为下层的第一导电层16a和作为上层的第二导电层16b组成的栅电极和电极16和17到18。
之后,不除去抗蚀剂掩模,使用栅电极作为掩模进行第二掺杂处理掺杂整个表面。形成与部分栅电极12c、13c、14c以及50c重叠的杂质区(n-区)以及不与栅电极12d、13d、14d和50d重叠的杂质区。第二掺杂处理使用离子掺杂或离子注入。在本例中,在用氢气稀释到5%的磷化氢(PH3)气体流速为30sccm、1.5×1013atom/cm2的剂量以及90kV的加速电压的条件下进行离子掺杂法。抗蚀剂掩模和第二导电膜作为n型掺杂杂质元素的掩模,形成第二杂质区12d、13d、14d以及50d。将1×1016到1×1017atom/cm3密度范围中的n型掺杂杂质元素添加到杂质区13d和14d。在本例中,与第二杂质区13a和14d相同浓度范围的区域称做n-区。
除去抗蚀剂掩模之后,形成新的抗蚀剂掩模进行第三掺杂处理。通过第三掺杂处理,形成第三杂质区、第四杂质区以及第五杂质区,也就是形成其中添加p型掺杂杂质元素(硼和类似物)的p沟道型TFT的半导体层。
密度范围为1×1020atom/cm3到1×1021atom/cm3的p型掺杂杂质元素添加到第三杂质区12b,14b。应该注意,在第三杂质区中,在前一步骤中已添加了磷(P)(n--区),但以高于磷密度10倍的密度添加p型掺杂杂质元素。由此,第三杂质区具有p型导电类型。在本例中,与第三杂质区相同密度范围的区域称做p+区。
第四杂质区12c和14c形成在不与第二导电层的锥形部分重叠的区域,并添加有密度范围为1×1018atom/cm3到1×1020atom/cm3的p型杂质元素。这里,在前一步骤中添加磷(P)与具有与第四杂质区相同密度范围的区域(n-区)称做p-区。此外,在前一步骤中添加磷(P)与具有与第二导电层的锥形部分重叠的第五杂质区12d,14d的区域(n--区)称做p--区。
通过以上介绍的步骤,具有n型或p型掺杂杂质元素的杂质区形成在各半导体层中。
并且,除去抗蚀剂掩模,进行清洁,然后进行激活添加到各半导体层的杂质元素的步骤。在该激活步骤中,使用激光退火法、使用灯光源的快速热退火(RTA)法、用由YAG激光器或受激准分子激光器从背面发出的光照射的方法、使用炉的热处理、或它们的组合。
接下来,形成基本上覆盖整个表面的层间绝缘膜20。在本例中,通过等离子体CVD形成50nm厚的氮氧化硅膜。当然,层间绝缘膜20不限于氮氧化硅膜,可以单层或叠层结构使用含硅的其它绝缘膜。这里,用含氢的条件在层间绝缘膜中进行膜形成。随后,进行热处理(300到550℃进行1到12小时),由此进行氢化半导体层的步骤。该步骤为通过含在层间绝缘膜20中的氢端接半导体层的悬挂键的步骤。无论是否存在由氧化硅膜形成的绝缘膜(未示出),都可以氢化半导体层。对于其它方式的氢化,可以进行等离子体氢化(使用等离子体激活的氢)。
接着,由有机绝缘材料形成的层间绝缘膜形成在层间绝缘膜20上。在本例中,通过涂覆法形成厚度1.6μm的正型光敏丙烯酸树脂膜并成为在接触孔的上端部具有弯曲表面的层间绝缘膜21。此外,通过使用RF电源的溅射在其上层叠20到50nm厚度由氮化硅制成的层间绝缘膜22。具体地,希望是在氮气气氛中使用硅靶和RF功率通过溅射形成的氮化硅膜,是由于它很致密,当然能够阻止湿气和氧,并且对于20nm的膜厚度水平,能够充分地阻止如Li等容易扩散的金属元素。层间绝缘膜22为多层,可以是例如厚度20nm到50nm的氮氧化铝膜和厚度20到50nm的氮化硅膜的层叠结构。应该注意,虽然这里示出了在丙烯酸树脂膜上层叠氮化硅膜的例子,但不特别地限定于此。有机绝缘膜和无机绝缘膜的总厚度可以设置为0.5到2.0μm。
随后,通过除去栅绝缘膜15和层间绝缘膜20和22形成延伸到每个杂质区的接触孔。此外,形成层间绝缘膜20,21,22、接触孔、以及氢化的顺序不特别地限定。
此后,使用Al、Ti、Mo、W等形成电极23到27,46到48。具体地,形成源布线、电源线、汲取(extraction)电极、电容布线以及连接电极。对于电极和布线的材料,使用包括含铝硅膜(厚度350nm)、Ti膜(厚度100nm)、以及Ti膜(厚度50nm)的层叠膜。并进行构图。由此,适当地形成源电极、源布线、连接电极、汲取电极以及电源线。此外,用于与层间绝缘膜重叠的栅极布线接触的汲取电极提供在栅极布线的边缘部分。在每个布线的其它边缘部分中形成提供用于连接外部电路和外部电源的多个电极的输入-输出端部分。
接着,形成第一电极28a以连接并与连接电极24重叠,连接电极24与用于与电流控制的p沟道TFT制成的TFT的漏极区12b连接。在本例中,第一电极28a作为EL元件的阳极,由于EL元件通过第一电极28a发光,因此它可以是透明导电膜(ITO(氧化铟锡合金)、氧化铟-氧化锌合金(In2O3-ZnO)、氧化锌(ZnO)等),具有很大的功函数。例如,当ITO用做第一电极时,通过溅射,氢气或潮湿的蒸汽包含在气氛中以得到大气状态中的ITO膜,此后在其上进行200℃到225℃温度下的热处理。
此外,为了平坦化第一电极28a的表面,形成第一电极28a之后或者形成绝缘材料30之后进行如CMP的平坦化处理。在形成绝缘材料30之后进行CMP处理的情况下,优选形成层间绝缘膜22以增加绝缘材料30和层间绝缘膜21之间的粘和性。
如上所述,形成具有n沟道TFT8、p沟道TFT9、互补地组合n沟道TFT8和p沟道TFT9的CMOS电路的源驱动电路1、以及在一个像素中提供的多个n沟道TFT40或多个p沟道TFT的像素部分2。
称做堤岸的绝缘膜30形成在第一电极28a的两端以覆盖它的端部。通过有机树脂膜或包括硅的绝缘膜可以形成堤岸30。这里,对于绝缘材料30,使用正型光敏丙烯酸树脂膜形成具有图1B所示形状的堤岸。
之后,在端部用堤岸30覆盖的第一电极28a上形成EL层31和第二电极32(EL元件的阴极)。
通过自由地组合发光层、电荷传输层以及电荷注入层形成EL层31(用于发光并移动载流子以引起发光的层)。例如,使用单体有机EL材料或聚合物有机EL材料形成EL层。EL层可以是通过单重激发发光(荧光)的发光材料(单重化合物)形成的薄膜,或者是通过三重激发发光(磷光)的发光材料(三重化合物)形成的薄膜。如碳化硅的无机材料用做电荷传输层和电荷注入层。可以使用已知的EL材料和无机材料。
据说阴极32的优选材料是具有小功函数的金属(通常为元素周期表中属于1族或2族的金属元素)或这种金属的合金。随着功函数变小,发光效率提高。因此,特别希望使用含为碱金属中一种含Li(锂)的合金材料作为阴极材料。阴极也作为所有像素公用的布线,并通过连接布线连接到具有输入端部分的端电极19a、19b和28b。
接下来,优选通过有机树脂、保护膜(未示出)、密封衬底、或密封罐密封至少具有阴极、有机化合物层和阳极的EL,以将EL元件完全与外部隔绝,并防止由于氧化EL层加速退化的外部物质如湿气和氧等的渗透。然而,不需要在以后将连接FPC的输入-输出端部中提供保护膜或类似物。此外,如果需要,可以放置干燥剂以除去密封间隙中的湿气。
使用各向异性导电材料将FPC6(柔性电路板)贴附到输入-输出端部的电极28b。应该注意电极28b与第一电极28a同时形成。各向异性导电材料由树脂和直径为几十到几百μm的导电颗粒组成,颗粒的表面镀有Au或类似物。导电颗粒将输入-输出端部分的电极电连接到FPC中形成的布线。
如果需要,可以提供如变色层组成的圆形偏振板的光学膜、滤色器、偏振板和相差板,可以安装IC芯片。
根据以上步骤,完成了与FPC连接的模块型发光器件(图1A)。
此外,本发明不限于图1A、1B和2中示出的TFT结构,此外如5A图所示,虽然与用于图1A、1B和2所示TFT的掩模总数相比这里增加了不止一个掩模,但是可以设计得使像素部分的开关TFT70在栅电极上没有堆积杂质区以进一步减小TFT的OFF关断电流。
下面将介绍图5A所示TFT的制造方法。为简化起见,这里仅介绍与图1B和2所示剖面结构的制造方法的不同点(栅电极的蚀刻条件和掺杂的顺序)。这里,在图5A中,与图1A、1B和2中相同的结构部件由相同的参考数字表示。
首先,根据图1B的制造方法,第一导电膜(TaN膜)和第二导电膜(W膜)形成在栅绝缘膜15上。形成抗蚀剂掩模之后,700W的RF(13.56MHz)功率施加到线圈形电极,以及1Pa的压强作为第一蚀刻条件,CF4、SF6或NF3和O2可以适当地用做蚀刻气体。每个气体流速设置为25/25/10(sccm),150W的RF(13.56MHz)功率也施加到衬底(样品台),以基本上施加负自偏置电压。此后,除去抗蚀剂掩模并采用第二蚀刻条件。使用CF4和Cl2作为蚀刻气体,气体的流速设置为30/30sccm,500W的RF(13.56MHz)功率施加到线圈形电极,压强为1Pa,产生等离子体,由此进行蚀刻约30秒。20W的RF(13.56MHz)电源也施加到衬底侧(样品台),以基本上施加负自偏置电压。在混合CF4和Cl2的第二蚀刻条件下,在相同的程度下蚀刻W膜和TaN膜。这里,第一蚀刻条件和第二蚀刻条件称做第一蚀刻处理。
