一种角的三等分器的制作方法

文档序号:2650846阅读:887来源:国知局
专利名称:一种角的三等分器的制作方法
技术领域
本实用新型属于文具,具体是指不采用量角器就能准确绘出任意角的三等分线的 刻度尺。
背景技术
在几何学习及某些实际生产加工中,经常需要将一角度进行准确的三等分,而这 一几何作图操作长期以来一直是个难题。在实际作图中,人们通常是采用量角器来实现三 等分;但是这种工具分出的角度精确度较差,只能满足要求不高的操作。在进行准确等分 时,一般需要采用专门的工具,但专用工具不仅价格昂贵,且操作麻烦,不适合广大学生及 操作人员作使用。目前,还没有解决这一问题更好的技术方案。

实用新型内容本实用新型所要解决的技术问题是克服上述背景技术的不足,提供一种角的三等 分器,该角的三等分器应能准确地对任意角进行三等分,并且具有结构简单、使用方便、制 造成本低的特点。本实用新型采用的技术方案是一种角的三等分器,包括一设有刻度的片状透明 尺,其特征在于该透明尺的水平投影是以长轴为底边的半椭圆形,半椭圆形的长轴与短轴 之间的长度比为2: ,并且该透明尺底边的两个长轴的焦点处以及椭圆中心点分别制 有刻度标记。所述透明尺以其椭圆中心点为圆心制有一半径为1/2半长轴长度的半圆标识线。本实用新型的使用原理是(如图2所示)在等分角ECD的顶点上延长被等分角 ECD的任意一条边CD,然后将该角三等分器的椭圆中心点0点与该被等分角的顶点C重合, 角三等分器的底边与被等分角的另一边EC重合;然后在CD延长线与三等分器的椭圆边沿 的交点处作标记M,并在F2点处作标记,连接标记MF2,得到角DMF2,则Z DMF2为Z E⑶的三 分之一。本实用新型的有益效果是本实用新型可快速准确地对任意角度进行三等分,并 且操作简便;同时具有结构简单、制造容易、生产成本低的特点,适合推广使用。

图1是本实用新型的结构示意图。图2是本实用新型的使用原理示意图。图3是本实用新型对直角进行三等分的验证示意图。
具体实施方式
以下通过实施例,并结合说明书附图本实用新型的技术方案作进一步的说明。如图1所示,一种角的三等分器,包括一设有刻度的片状的透明尺1,该透明刻度尺的水平投影为以长轴为底边的半椭圆形,厚度根据需要确定;该半椭圆形的长轴与短轴 之间的长度比为2 ,并且该刻度尺底边的两个长轴焦点F1和F2处制有焦点标记(图 中显示两个焦点标记分别是F1和F2),半椭圆形的中心点制有中心点标记0。进一步,所述半椭圆形尺板上制有一以其中心点为圆心,半径为1/2半长轴长度 的半圆标识线(推荐用半圆刻痕线)。作为优选,该半椭圆形透明尺的半短轴的顶点P分别与两个焦点F1I2作连接直线 刻度,则与底边& F2构成一等边三角形。验证对Z HCK(该角为直角)进行三等分作图在Z HCK的顶点C作CK边的延长线;将半椭圆形透明尺的中心点标记0与 Z HCK的顶点C重合,且将该半椭圆形透明尺的底边与Z HCK的HC边重合后在F2点作标 记,又在CK边的延长线与透明尺的半椭圆边沿的交点作标记Q,作Q F2连线,得Z HCK的三 分之一角Z OQF2。验证由于OQ为该三等分器的半短轴长度· ο F2,因而线段Q &的长度为2 0 F2 ;故 sin k = 0 F2/2 0 F2 = 0. 5,k 为 30 度。验证证明,该三等分器的角度三等分正确。建议对于大于90度的角,应采用二等分的方法划分为小于90度的角,然后再用
该三等分器进行三等分。
权利要求一种角的三等分器,包括一设有刻度的片状透明尺(1),其特征在于该透明尺的水平投影是以长轴为底边的半椭圆形,半椭圆形的长轴与短轴之间的长度比为并且该透明尺底边的两个长轴的焦点处(F1,F2)分别制有刻度标记,椭圆中心点(O)制有刻度标记。FSA00000031748700011.tif
2.根据权利要求1所述的角的三等分器,其特征在于所述透明尺以其椭圆中心点(0) 为圆心制有一半径为1/2半长轴长度的半圆标识线。
专利摘要本实用新型属于文具,具体是指不采用量角器就能准确绘出任意角的三等分线的刻度尺。所要解决的技术问题是该角的三等分器应能准确地对任意角进行三等分,并且具有结构简单、使用方便、制造成本低的特点。本实用新型采用的技术方案是一种角的三等分器,包括一设有刻度的片状透明尺,其特征在于该透明尺的水平投影是以长轴为底边的半椭圆形,半椭圆形的长轴与短轴之间的长度比为2∶,并且该透明尺底边的两个长轴的焦点处以及椭圆中心点分别制有刻度标记。所述透明尺以其椭圆中心点为圆心制有一半径为1/2半长轴长度的半圆标识线。
文档编号B43L13/00GK201685617SQ20102013073
公开日2010年12月29日 申请日期2010年3月12日 优先权日2010年3月12日
发明者江亚军 申请人:江亚军
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1