随后,不除去抗蚀剂掩模进行第二蚀刻处理。这里CF4和Cl2用做蚀刻气体;气体的流速设置为30/30sccm;以及500W的RF(13.56MHz)电源施加到线圈形电极,压强为1Pa,产生等离子体,由此进行约60秒的蚀刻。20W的RF(13.56MHz)电源也施加到衬底侧(样品台),以基本上施加负自偏置电压。之后,不除去抗蚀剂掩模进行蚀刻处理在以下第四条件下CF4、Cl2和O2用做蚀刻气体;气体的流速设置为20/20/20sccm;以及500W的RF(13.56MHz)电源施加到线圈形电极,压强为1Pa产生等离子体,由此进行约20秒的蚀刻。20W的RF(13.56MHz)电源也施加到衬底(样品台),以基本上施加负自偏置电压。这里,第三蚀刻条件和第四蚀刻条件称做第二蚀刻处理。在该阶段,形成由作为下层的第一导电层66a和作为上层的第二导电层66b组成的栅电极和电极64和63。由于蚀刻条件与图1B的不同,实际上,栅电极稍有不同。
之后,除去抗蚀剂掩模,使用栅电极304到307作为掩模进行第一掺杂处理以掺杂整个表面。在离子掺杂中,剂量设置为1.5×1014atom/cm2并且加速电压设置为60到100kV。通常使用磷(P)或砷(As)作为赋予n型导电类型的杂质元素。以自对准的方式形成杂质区(n--区)60c。
随后,形成新的抗蚀剂掩模。为了降低TFTT70的OFF电流值,形成掩模以覆盖沟道形成区60a或形成像素部分的开关TFT的一部分半导体层。形成掩膜以保护沟道形成区或形成驱动电路的p沟道TFT(未示出)的半导体层部分。此外,形成掩模以覆盖用于形成像素部分或它的周边部分的电流控制TFT的半导体层的沟道形成区62a。
接着,使用抗蚀剂掩模进行选择性的第二掺杂处理形成与驱动电路的n沟道TFT(未示出)的栅电极的一部分重叠的杂质区(n-区)。通过离子掺杂法或离子注入法进行第二掺杂处理。在本例中,在用氢气稀释到5%的磷化氢(PH3)流速为30sccm、1.5×1013atom/cm2的剂量以及90kV的加速电压的条件下进行离子掺杂法。抗蚀剂掩模和第二导电膜作为n型掺杂杂质元素的掩模,形成第二杂质区。将1×1016到1×1017atom/cm3密度范围中的n型掺杂杂质元素添加到杂质区。
不除去抗蚀剂掩模进行第三掺杂处理。通过离子掺杂法或离子注入法进行第三掺杂处理。对于n型掺杂杂质元素,通常使用磷(P)或砷(As)。在本例中,在用氢气稀释到5%的磷化氢(PH3)流速为40sccm、2×1013atom/cm2的剂量以及80kV的加速电压的条件下进行离子掺杂法。此时,抗蚀剂掩模、第一导电层以及第二导电层作为用于n型掺杂杂质元素的掩模,并且形成杂质区60b。将1×1020到1×1021atom/cm3密度范围中的n型掺杂杂质元素添加到杂质区60b。
如上所述,在图1B所示的制造工艺中,虽然p沟道TFT也添加高浓度的n型杂质元素,但通过选择性地掺杂,可以增加不止一个掩模,可以不添加这些进行图5A的制造工艺。
除去抗蚀剂掩模之后,形成由抗蚀剂制成的掩模,进行第四掺杂处理。通过第四掺杂处理,形成第四杂质区62c、62d和杂质区62b,也就是形成基中添加p型掺杂杂质元素的p沟道型TFT的半导体层。
密度范围为1×1020atom/cm3到1×1021atom/cm3的p型掺杂杂质元素添加到第四杂质区62b。应该注意,在第四杂质区62b、62c中,在前一步骤中已添加了磷(P)(n--区),但以高于磷密度10倍的密度添加p型掺杂杂质元素。由此,杂质区62b,62c具有p型导电类型。
形成杂质区62c和62d与第二导电层的锥形部分重叠,并添加有密度范围为1×1018atom/cm3到1×1020atom/cm3的p型杂质元素。
通过以上介绍的步骤,具有n型导电类型的杂质区60到60c和具有p型导电类型的杂质区形成在各半导体层中。
随后的制造步骤与图1B和图2中示出的相同,因此这里省略了说明。
此外,栅电极可以为单层,或者具有TFT结构,采用该结构可以容易地实现栅电极的进一步小型化,例如图5B中所示。得到图5B中所示结构时,在形成栅电极、栅电极516到518、以及电极519之前,使用抗蚀剂制成的掩模并通过掺杂提供n型或p型导电类型的杂质元素可以适当地形成每个低浓度杂质区12c、13c、14c,之后使用抗蚀剂制成的掩模通过自对准或掺杂形成高浓度的杂质区13b、14b、12b。在图5B中,与图1B中相同结构的部件由相同的参考数字表示。
此外,如图3所示,在层间绝缘膜20上形成由无机绝缘膜制成的层间绝缘膜221之后,可以形成有机树脂制成的层间绝缘膜222。在图3所示的结构中,通过仅一个掩模形成接触孔,由此减少了掩模的总量。这里,通过等离子体CVD法将层间绝缘膜20制备为膜厚度5nm的氮氧化硅膜,之后使用RF电源通过溅射法层叠由20到50nm厚的氮化硅膜制成的层间绝缘膜221。此后,通过300到550℃温度下热处理1到12小时进行半导体层的氢化步骤。随后,通过除去栅绝缘膜15、层间绝缘膜20,221形成延伸到每个杂质区的接触孔,之后形成由光敏有机绝缘材料制成的层间绝缘膜222。通过涂覆法可以形成正型光敏丙烯酸树脂膜,并成为在它的端部具有弯曲表面的层间绝缘膜211。
此外,形成这些层间绝缘膜20,221,222和接触孔以及氢化的顺序不特别地限定。此外,例如,形成层间绝缘膜20之后进行氢化,之后形成层间绝缘膜221。这里,在图3中,与图1B相同的结构部件由相同的参考数字表示。
此外,本例可选地与实施例组合,没有任何限制。
在例1中,介绍了形成在它的端部具有弯曲表面的层间绝缘膜和绝缘材料的例子。在本例中,与例1不同的另一例子显示在图4A和4B中。在图4A和4B中,与图1B相同的结构部件由相同的参考数字表示。
在本例中,示出了形成层间绝缘膜之后,使用相同的掩模通过蚀刻形成接触孔的例子。
首先,根据例1,工艺进行到形成层间绝缘膜20,之后进行氢化。随后,如图4A所示,使用如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等的有机材料,或是如氧化硅、氮化硅、或氮氧化硅等的无机材料,通过涂覆法形成层间绝缘膜321。此外,使用溅射法形成由无机材料制成的层间绝缘膜322。这里,非光敏丙烯酸树脂用做层间绝缘膜321的材料,氮化硅膜用做层间绝缘膜322的材料。然后,形成抗蚀剂制成的掩模,在一定的时间或阶段中进行干法刻蚀形成延伸到每个杂质区的接触孔。随后,形成布线或电极323到327。此外,和例1中一样,形成第一电极28a使它的一部分堆叠并与电极324接触。然后,形成绝缘材料330以使它覆盖第一电极28a的端部。这里,非光敏丙烯酸树脂用做绝缘材料330。在随后的步骤中,根据例1形成EL层31、第二电极32等,得到具有图4A所示截面结构的发光器件。
此外,本例可以与例1组合。在本例中,非光敏有机树脂用做层间绝缘膜321和绝缘材料330的每一个。然而,可以考虑两种或多种组合。例如,可以使用非光敏有机树脂材料形成层间绝缘膜321,而绝缘材料330可以形成为使用光敏有机树脂材料的结构。
此外,如图4B所示,由无机材料制成的层间绝缘膜421形成在层间绝缘膜20上以形成延伸到每个杂质区的接触孔。之后,使用如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等的有机材料,或是如氧化硅、氮化硅、或氮氧化硅等的无机材料,通过涂覆法形成层间绝缘膜422。然后,进行蚀刻形成接触孔。此外,层叠层间绝缘膜之后,仅在由树脂制成的层间绝缘膜422上进行蚀刻,之后使用抗蚀剂制成的掩模,通过蚀刻由无机材料制成的层间绝缘膜421,20和栅极绝缘膜15形成接触孔。
接下来,可以形成延伸到每个杂质区的布线或每个电极423到427。在随后的步骤中,根据例1形成EL层31、第二电极32等,得到具有图4B所示截面结构的发光器件。
在本例中,如图6A所示,形成第一电极、接触孔以及连接电极的顺序与例1的不同。提供图6A所示的结构用于说明可以容易地进行平坦第一电极的CMP过程的工艺。然而,在构图用于形成与第一电极接触的连接电极时,优选进行蚀刻或清洗,以防止蚀刻的残留物留在第一电极上。为简化起见,仅介绍了与例1的不同之处。这里,在图6A中,与图1B相同的结构部件由相同的参考数字表示。
首先,根据例1,在每个层间绝缘膜20,21,22中形成接触孔,之后形成第一电极628a。然后,形成连接电极624和布线23到27以堆积它们与第一电极628a接触。随后,形成覆盖第一电极628a端部的绝缘材料30。根据例1进行随后的步骤,得到图6A中显示的状态。这里,在端部中,与第一电极628a同时形成的电极628b形成在与栅电极同时形成的电极19a,19b上。此外,FPC6叠置其上。
此外,为了平坦第一电极628a的表面,形成第一电极682a或形成绝缘材料30之后进行如CMP的任何平坦化处理。形成绝缘材料30之后进行CMP处理时,优选形成层间绝缘膜22以增加绝缘材料30和层间绝缘膜21之间的粘结性。
此外,图6B示出了层间绝缘膜的结构与图6A不同的另一例子。如图6B所示,在层间绝缘膜20上形成由无机绝缘膜制成的层间绝缘膜621之后,形成由有机树脂制成的层间绝缘膜622。这里,通过等离子体CVD法将层间绝缘膜20制备为膜厚度50nm的氮氧化硅膜,之后使用RF电源通过溅射法层叠20到50nm厚的氮化硅膜制成的层间绝缘膜621。此后,通过300到550℃温度下热处理1到12小时进行半导体层的氢化步骤。随后,通过除去栅绝缘膜15、层间绝缘膜20,621形成延伸到每个杂质区的接触孔,之后形成由光敏有机绝缘材料制成的层间绝缘膜622。通过涂覆法可以形成正型光敏丙烯酸树脂膜,成为在它的端部具有弯曲表面的层间绝缘膜621。
此外,形成这些层间绝缘膜20,621,622和接触孔以及氢化的顺序不特别地限定。此外,例如,形成层间绝缘膜20之后进行氢化,之后形成层间绝缘膜621。这里,在图6B中,与图1B相同的结构部件由相同的参考数字表示。
此外,形成层间绝缘膜之后,使用相同的掩模通过蚀刻形成接触孔。
首先,根据例1,工艺进行到形成层间绝缘膜20,之后进行氢化。随后,如图7A所示,使用如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等的有机材料,或是如氧化硅、氮化硅、或氮氧化硅等的无机材料,通过涂覆法形成层间绝缘膜721。此外,使用溅射法形成由无机材料制成的层间绝缘膜722。这里,非光敏丙烯酸树脂用做层间绝缘膜721的材料,氮化硅膜用做层间绝缘膜722的材料。然后,形成抗蚀剂制成的掩模,在一定的时间或阶段中进行干法刻蚀形成延伸到每个杂质区的接触孔。随后,形成布线或电极723到727。形成第一电极728a使它的一部分与电极724重叠并接触。然后,形成绝缘材料730以使它覆盖第一电极728a的端部。这里,非光敏丙烯酸树脂用做绝缘材料730。在随后的步骤中,根据例1形成EL层31、第二电极32等,得到具有图7A所示截面结构的发光器件。
此外,本例可以与例1组合。在本例中,非光敏有机树脂材料用做层间绝缘膜721和绝缘材料730的每一个。然而,可以考虑两种或多种组合。例如,可以使用非光敏有机树脂材料形成层间绝缘膜721,而绝缘材料730可以形成为使用光敏有机树脂材料的结构。
此外,如图7B所示,由无机材料制成的层间绝缘膜821形成在层间绝缘膜20上以形成延伸到每个杂质区的接触孔。之后,使用如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等的有机材料,或是如氧化硅、氮化硅、或氮氧化硅等的无机材料,通过涂覆法形成层间绝缘膜822。然后,进行蚀刻形成接触孔。此外,层叠层间绝缘膜之后,仅在由树脂制成的层间绝缘膜822上进行蚀刻,之后使用抗蚀剂制成的掩模,通过蚀刻由无机材料制成的层间绝缘膜821,20和栅绝缘膜15形成接触孔。
接下来,可以形成延伸到每个杂质区的布线或每个电极723到727。在随后的步骤中,根据例1形成EL层31、第二电极32等,得到具有图7B所示截面结构的发光器件。
此外,如图8A所示,形成第一电极928、连接电极624以及绝缘材料30之后,可以形成具有大功函数的透明导电膜929a。优选与电流控制TFT连接的第一电极928由具有优良反射性质的金属膜(主要包括Ag或Al的金属材料)形成。第一电极928反射由含有机化合物层(未示出)发出的光。顺便提起,为简化,在图8A中未示出EL层和第二电极。
此外,形成绝缘材料30之后要形成的电极提供为层状结构。在图8B中,示出了具有反射性质的金属膜929c(主要包括Ag或Al的金属材料)和导电膜929a层叠的一个例子。图8B所示的结构具有沿绝缘材料30的侧面的金属膜,由此平行于衬底表面方向中发出的光可以在金属膜929c的倾斜面上反射。此外,可以使用图5A或图5B中示出的TFT结构代替图6A、图6B、图7A、图7B、图8A和图8B中的每一个显示的TFT结构。
图9A和9B示出了结构与以上介绍的例子不同的的另一例子。
在含有机化合物的层上产生的所有光没有从为透明电极的阴极发出而到达TFT,但光例如横向地(平行于衬底表面的方向)发出,由此,没有获得横向发出的光,因此构成损失。因此,本例示出了构成以增加发光元件中某个方向中获得的光量的发光器件及其制造方法。
该例包括形成由金属层的叠层制成的第一电极,形成覆盖第一电极一个端部的绝缘体(称做堤岸、隔断),此后用绝缘体做掩模自对准地蚀刻绝缘体的一部分,蚀刻第一电极的中心部分以减薄区域并在端部形成台阶部分。这种蚀刻将第一电极的中心部分减薄为平坦表面,并且由绝缘体覆盖的第一电极的端部形状上制得较厚,也就是凹形(凹陷)。含有机化合物的层和第二电极形成在第一电极上以完成发光元件。
根据本例的结构,形成在第一电极台阶部分上的倾斜表面反射或收集横向发射以增加在某个方向中获得的光量(经过第二电极的方向)。
因此,限定了倾斜表面的部分优选由反光金属制成,例如具有铝、银或类似物做主要成分的材料,与含有机化合物层接触的中心部分优选由具有大功函数的阳极材料制成,或者是具有小功函数的阴极材料制成。
图12A和12B示出了有源矩阵型发光器件(一部分像素)。图12B示出了沿图12A的虚线A-A’截取的剖面图。
首先,基底绝缘膜1231形成在具有绝缘表面的绝缘衬底1230上。基底绝缘膜1231为叠层,第一层为使用反应气体SiH4、NH3和N2O通过等离子体CVD形成厚度10到200nm(优选50到100nm)的氮氧化硅膜。这里,形成厚度为50nm的氮氧化硅膜(组分比Si=32%,O=27%,N=24%,H=17%)。基底绝缘膜1231的第二层为使用反应气体SiH4和N2O通过等离子体CVD形成厚度50到200nm(优选100到150nm)的氮氧化硅膜。这里,形成厚度为100nm的氮氧化硅膜(组分比Si=32%,O=59%,N=7%,H=2%)。虽然本例中基底绝缘膜1231具有两层结构,但可以取而代之使用以上绝缘膜的单层或多于两层的叠层。
接下来,半导体层形成在基底膜上。通过已知的方法(溅射、LPCVD、等离子体CVD等)形成具有非晶结构的半导体膜,对膜进行公知的结晶化处理(激光结晶化、热结晶化、使用镍或其它催化剂的热结晶化等),然后将得到的晶体半导体膜构图成需要的形状,得到用做TFT有源层的半导体层。半导体层的厚度设置为25到80nm(优选30到60nm)。晶体半导体膜的材料不限定,但优选硅、硅锗合金等。
当使用激光晶化形成晶体半导体膜时,使用脉冲振荡型或连续波受激准分子层、YAG层、或YVO4激光器。在照射半导体膜之前,来自这些激光振荡器中的一种的发出的激光通过光学系统集中成线形。选择晶化条件以适合各种情况。然而,当使用受激准分子层时,脉冲振荡频率设置为30Hz并且激光能量密度设置为100到400mJ/cm2(通常200到300mJ/cm2)。当使用YAG激光器时,使用它的二次谐波,脉冲振荡频率设置为1到10KHz并且激光能量密度设置为300到600mJ/cm2(通常350到500mJ/cm2)。激光集中为宽度100到1000μm,例如400μm的线形,用该线形激光照射衬底的整个表面,将激光的覆盖率设置为80到98%。
接下来,用含氢氟酸的蚀刻剂清洗半导体层的表面形成覆盖半导体层的栅绝缘膜1233。栅绝缘膜1233为含硅的绝缘膜,通过等离子体CVD或溅射形成具有40到150nm的厚度。在本例中,通过等离子体CVD形成厚度为115nm的氮氧化硅膜(组分比Si=32%,O=59%,N=7%,H=2%)。栅绝缘膜不限定为氮氧化硅膜,当然可以是其它含硅的绝缘膜的单层或叠层。
清洗栅绝缘膜1233的表面,然后形成栅电极。
随后,用赋予半导体p型导电率的杂质元素,这里为硼(B)适当地掺杂半导体层,形成源区1232和漏区1232。掺杂之后,对半导体层进行热处理,强光照射或激光照射以便激活杂质元素。在激活杂质元素的同时,修复了对栅绝缘膜的等离子体损伤和对栅绝缘膜与半导体层之间界面的等离子体损伤。通过在室温到300℃用YAG激光器的二次谐波从正面或背面照射衬底能特别有效地激活杂质元素。YAG激光器是优选的激活手段,是由于它需要较少的维护。
随后的步骤包括由有机或无机材料(涂覆的氧化硅膜、PSG(掺磷玻璃)、BPSG(掺硼和磷的玻璃)等)形成层间绝缘膜1235,氢化半导体层、以及形成达到源区或漏区的接触孔。然后,形成源电极(线)和第一电极(漏电极)1236以完成TFT(p沟道TFT)。
虽然在本例的说明中使用了p沟道TFT,但如果使用n型杂质元素(例如P或As)代替p型杂质元素,那么可以形成n沟道TFT。
通过以上步骤形成TFT(在图中仅示出了漏区1232)、栅绝缘膜1233、层间绝缘膜1235、以及第一电极的层1236a到1236d(图13A)。
本例中的第一电极的层1236a到1236d的每个为主要含选自Ti、TiN、TiSixNy、Al、Ag、Ni、W、WSix、WNx、WSixNy、Ta、TaNx、TaSixNy、NbN、MoN、Cr、Pt、Zn、Sn、In以及Mo,或者主要含以上元素的合金或化合物材料的膜,或者这些膜的叠层。层1236a到1236d的总厚度设置在100nm和800nm之间。
特别是,接触漏区1232的第一电极的层1236a优选由可以与硅形成欧姆接触的材料形成,通常是钛,形成10到100nm的厚度。对于第一电极的层1236b,当形成薄膜时,优选具有大功函数的材料(TiN、TaN、MoN、Pt、Cr、W、Ni、Zn、Sn)层的厚度设置为10到100nm。对于第一电极的层1236c,优选反射光的金属材料,通常为含Al或Ag的金属材料,层的厚度设置为100到600nm。第一电极的层1236b也作为阻挡层用于防止第一电极的层1236c和1236a形成合金。对于第一电极的层1236d,优选能够防止第一电极的层1236c氧化侵蚀并避免突起或类似物的材料(通常为金属氮化物,例如TiN或WN),层的厚度设置为20到100nm。
形成第一电极的层1236a到1236d的同时形成其它连线,例如源线1234和电源线。因此,工艺需要较少的光掩模(总共7个掩模用于半导体层的构图掩模(掩模1)、用于栅极线的构图掩模(掩模2)、用于选择性掺杂n型杂质元素的的掺杂掩模(掩模3)、用于选择性掺杂p型杂质元素的的掺杂掩模(掩模4)、用于形成达到半导体层的接触孔的掩模(掩模5)、用于第一电极、源极线和电源线的构图掩模(掩模6)、以及用于形成绝缘材料的掩模(掩模7)。在现有技术中,第一电极形成在与形成源线和电源线不同的层上,因此需要用于形成第一电极的单独的掩模,由此总共需要8个掩模。当同时形成第一电极的层1236a到1236d和连线时,需要将总的连线电阻设置得较低。
接下来,形成绝缘材料(称做堤岸、隔断、阻挡或类似物)以覆盖第一电极的边缘(与漏区1232接触的部分)(图13B)。绝缘材料为无机材料的膜或叠层(例如氧化硅、氮化硅、和氮氧化硅)和光敏或非光敏有机材料(例如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂以及苯并环丁烯)。在本例中使用光敏有机树脂。例如如果正型光敏丙烯酸用做绝缘材料的材料,那么优选仅弯曲绝缘材料的上边缘部分以得到曲率半径。光照下在蚀刻剂中变得不可溶的负型光敏材料和光照下在蚀刻剂中变得可溶的正型光敏材料都可以用做绝缘材料。
如图13C所示蚀刻绝缘材料,同时部分除去第一电极的层1236c和1236d。重要的是蚀刻膜由此在第一电极的层1236c的露出面中形成斜坡,并且第一电极的层1236b得到平坦的露出面。该蚀刻使用了干法刻蚀或湿法蚀刻,并在一个步骤中完成或分成几个步骤。选择蚀刻条件使第一电极的层1236b和第一电极的层1236c之间的选择率高。例如,蚀刻条件包括使用ICP蚀刻装置,使用60(sccm)20(sccm)比例的BCl3和Cl2的反应气体,在1.9Pa的压强下,将450W的RF(13.56MHz)功率施加到线圈形电极。同时,衬底侧(样品台)也给予100W的RF(13.56MHz)功率,可以得到图13C所示的形状。应该注意,衬底侧上的电极面积的尺寸为12.5cm×12.5cm,并且线圈形电极(这里使用包括线圈的石英盘)具有25cm的直径。实际得到的第一电极的TEM观测的照片显示在图19中。优选,绝缘材料的上边缘部分的最终曲率半径为0.2到3μm。朝第一电极中心倾斜的斜面的最终角度(倾斜角或圆锥角)大于30°并小于70°,由此斜坡反射以后形成的含有机化合物层发出的光。优选使用UV光照射第一电极1236b的露出表面以增加第一电极1236b的功函数。通过用UV光照射TiN薄膜,功函数可以增加到5eV左右。
接下来,通过图12B所示的蒸发或涂覆形成含有机化合物的层1238。应该注意优选在含有机化合物的层1238形成之前通过在真空中加热进行排气。当选择蒸镀时,例如将膜形成室抽真空直到真空度达到5×10-3Torr(0.665Pa)或更小,优选10-4到10-6Pa用于蒸发。在蒸发之前,通过电阻加热汽化有机化合物。随着挡板打开用于蒸发,汽化的有机化合物流向衬底。汽化的有机化合物向上流动然后通过金属掩模中形成的开口淀积在衬底上。通过蒸发形成含有机化合物的层,以便发光元件总体发白光。
例如,依次层叠Alq3膜、部分掺杂有发红光色素(pigment)的尼罗(Nile)红的Alq3膜、Alq3膜、p-EtTAZ膜以及TPD(芳香族二胺)膜以得到白光。
另一方面,当通过使用旋涂涂覆形成含有机化合物层时,优选通过真空加热烘焙涂覆后的层。例如,聚(亚乙基二氧基噻吩)/聚(苯乙烯磺酸)-(PEDOT/PSS)的水溶液涂覆到整个表面,并烘焙形成作为空穴注入层的膜。然后,将掺杂有发光中心色素(例如,1,1,4,4-四苯基-1,3-丁二烯(TPB),4-二氰亚甲基-2-甲基-6-(p-二甲基氨-苯乙烯基)-4H-吡喃(DCM1)、尼罗红或香豆素6)的聚乙烯咔唑溶液涂覆到整个表面并烘焙形成用做发光层的膜。
虽然在以上的例子中层叠了有机化合物层,但可以使用单层膜作为有机化合物层。例如,能够传输电子的1,3,4-噁二唑衍生物(PBD)分散在能够传输空穴的聚乙烯咔唑(PVK)中。得到白光发射的另一方法是分散30wt%的PBD作为电子传输剂并分散适量的四种色素(TPB、香豆素6、DCM1和尼罗红)。此外,有机化合物层可以是聚合物材料和单体材料的叠层。
下一步是形成含小功函数金属的薄膜(如MgAg、MgIn、AlLi、CaF2或CaN的合金膜,或是通过共同蒸发属于元素周期表中1或2族的元素和铝形成的膜),并再其上通过蒸发形成薄导电膜(这里为铝膜)1239。铝膜能够有利地阻止湿气和氧,因此为提高发光器件可靠性的导电膜1239的优选材料。该叠层很薄,足以让发射的光穿过,并且在本例中作为阴极。薄导电膜可以用透明导电膜代替(例如ITO(氧化铟氧化锡合金)膜、In2O3-ZnO(氧化铟-氧化锌合金)膜、或者ZnO(氧化锌)膜)。在导电膜1239上,形成辅助电极以便降低阴极的电阻。使用蒸发掩模通过蒸发电阻加热选择性地形成阴极。
如此得到的发光元件在图12B中箭头所指的方向中发出白光。通过第一电极的层1236c中的斜面反射横向中发出的光,由此增加了箭头方向中的光量。
通过形成第二电极(导电膜1239)如此完成制造工艺之后,使用密封剂粘结密封衬底(透明衬底)密封形成在衬底1230上形成的发光元件。可以提供由树脂膜形成的间隔块以便保持密封衬底和发光元件之间的间隙。由密封剂环绕的空间用氮气或其它惰性气体填充。对于密封剂,优选环氧基树脂。希望密封剂材料尽可能少地透过湿气和氧。具有吸收氧和湿气的物质(例如干燥剂)可以放置在密封剂环绕的空间中。
通过在以上的空间中封闭发光元件,发光元件可以完全地与外部隔开,由此可以防止如水或氧等加速有机化合物层退化的外部物质渗透。因此,可以得到具有高可靠性的发光器件。
这里发光器件的剖面图的一个例子显示在图9A中。可以根据以上介绍的步骤和例1得到图9A所示的结构。为简化起见,这里,与图1B中相同的结构部件用相同的参考数字表示。对应于图12B中1236a和1236b的电极参考图9A中的数字1024a,对应于1236c的电极参考图9A中的数字1024b。根据例1可以得到直到在层间绝缘膜20,21和22上形成接触孔的步骤,根据以上介绍的步骤以自对准方式形成线1023到1027、形成绝缘材料、进行各向异性蚀刻形成电极1024b的倾斜面和绝缘材料1030的倾斜面的顺序得到随后的步骤。此外,对应于图12B中导电膜1239的电极参考图9A中的数字1032。
如图9B所示,在层间绝缘膜20上形成无机绝缘膜制成的层间绝缘膜221之后,可以形成有机树脂制成的层间绝缘膜222。这里,通过等离子体CVD法将层间绝缘膜20制备为膜厚度50nm的氮氧化硅膜,之后使用RF电源通过溅射法层叠20到50nm厚的氮化硅膜制成的层间绝缘膜221。此后,通过300到550℃温度下热处理1到12小时进行半导体层的氢化步骤。随后,通过除去栅绝缘膜15、层间绝缘膜20,221形成延伸到每个杂质区的接触孔,之后形成由光敏有机绝缘材料制成的层间绝缘膜222。通过涂覆法可以形成正型光敏丙烯酸树脂膜,成为在它的上端部具有弯曲表面的层间绝缘膜222。
此外,形成这些层间绝缘膜20,221,222和接触孔以及氢化的顺序不特别地限定。此外,例如,可以形成层间绝缘膜20之后进行氢化,之后形成层间绝缘膜221。这里,在图9B中,与图1B3,9A相同的结构部件由相同的参考数字表示。
此外,本例可选地与本发明的实施例或实例1至3中的其一组合,没有任何限制。
在例4中,介绍了形成在它的上端部具有弯曲表面的层间绝缘膜和绝缘材料的例子。在本例中,与例4不同的另一例子显示在图10中。在图10A和10B中,与图4B相同的结构部件由相同的参考数字表示。
在本例中,示出了形成层间绝缘膜之后,使用相同的掩模通过蚀刻形成接触孔的例子。
首先,根据例1,工艺进行到形成层间绝缘膜20,之后进行氢化。随后,如图10A所示,使用如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等的有机材料,或是如氧化硅、氮化硅、或氮氧化硅等的无机材料,通过涂覆法形成层间绝缘膜321。此外,使用溅射法形成由无机材料制成的层间绝缘膜322。这里,非光敏丙烯酸树脂用做层间绝缘膜321的材料,氮化硅膜用做层间绝缘膜322的材料。然后,形成抗蚀剂制成的掩模,在一定的时间或阶段中进行干法刻蚀形成延伸到每个杂质区的接触孔。随后,形成布线或延伸到每个杂质区域的电极1123到1127。此外,和例4中一样,形成绝缘材料1130以使它覆盖第一电极的端部。随后绝缘材料1130作为掩模以除去部分电极而露出第一电极1124a,由此朝向中心形成具有倾斜面的电极1124b。这里,非光敏丙烯酸树脂用做绝缘材料1130。在随后的步骤中,根据例4形成EL层1131、第二电极1132等,得到具有图10A所示截面结构的发光器件。
此外,本例可以与例4组合。在本例中,非光敏有机树脂材料用做层间绝缘膜321和绝缘材料1130的每一个。然而,可以考虑两种或多种组合。例如,可以使用非光敏有机树脂材料形成层间绝缘膜321,而绝缘材料1130可以形成为使用光敏有机树脂材料的结构。
此外,如图10B所示,由无机材料制成的层间绝缘膜421形成在层间绝缘膜20上以形成延伸到每个杂质区的接触孔。之后,使用如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯等的有机材料,或是如氧化硅、氮化硅、或氮氧化硅等的无机材料,通过涂覆法形成层间绝缘膜422。然后,进行蚀刻形成接触孔。此外,层叠层间绝缘膜之后,仅在由树脂制成的层间绝缘膜422上进行蚀刻,之后使用抗蚀剂制成的掩模,通过蚀刻由无机材料制成的层间绝缘膜421,20和栅绝缘膜15形成接触孔。
接下来,可以形成延伸到每个杂质区的布线或每个电极1123到1127。在随后的步骤中,根据例4形成EL层1131、第二电极1132等,得到具有图10B所示截面结构的发光装置。
此外,本发明不限于图9A到10B所示的TFT结构。如图11A所示,或者可以设计成像素部分的开关TFT70没有堆叠在栅电极上的杂质区。
此外,在制备图11A所示的TFT的工序中,可以参考例1的图5A中所示的工艺进行,由此这里省略了详细说明。此外,在图11A中,与图1A、1B、2、5A和9A相同的结构部件由相同的参考数字表示。
此外,栅电极可以形成为单层或具有图11B所示的TFT结构。得到图11B所示的结构时,通过形成栅电极516到518之前使用抗蚀剂制成的掩模,用提供n型导电性或p型导电性的杂质元素适当地掺杂形成每个低浓度的杂质区12c、13c、14c,形成电极519,之后通过自对准或使用抗蚀剂制成的掩模形成高浓度杂质区13b、14b、12b。在图11B中,与图1B、5B和9A相同的结构部件由相同的参考数字表示。
此外,本例可以可选地与本发明的实施例或例1-4中之一任意组合,而没有限制。
在本例中,图14中示出了另一个例子,与描述上侧辐射型的例5不同。
在图14中,有源矩阵型发光器件作为下侧辐射型并设计成增加从某个方向中发出光的强度。下面介绍发光器件及其制造方法。
在本例中,由透明导电膜或是具有半透明性的薄金属膜形成第一电极膜1336a。然后,形成用于在第一电极1136a和TFT之间连接的连线1336b,1336c或排列在第一电极周围的连线1334。在第一电极外围形成布线1334时,适当地调节干法刻蚀或湿法蚀刻条件,布线1334的剖面形状形成为图14所示的倒锥形。相对于衬底的表面,布线1334和1336b的每个边的倾斜面的角度(倾斜角和圆锥角)超过120°并小于160°。倾斜面将反射以后将形成的含有机化合物层1338发出的光。
在本例的结构中,形成在第一电极外围上的每个布线1334,1336b的倾斜面反射或收集横向中发出的光,以增加在一个方向中(穿过第一电极的方向)发出的光强度。
通过涂覆法使用有机材料或无机材料制备覆盖倒锥形布线1334和第一电极1336a端部的绝缘材料1337(称做堤岸或屏蔽),含有机化合物层1338形成在第一电极1336a上,形成了第二电极1339,完成了发光元件的制备。
随后,优选使用主要由反射光的金属组成的材料,例如铝或银制成具有倾斜面的每个电极1336b,1336c或布线1334。此外,电极1336c形成为接触电极的上层,而电极1336b形成为接触电极的下层。由此,电极1336c优选由保护电极1336b不氧化、侵蚀或产生突起或类以物的材料制成,通常的例子为膜厚度20到100nm的金属氮化物(例如,TiN或WN)。此外,具有倾斜面的电极或布线提供有三层结构,如能够与漏区1332接触并与硅(通常为钛)形成欧姆接触且膜厚度为10到100nm的材料。
在图14中,参考数字1330表示具有绝缘表面的衬底,1331表示绝缘基底膜,1332表示源区或漏区,1333表示栅绝缘膜,1335表示由有机或无机材料(含涂覆的氧化硅膜、磷玻璃(PSG)、硼磷玻璃(BPSG)等等)形成的层间绝缘膜,1338表示包括含有机化合物的层,1339表示包含薄层的第二电极,薄层中含有具有小功函数的金属(如MgAg、MgIn、AlLi、CaF2或CaN的合金,或是通过共同淀积属于元素周期表中1或2族的元素和铝形成的膜),以及形成其上的导电膜(本例中为铝膜)。
此外,第一电极1336a可以是透明导电膜(例如氧化铟氧化锡合金(ITO)、氧化铟-氧化锌合金(In2O3-ZnO)、或者氧化锌(ZnO))。此外,第一电极1336a可以是具有大功函数的金属材料薄膜(TiN、Pt、Cr、W、Ni、Zn或Sn),例如膜厚度为10到100nm具有透明性的金属薄膜。
此外,本例可任选与本发明的实施例或例1-5中之一任意组合,而没有限制。
在本例中,参考图15A和15B,将介绍形成额外的层间绝缘膜以使第一电极和连接电极相互不同。为简化说明,仅介绍与得到图1B所示剖面结构的工序的不同之处。在图15A和15B中,与图1A和1B相同的结构部件由图1A和1B中相同的参考数字表示。
优先,根据例1,在层间绝缘膜20,21和22的每一个中形成接触孔。然后,使用Al、Ti、Mo、W或类似物形成电极23,1424和25到27(即,源布线、电源线、引线电极、电容布线以及连接电极)。
随后,形成层间绝缘膜1431。对于该层间绝缘膜1431,可使用光敏或非光敏有机材料(例如聚酰亚胺、丙烯酸酯、聚酰胺、聚酰亚胺酰胺、抗蚀剂或苯并环丁烯)或用溅射法、CVD法或涂覆法涂覆的无机材料(例如氧化硅、氮化硅、或氮氧化硅);或它们的叠层。
在本实施例中,首先通过涂覆法形成正型光敏丙烯酸树脂膜。然后,在以上丙烯酸树脂膜的上端部形成具有弯曲表面的层间绝缘膜1431。此外,虽然在图中未示出,但使用RF电源通过溅射法可以形成膜厚度20到50nm的无机绝缘膜(例如氮化硅膜)以覆盖层间绝缘膜1431。
随后,形成第一电极1428a。在本例中,为使第一电极1428a作为EL元件的阳极,第一电极1428a为具有大功函数的透明导电膜(例如氧化铟锡合金(ITO)、氧化铟锌合金(In2O3-ZnO)、或者氧化锌(ZnO))。或者,第一电极1428a可以是具有大功函数的金属材料。
当将发光器件设计为其中从EL层31发出的光穿过第二电极1432的上侧辐射型时,可以适当地选择和调节材料以及膜厚度制备第二电极1432以提供具有透明性的第二电极1432。此外,当将发光器件设计为其中从EL层31发出的光穿过第一电极1428a的下侧辐射型时,可以适当地选择和调节材料以及膜厚度制备第一电极1428a以提供具有透明性的第一电极1428a。此外,当为下侧辐射型时,优选使用透明材料作为层间绝缘膜1431和21。
此外,为了平坦第一电极1428a的表面,可以在形成第一电极1428a之前或之后,或者在形成第一电极1428a随后形成绝缘材料1430之后进行如CMP的平坦化处理。当进行CMP处理时,优选在层间绝缘膜1431上形成无机绝缘膜(未示出)以提高粘附性。
随后,称做堤岸的绝缘材料1430形成在两端以覆盖第一电极1428a的端部。堤岸1430可以由有机树脂膜或含硅绝缘膜形成。这里,对于绝缘材料1430,可以使用正型光敏丙烯酸树脂膜形成图15A所示形状的背面。
此外,EL层31和第二电极(EL元件的阴极)1432形成在具有堤岸1430涂覆在两端的第一电极1428a上。含小功函数的金属的薄膜(如MgAg、MgIn、AlLi、CaF2或CaN的合金,或是通过共同淀积属于元素周期表中1或2族的元素和铝形成的膜)和导电膜(本例中为为铝膜)淀积在薄膜上形成叠层膜。叠层膜具有足够的膜厚度,足以允许发出的光穿过层叠的膜。在本实施例中,层叠膜作为阴极。此外,代替薄导电膜,可以使用透明导电膜(例如ITO(氧化铟锡合金)膜、In2O3-ZnO(氧化铟锌合金)膜、或者ZnO(氧化锌)膜)。
通过适当地选择如此第一电极1428a和第二电极1432的材料,得到的发光元件可以成为上侧辐射型或下侧辐射型。在随后的步骤中,根据例1形成EL层31、其它结构部件,得到具有图15A所示剖面结构的发光器件。
这里在端部中,与第一电极1428a同时形成的电极1428b形成在与栅电极同时形成的电极19a,19b上。此外,FPC6附着于其上。
此外,如图15B所示,在层间绝缘膜20上形成由无机绝缘膜制成的层间绝缘膜621之后,可以形成有机树脂制成的层间绝缘膜622。这里,通过等离子体CVD法将层间绝缘膜20制备为膜厚度50nm的氮氧化硅膜,之后使用RF电源通过溅射法层叠20到50nm厚的氮化硅膜制成的层间绝缘膜621。此后,通过300到550℃温度下热处理1到12小时进行半导体层的氢化步骤。随后,通过除去栅绝缘膜15、层间绝缘膜20,621形成延伸到每个杂质区的接触孔,之后形成由光敏有机绝缘材料制成的层间绝缘膜622。通过涂覆法可以形成正型光敏丙烯酸树脂膜,成为在它的上端部具有弯曲表面的层间绝缘膜622。
此外,形成这些层间绝缘膜20,621,622和接触孔以及氢化的顺序不特别地限定。此外,例如,形成层间绝缘膜20之后进行氢化,之后形成层间绝缘膜621。这里,在图15B中,与图1B和图15A相同的结构部件由相同的参考数字表示。
在本例中,此外,光敏有机树脂用做每个层间绝缘膜21,1431和绝缘材料1430。此外,它们每个的上端部具有弯曲的表面。然而根据本发明,不特别地限定这种结构。可以使用无机绝缘膜形成这些层中的一层。此外,这些层中的一层可以由非光敏有机树脂形成,以使它的上端部变成锥形。形成EL层31之前清洗时,绝缘材料1430的锥形端部可以防止异物(灰尘或类似物)留在端部。
此外,本例可选地与本发明的实施例或例1到6之一组合,没有任何限制。
在本例中,在图16中示出了另一个例子,它的一部分与例4不同。在例16中,为简化,与图1B相同的结构部件用相同的参考数字表示。
在本例中,介绍了在层间绝缘膜20和栅绝缘膜15的每一个中形成接触孔、之后形成布线1525,1526,1527用于连接源区或漏区12b之一,或是驱动电路中TFT的源电极或漏电极的例子。形成这些电极之后,形成层间绝缘膜1521,形成延伸到源区或漏区12b的接触孔。然后,根据例1,形成与源区或漏区12b接触的第一电极1524a和1524b。随后,形成覆盖第一电极1524a和1524b端部的绝缘材料1530(称做堤岸或隔断),之后使用绝缘材料1530作为掩模以自对准方式蚀刻部分绝缘材料1530,同时薄薄地蚀刻第一电极1524b的中心在它的端部上形成台阶。
在本例中,第一电极1524b和布线1525到1527形成在不同层上,由此可以扩大第一电极1524b的平坦区域以增加集成度。
在本例中,优选将发光元件设计为上侧辐射型。图18A为像素的一个例子的俯视图,图18B为图18A的等效电路。图18A和18B所示的像素结构的详细说明可以参见U.S.专利申请No.10/245,711。每个像素包括电源电路、开关部分、以及发光元件。发光元件、电流源电路、以及开关部分在电源基线(base line)和电源线之间串联连接。使用数字图片信号,可以接通和切断开关部分。此外,在从像素外部进入的控制信号的基础上限定穿过电流源电路的恒定电流强度。当开关部分处于ON状态时,由电流源电路定义的恒定电流流入发光元件允许从中发光。当开关部分处于OFF状态时,没有电流流入发光元件,由此不会发生发光元件的发光。因此,可以使用图片信号通过控制开关部分的ON和OFF状态表示级别。因此,具有以下优点的显示装置可以通过图18A和18B所示的像素结构获得。也就是,显示装置使发光元件以恒定的亮度发光,而不取决于由于退化等电流特性的变化。此外,信号可以以高写入速度写入每个像素以表示正确的级别。此外,可以低成本地制造显示装置,并且可以减小尺寸。
在图18中,参考数字1851表示信号线,1852表示选择的栅极线,1853表示电流线,1854表示电源线,1855擦除栅极线,1856表示电流栅极线,1857表示选择晶体管,1858表示驱动晶体管,1859表示视频电容器,1860表示擦除晶体管,1861表示电流源晶体管,1862表示输入晶体管,1863表示保持晶体管,1864表示电流源电容器,1865表示发光元件。
在图18A和18B中,但不限于此,驱动晶体管1858为p沟道晶体管,选择的晶体管1857和擦除晶体管1855为n沟道晶体管。此外,每个选择晶体管1857、驱动晶体管1858以及擦除晶体管1855可以是n沟道晶体管或是p沟道晶体管。
选择晶体管1857的栅电极连接到选择栅极线1852。选择晶体管1857的源极端和漏极端之一连接到信号线1851,它的另一端连接到驱动晶体管1858的栅电极。驱动晶体管1858的源极端和漏极端之一连接到发光元件1865的一端,另一端连接到擦除晶体管1860。此外,视频电容器1859的一个电极连接到驱动晶体管1858的栅电极,它的另一端连接到电源线1854。擦除晶体管1860的源极端和漏极端之一连接到电流源晶体管1861的栅电极和输入晶体管1862,它的另一端连接到驱动晶体管1858。擦除晶体管1860的栅电极连接到擦除栅极线1855。
此外,擦除晶体管1860的源极端和漏极端不限于以上连接结构。此外,可以有各种连接结构,例如,通过接通擦除晶体管释放保持在保持电容中的电荷的连接结构。
此外,本发明不限于图16所示的的TFT结构。此外如图17A所示,可以设计成像素部分的开关TFT70在栅电极上没有堆叠杂质区。
此外,通过参考图5A所示的工艺进行制备图17A所示的TFT,因此这里省略了详细说明。此外,在图17A中,与图2、图5A和图16相同的结构部件由相同的参考数字表示。
此外,栅电极可以为单层,或者具有图17B所示的TFT结构。要得到图17B所示的结构,在形成栅电极、栅电极516到518、以及电极519之前,使用抗蚀剂制成的掩模通过掺杂提供n型或p型导电类型的杂质元素可以适当地形成每个低浓度杂质区12c、13c、14c,之后使用抗蚀剂制成的掩模通过自对准或掺杂形成高浓度的杂质区13b、14b、12b。在图17B中,与图1B、图5B和图16中相同结构的部件由相同的参考数字表示。
此外,本例可选地与本发明的实施例或例1到5之一组合,没有任何限制。
下面参考图20介绍组合发白光元件和滤色器(下文称做滤色器法)的方法。
滤色器法为一种形成具有显示白色荧光的有机化合物膜的发光元件并使得到的白色荧光穿过滤色器由此获得红、绿、蓝的系统。
为得到白荧光,本领域中有多种方法。这里,我们介绍使用可以由通过涂覆形成的高聚合材料制成的发光层的情况。此时,通过调节溶液将色素掺杂到要形成到发光层的高聚合材料内。换句话说,与进行共同淀积掺杂多种色素的蒸发法相比,它可以极容易地得到。
具体地,将聚(亚乙基二氧基噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)的水溶液涂覆到包括具有大功函数(Pt、Cr、W、Ni、Zn、Sn、In)金属的阳极的整个表面形成作为空穴注入之后,在整个表面上涂覆并烧结掺杂有发光芯色素(例如,1,1,4,4-四苯基-1,3-丁二烯(TPB),4-二氰亚甲基-2-甲基-6-(p-二甲氨-苯乙烯基)-4H-吡喃(DCM1)、尼罗红或香豆素6等)用做发光层的聚乙烯咔唑(PVK)溶液,在其上形成阴极包括层叠的具有小功函数(Li、Mg、Cs)金属的薄膜和透明导电膜(ITO(氧化铟氧化锡合金)、氧化铟-氧化锌合金(In2O3-ZnO)、氧化锌(ZnO)等)。此外,PEDOT/PSS使用水做溶剂,并且不溶解在有机溶剂中。因此,即使PVK涂覆在其上,也不必担心再次溶解。此外,PEDOT/PSS和PVK的溶剂种类相互不同,因此优选不使用相同的膜形成室。
此外,虽然在以上介绍的例子中示出了层叠有机化合物层的例子,但可以构成单层的有机化合物层。例如,具有电子传输特性的1,3,4-噁二唑衍生物(PBD)分散在具有空穴传输特性的聚乙烯咔唑(PVK)中。此外,通过分散30wt%的PBD作为电子传输剂并分散适量的四种色素(TPB、香豆素6、DCM1和尼罗红)可以得到白色光。
此外,有机化合物膜形成在阴极和阳极之间,通过由阳极注入的空穴与阴极注入的电子在有机化合物膜复合,在有机化合物膜中可以获得白色光。
此外,通过适当地选择发红光的有机化合物膜、发绿光的有机化合物膜以及发蓝光的有机化合物膜并层叠这些膜以混合颜色也可以整体地获得白色光。
以上介绍形成的有机化合物膜可以整体上获得白色光。
可以沿从以上有机化合物膜的发白光的方向设置滤色器。滤色器具有吸收除了红光的着色层(R)、吸收除了绿光的着色层(G)、以及吸收除了蓝光的着色层(B)。因此,来自发光元件的白光可以分离成不同的颜色,由此可以得到红、绿和兰色发光。对于有源矩阵型发光器件,薄膜晶体管(TFT)形成在衬底和滤色器之间。
此外,着色层(R、G、B)具有条形图形,为最简单的图形,或者可以选自对角线镶嵌布局、三角形图形、RGBG四像素布局、RGBW四像素布局等。
可以使用分别分散有色素的有机光敏材料形成的彩色抗蚀剂制备形成滤色器的色素层。由此,白光的色坐标为(x,y)=(0.34,0.35)。现已知当白色光与滤色器组合时,可以确保颜色再现性性能为全色。
此时,此外,即使所得发光颜色不同,通过用每种发光颜色独立地涂覆它们,不需要形成有机化合物膜,是由于它们都由表示白光的有机化合物膜制成。此外,不是特别需要为了防止镜面反射的圆形偏振板。
接下来,我们参考图20B介绍通过组合具有蓝光有机化合物膜的发蓝光元件和变色层可以实现的变色介质(CCM)法。
CCM法通过用发蓝光元件发出的蓝光激发荧光变色层进行每种变色层的颜色变化。具体地,变色层进行从蓝到红(B→R)的变化,变色层进行从蓝到绿(B→G)的变化,变色层进行从蓝到蓝(B→B)的变化(从蓝到蓝的变化可以省略)以分别得到红、绿和蓝光。当为CCM法时,在衬底和变色层之间具有TFT的结构提供在有源矩阵型发光层中。
此时,同样不需要独立地涂覆形成有机化合物膜。此外,不是特别需要为了防止镜面反射的圆形偏振板。
此外,使用CCM法时,变色层发荧光,由此可以受外部的光激发,导致对比度下降。因此,优选通过附加图20C所示的滤色器或类似物增加对比度。
此外,本例可选地与本发明的实施例或例1到8之一组合,没有任何限制。
通过实施本发明,可以完成具有EL元件(例如有源矩阵EL模块)形成其内的所有电子装置。
下面给出了这些电子装置视频摄像机、数字照相机、头戴显示器(目镜型显示器goggle type display)、汽车导航系统、投影仪、汽车立体声系统、个人计算机、电子播放机、便携信息终端(移动计算机、移动电话或电子书籍等)等。在图21A-22C中示出了这些例子。
图21A是个人计算机,包括主体2001、图像输入部分2002、显示部分2003和键盘2004等。
图21B是视频摄像机,包括主体2101、显示部分2102、声音输入部分2103、操作开关2104、电池2105和图像接收部分2106等。
图21C是移动计算机,包括主体2201、摄像机部分2202、图像接收部分2203、操作开关2204和显示部分2205等。
图21D是目镜型显示器,包括主体2301、显示部分2302和臂状部分2303等。
图21E是采用记录介质记录节目(下文中称作记录介质)的播放器,包括主体2401、显示部分2402、扬声器部分2403、记录介质2404和操作开关2405等。该装置采用DVD(数字化视频光盘)、CD等作为记录介质,并能进行音乐欣赏、电影欣赏、游戏和上网。
图21F是数字照相机,包括主体2501、显示部分2502、取景器2503、操作开关2504和图像接收部分(未在图中示出)等。
图22A是移动电话,包括主体2901、声音输出部分2902、声音输入部分2903、显示部分2904、操作开关2905、天线2906和图像输入部分(CCD、图像传感器等)2907等。
图22B是便携书籍(电子书籍),包括主体3001、显示部分3002和3003、记录介质3004、操作开关3005和天线3006等。
图22C是显示器,包括主体3101、支撑部分3102和显示部分3103等。
此外,在图22中的显示器具有小的、中等尺寸或大尺寸的屏幕,例如5到20英寸。另外,为了制造这种尺寸的显示部件,优选采用一侧为一米的衬底通过成套印刷(gang printing)来大量生产。
如上所述,本发明的适用范围极其广泛,并且本发明可用于各种领域的电子设备。注意,本例中的这些电子设备可通地利用实施例以及例1到9的构造的任何组合来实现。
根据本发明,可以实现具有高可靠性的有源矩阵型发光器件。
权利要求
1.一种发光器件,包括在第一衬底和第二衬底之间具有发光元件和第一薄膜晶体管的像素部分;以及具有多个第二薄膜晶体管的驱动电路,其中发光元件具有第一电极、在第一电极上含有有机化合物的层以及在含有有机化合物的层上的第二电极,其中第一薄膜晶体管涂覆有由有机绝缘膜和覆盖有机绝缘膜的无机绝缘膜组成的层间绝缘层;其中在开口部分中形成台阶;其中无机绝缘膜具有沿有机绝缘膜的上端部的弯曲表面;以及其中第一电极的端部涂覆有上端部具有弯曲表面的绝缘材料。
2.根据权利要求1的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中连接到薄膜晶体管的源区和漏区之一的布线与第一电极的一部分接触,并提供在第一电极上。
3.根据权利要求1的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中第一电极与连接到薄膜晶体管的源区和漏区之一的布线的一部分接触,并提供在布线上。
4.根据权利要求1的发光器件,其中第一电极具有倾斜面,并且倾斜角为30°到70°。
5.根据权利要求1的发光器件,其中绝缘材料在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
6.根据权利要求1的发光器件,其中含有有机化合物的层是发红光材料、发绿光材料或发蓝光材料中的一种。
7.根据权利要求1的发光器件,其中含有有机材料的层是发白光材料,并与滤色器组合使用。
8.根据权利要求1的发光器件,其中含有有机化合物的层是发单色光的材料,并与变色层组合使用。
9.根据权利要求1的发光器件,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
10.一种发光器件,包括在第一衬底和第二衬底之间具有发光元件和第一薄膜晶体管的像素部分;以及具有多个第二薄膜晶体管的驱动电路,其中发光元件具有第一电极、在第一电极上含有有机化合物的层以及在含有有机化合物的层上的第二电极;其中第一薄膜晶体管涂覆有由无机绝缘膜和有机绝缘膜的叠层组成的层间绝缘层;其中在无机绝缘膜的侧表面和有机绝缘膜的侧表面之间的开口部分中形成台阶;其中有机膜的上端部具有弯曲的表面;以及其中第一电极的端部涂覆有上端部具有弯曲表面的绝缘材料。
11.根据权利要求10的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中连接到薄膜晶体管的源区和漏区之一的布线与第一电极的一部分接触,并提供在第一电极上。
12.根据权利要求10的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中第一电极与连接到薄膜晶体管的源区和漏区之一的布线的一部分接触,并提供在布线上。
13.根据权利要求10的发光器件,其中第一电极具有倾斜面,并且倾斜角为30°到70°。
14.根据权利要求10的发光器件,其中绝缘材料在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
15.根据权利要求10的发光器件,其中含有有机化合物的层是发红光材料、发绿光材料或发蓝光材料中的一种。
16.根据权利要求10的发光器件,其中含有有机材料的层是发白光的材料,并与滤色器组合使用。
17.根据权利要求10的发光器件,其中含有有机化合物的层是发单色光的材料,并与变色层组合使用。
18.根据权利要求10的发光器件,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
19.一种发光器件,包括在第一衬底和第二衬底之间具有发光元件和第一薄膜晶体管的像素部分;以及具有多个第二薄膜晶体管的驱动电路,其中发光元件具有第一电极、在第一电极上含有有机化合物的层以及在含有有机化合物的层上的第二电极,其中第一薄膜晶体管涂覆有由有机绝缘膜和覆盖有机绝缘膜的无机绝缘膜组成的层间绝缘层;其中在开口部分中形成台阶;其中无机绝缘膜具有沿有机绝缘膜的上端部的弯曲表面;以及其中第一电极的端部具有倾斜面,倾斜面反射从含有有机化合物的层发出的光。
20.根据权利要求19的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中连接到薄膜晶体管的源区和漏区之一的布线与第一电极的一部分接触,并提供在第一电极上。
21.根据权利要求19的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中第一电极与连接到薄膜晶体管的源区和漏区之一的布线的一部分接触,并提供在布线上。
22.根据权利要求19的发光器件,其中第一电极具有倾斜面,并且倾斜角为30°到70°。
23.根据权利要求19的发光器件,其中绝缘材料在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
24.根据权利要求19的发光器件,其中含有有机化合物的层是发红光材料、发绿光材料或发蓝光材料中的一种。
25.根据权利要求19的发光器件,其中含有有机材料的层是发白光材料,并与滤色器组合使用。
26.根据权利要求19的发光器件,其中含有有机化合物的层是发单色光的材料,并与变色层组合使用。
27.根据权利要求19的发光器件,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
28.一种发光器件,包括在第一衬底和第二衬底之间具有发光元件和第一薄膜晶体管的像素部分;以及具有多个第二薄膜晶体管的驱动电路,其中发光元件具有第一电极、在第一电极上含有有机化合物的层以及在含有有机化合物的层上的第二电极;其中第一薄膜晶体管涂覆有由无机绝缘膜和有机绝缘膜的叠层组成的层间绝缘层;其中在无机绝缘膜的侧表面和有机绝缘膜的侧表面之间的开口部分形成台阶;其中有机膜的上端具有弯曲的表面;以及其中第一电极的端部具有倾斜面,倾斜面反射从含有有机化合物的层发出的光。
29.根据权利要求28的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中连接到薄膜晶体管的源区和漏区之一的布线与第一电极的一部分接触,并提供在第一电极上。
30.根据权利要求28的发光器件,其中第一薄膜晶体管电连接到第一电极,以及其中第一电极与连接到薄膜晶体管的源区和漏区之一的布线的一部分接触,并提供在布线上。
31.根据权利要求28的发光器件,其中第一电极具有倾斜面,并且倾斜角为30°到70°。
32.根据权利要求28的发光器件,其中绝缘材料在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
33.根据权利要求28的发光器件,其中含有有机化合物的层是发红光材料、发绿光材料或发蓝光材料中的一种。
34.根据权利要求28的发光器件,其中含有有机材料的层是发白光材料,并与滤色器组合使用。
35.根据权利要求28的发光器件,其中含有有机化合物的层是发单色光的材料,并与变色层组合使用。
36.根据权利要求28的发光器件,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
37.一种发光器件的制造方法,包括以下步骤形成覆盖薄膜晶体管的源区和薄膜晶体管的漏区的无机绝缘膜;通过蚀刻无机绝缘膜形成延伸到源区和漏区之一的第一接触孔;在无机绝缘膜上形成有机绝缘膜;通过蚀刻有机绝缘膜形成延伸到源区和漏区之一的第二接触孔;形成连接电极,用于连接源区和漏区之一;形成接触连接电极的第一电极;在第一电极上形成含有有机化合物的层;以及在含有机化合物的层上形成第二电极。
38.根据权利要求37的发光器件的制造方法,其中第一电极作为发光元件的阳极和阴极中的一个。
39.根据权利要求37的发光器件的制造方法,其中有机绝缘膜在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
40.根据权利要求37的发光器件的制造方法,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
41.一种发光器件的制造方法,包括以下步骤形成覆盖薄膜晶体管的源区和薄膜晶体管的漏区的无机绝缘膜;通过蚀刻无机绝缘膜形成至少两个分别延伸到源区和漏区的第一接触孔;形成布线,用于连接源区和漏区之一;在无机绝缘膜和布线上形成有机绝缘膜;通过蚀刻有机绝缘膜形成至少两个第二接触孔,两个第二接触孔中的一个延伸到布线,两个第二接触孔中的另一个延伸到源区和漏区中的另外一个;形成至少两个连接电极,两个连接电极中的一个连接布线,两个连接电极中的另一个连接源区和漏区的另外一个;形成接触两个连接电极中至少一个的第一电极;在第一电极上形成含有有机化合物的层;以及在含有机化合物的层上形成第二电极。
42.根据权利要求41的发光器件的制造方法,其中第一电极作为发光元件的阳极和阴极中的一个。
43.根据权利要求41的发光器件的制造方法,其中有机绝缘膜在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
44.根据权利要求41的发光器件的制造方法,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
45.一种发光器件的制造方法,包括以下步骤形成覆盖薄膜晶体管的源区和薄膜晶体管的漏区的无机绝缘膜;通过蚀刻无机绝缘膜形成延伸到源区和漏区之一的第一接触孔;在无机绝缘膜上形成有机绝缘膜;通过蚀刻有机绝缘膜形成延伸到源区和漏区之一的第二接触孔;形成由金属层的叠层构成的连接到源区和漏区之一的第一电极;形成覆盖第一电极端部的绝缘材料;用绝缘材料作为掩模,通过蚀刻使第一电极的中心变薄,从而沿第一电极的边缘露出倾斜的表面;在第一电极上形成含有有机化合物的层;以及在含有机化合物的层上形成第二电极。
46.根据权利要求45的发光器件的制造方法,其中第一电极作为发光元件的阳极和阴极中的一种。
47.根据权利要求45的发光器件的制造方法,其中有机绝缘膜在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
48.根据权利要求45的发光器件的制造方法,其中绝缘材料在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
49.根据权利要求45的发光器件的制造方法,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
50.一种发光器件的制造方法,包括以下步骤形成覆盖薄膜晶体管的源区和薄膜晶体管的漏区的无机绝缘膜;在无机绝缘膜上通过溅射的方法形成氮化硅膜;通过蚀刻无机绝缘膜和氮化硅膜形成延伸到源区和漏区之一的第一接触孔;在氮化硅膜上形成有机绝缘膜;通过蚀刻有机绝缘膜形成延伸到源区和漏区之一的第二接触孔;形成连接电极,用于连接源区和漏区之一;形成接触连接电极的第一电极;在第一电极上形成含有有机化合物的层;以及在含有机化合物的层上形成第二电极。
51.根据权利要求50的发光器件的制造方法,其中第一电极作为发光元件的阳极和阴极中的一个。
52.根据权利要求50的发光器件的制造方法,其中有机绝缘膜在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
53.根据权利要求50的发光器件的制造方法,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
54.一种发光器件的制造方法,包括以下步骤形成覆盖薄膜晶体管的源区和薄膜晶体管的漏区的无机绝缘膜;通过蚀刻无机绝缘膜形成延伸到源区和漏区之一的第一接触孔;在无机绝缘膜上形成有机绝缘膜;在有机绝缘膜上通过溅射的方法形成氮化硅膜;通过蚀刻有机绝缘膜和氮化硅膜形成延伸到源区和漏区之一的第二接触孔;形成连接电极,用于连接源区和漏区之一;形成接触连接电极的第一电极;在第一电极上形成含有有机化合物的层;以及在含有机化合物的层上形成第二电极。
55.根据权利要求54的发光器件的制造方法,其中第一电极作为发光元件的阳极和阴极中的一个。
56.根据权利要求54的发光器件的制造方法,其中有机绝缘膜在上端部具有带曲率半径的弯曲表面,并且曲率半径为0.2μm到3μm。
57.根据权利要求54的发光器件的制造方法,其中发光器件是从由视频摄像机、数字照相机、目镜型显示器、汽车导航系统、个人计算机、DVD播放器、电子播放设备以及个人数字助理构成的组中选择的一种。
全文摘要
含有有机化合物的发光元件的不足之处在于它易于受到各种因素的影响而退化,所以它的最大问题是增加它的可靠性(使它的使用寿命更长)。本发明提供一种有源矩阵型发光器件的制造方法,以及具有高可靠性的这种有源矩阵型发光器件的结构。在方法中,形成延伸到源区或漏区的接触孔,然后在层间绝缘膜上形成由光敏有机绝缘材料制成的层间绝缘膜。在层间绝缘膜的上端部具有弯曲表面。随后,用RF电源通过溅射的方法形成由氮化硅膜提供的膜的厚度为20到50nm的层间绝缘膜。
文档编号G09F9/30GK1458640SQ03142788
公开日2003年11月26日 申请日期2003年5月15日 优先权日2002年5月15日
发明者山崎舜平, 村上智史, 纳光明 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1